Marktpotenziale und CO₂-Bilanz von Elektromobilität

Arbeitspakete 2 bis 5 des Forschungsvorhabens OPTUM: Optimierung der Umweltentlastungspotenziale von Elektrofahrzeugen

Anhang zum Schlussbericht im Rahmen der Förderung von Forschung und Entwicklung im Bereich der Elektromobilität des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit

Autoren:
Florian Hacker
Ralph Harthan
Peter Kasten
Charlotte Loreck
Dr. Wiebke Zimmer

Berlin, Oktober 2011
Inhaltsverzeichnis

1. Einleitung und Hintergrund zum Forschungsvorhaben .. 8
 1.1 Ziel des Forschungsvorhabens ... 8
 1.2 Konzeption des Forschungsvorhabens .. 10
2. Szenarioprozess .. 14
 2.1 Stakeholder-Dialog & Experten-Workshop .. 14
 2.2 Szenarioannahmen ... 15
 2.2.1 Fahrzeugtechnik & -kosten ... 16
 2.2.2 Ladeinfrastruktur .. 17
 2.2.3 Energiepreisentwicklung ... 18
 2.2.4 Mobilitätsverhalten ... 18
 2.2.5 Modellansatz .. 19
3. Marktentwicklung Elektromobilität .. 20
 3.1 Maximalpotenzial Elektromobilität .. 20
 3.1.1 Datengrundlage ... 21
 3.1.2 Modellansatz .. 21
 3.1.3 Datenaufbereitung ... 22
 3.1.4 Methodisches Vorgehen .. 27
 3.1.5 Bestimmung des Maximalpotenzials .. 30
 3.1.6 Sensitivitätsanalyse .. 32
 3.2 Akzeptanzbetrachtung ... 34
 3.3 Marktpotenzial Elektromobilität .. 35
 3.3.1 Methodisches Vorgehen .. 35
 3.3.2 Bestimmung des Marktpotenzials .. 36
 3.4 Technologiediffusion & Entwicklung der Pkw-Neuzulassungen 37
 3.4.1 Technologiediffusion .. 37
 3.4.2 Entwicklung der Pkw-Neuzulassungen .. 40
4. Entwicklung Pkw-Bestand und Fahrleistung ... 43
 4.1 Bestandsmodell .. 43
 4.2 Bestandsentwicklung Elektromobilität ... 46
 4.3 Entwicklung der elektrischen Fahrleistung .. 48
5. Fahrzeugnutzungsprofile Elektromobilität ... 51
 5.1 Vorgehen / Datengrundlage ... 51
OPTUM: Marktpotenziale und CO₂-Bilanz von Elektromobilität

5.2 Typische Fahrzeugnutzung im Alltag ... 53
5.3 Integration von Nutzungsprofilen elektrischer Fahrzeuge in die Strommarktmodellierung ... 58

6. Interaktion von Elektrofahrzeugen mit dem Stromsektor . 61

6.1 Motivation ... 61
6.2 Kraftwerkseinsatz am Strommarkt .. 61
6.3 Methodisches Vorgehen ... 62
6.3.1 Grundsätzliche Beschreibung ... 62
6.3.2 Das Strommarktmodell PowerFlex - Modellbeschreibung 63
6.3.3 Modul Elektromobilität im Strommarktmodell PowerFlex 64
6.4 Szenarioannahmen ... 67
6.4.1 Szenariodefinition .. 67
6.4.2 Kraftwerkspark .. 68
6.4.3 Kosten für Brennstoffe, Importstrom und CO₂-Preise 71
6.4.4 CO₂-Emissionsfaktoren ... 71
6.4.5 Stromnachfrage .. 72
6.4.6 Elektrofahrzeuge ... 72
6.5 Ergebnisse ... 73
6.5.1 Kraftwerkseinsatz in stundenscharfer Darstellung 73
6.5.2 Brennstoffmix und spezifische CO₂-Emissionen der zusätzlichen Stromerzeugung für Elektromobilität ... 77
 Szenario „mit Elektromobilität“ – Darstellung der Ergebnisse.......................... 77
 Szenario „mit Elektromobilität“ – Diskussion der Ergebnisse 81
 Szenarien „Elektromobilität und zusätzliche erneuerbare Energien“ - Darstellung der Ergebnisse ... 83
 Szenarien „Elektromobilität und zusätzliche erneuerbare Energien“ - Diskussion der Ergebnisse ... 84
6.5.3 Beitrag der Elektromobilität zur Integration der erneuerbaren Energien 85

