@TECHREPORT{oei_4467, ota_publtyp = {Bericht}, oei_publtyp = {Studie}, title = {Ensuring a Sustainable Supply of Raw Materials for Electric Vehicles}, author = {Buchert, M. and Degreif, S. and Dolega, P.}, year = {2018}, language = {en}, url = {https://www.agora-verkehrswende.de/en/publications/ensuring-a-sustainable-supply-of-raw-materials-for-electric-vehicles/}, abstract = {The mobility transition is urgently needed to slash energy consumption in the transport sector without restricting mobility as a whole. To make the transport sector largely climate neutral by the middle of the century, it is imperative to not only shift to renewables, but also to halve the energy required by the transport sector as a whole. Regarding the energy transition in transport, electric vehicles will play a crucial role. Electric vehicles are extremely energy efficient, and with greater reliance on solar and wind energy, they may become virtually climate neutral in future. By promoting the expansion of the electric vehicle sector, we can significantly reduce our overall fossil fuel consumption. This will not only help us to meet carbon reduction targets for the transport sector, but will also serve to reduce our dependency on oil imports. It would nevertheless be a mistake to believe that adopting electric vehicles will automatically rid us of our dependency on raw material imports. Electric vehicle production requires a range of finite and non-renewable metallic raw materials and rare earth elements, which are sometimes only found in a small number of countries. Twenty-five years ago, China’s then president, Deng Xiaoping, summed up the political challenges posed by the raw material needs of new technologies when he remarked that “The Middle East has oil, but we have rare earths.” It would seem he was presciently aware of the strategic significance of rare earths for the transport systems of tomorrow. The significance of specific raw materials is now abundantly clear, for these commodities are essential for the manufacture of electric vehicles, and, by extension, they are crucial to the decarbonisation of the transport sector as a whole. Yet are these raw materials available in sufficient quantities to enable the rapid development of the electric vehicle market, or might their potential scarcity bring widespread adoption to a premature halt? This is one of the key questions addressed by the authors of this study. Clearly, sustainability means much more than just “long-term availability”. It also means ensuring environmental standards and viable conditions for workers across the entire supply chain. Accordingly, the study takes the environmental impacts and working conditions associated with each raw material into account. Based on our analysis, we have developed strategic recommendations for action to help ensure a sustainable supply of raw materials for electric vehicles. Our paper is intended to stimulate discussion, and we look forward to hearing your comments, critiques and suggestions. }, keywords = {Rohstoffe und Recycling} }