7. CO₂-Bilanz Elektromobilität .. 88

7.1 Hintergrund ... 88
7.2 Vorgehen und Rahmenbedingungen ... 88
 Fahrleistung .. 89
 Spezifischer Energieverbrauch ... 89
 CO₂-Intensität der Kraftstoffe .. 90
7.3 CO₂-Bilanz auf Fahrzeugebene ... 92
7.4 CO₂-Bilanz im Kontext des deutschen Pkw-Bestands 96
 Entwicklung des Endenergiebedarf .. 96
Entwicklung der CO₂-Emissionen...97

7.5 Exkurs: Mögliche Wechselwirkung zwischen Elektromobilität und der
Effizienzsentwicklung von konventionellen Pkw..99

8. Zusammenfassung ...103

9. Literaturverzeichnis ...108

Anhang A: Szenarioannahmen ...110

Anhang B: Fahrzeugnutzungsprofile ...113

Anhang C: Differenzstromerzeugung nach Brennstoffen, CO₂-Emissionen,
CO₂-Emissionsfaktoren und Anteil erneuerbarer Energien ... 114
Abbildungsverzeichnis

Abbildung 1: Modellkonzept OPTUM..10
Abbildung 2: Schema zum Vorgehen bei Maximalpotenzialbestimmung22
Abbildung 3: Schematische Darstellung zum Vorgehen der Datenaufbereitung der MiD 2008 für die Maximalpotenzialabschätzung und zur Ableitung von Fahrzeugnutzungsprofilen..23
Abbildung 4: Maximalpotenzial für elektrische Pkw im Jahr 2030 - differenziert nach Größenklassen ..31
Abbildung 5: Maximalpotenzial für elektrische Fahrzeuge in den Jahren 2020 und 2030 .32
Abbildung 6: Sensitivitätsbetrachtung des Maximalpotenzials batterieelektrischer Pkw..34
Abbildung 7: Marktpotenzial elektrischer Fahrzeuge in den Jahren 2020 und 2030 (SP: Stellplatz) ………………………………………………………………………………………………………37
Abbildung 8: Reale Marktentwicklung von Beispieltechnologien und deren Simulation nach Gompertz, Quelle: [9]...38
Abbildung 9: Technologiediffusionskurve nach Gompertz (Referenz: Marktentwicklung Hybrid-Pkw in den USA) ..39
Abbildung 10: Entwicklung der jährlichen Neuzulassungen an batterieelektrischen und Plug-In-Hybrid-Pkw in Deutschland ..41
Abbildung 11: Bestandszugehörigkeit x Jahre nach der Zulassung44
Abbildung 12: Entwicklung des Bestands an Elektrofahrzeugen47
Abbildung 13: Durch Elektrofahrzeuge substituierte konventionelle Pkw48
Abbildung 14: Entwicklung der Pkw-Fahrleistung im Szenario Elektromobilität49
Abbildung 15: Veränderung der Fahrleistung (differenziert nach Antriebstatyp und Energieträger) zwischen einer Referenzentwicklung ohne Elektrofahrzeuge und dem Szenario Elektromobilität ...50
Abbildung 16: Fahrzeugnutzungsprofile für das alltägliche Mobilitätsverhalten am Werktag ..55
Abbildung 17: Fahrzeugnutzungsprofile für das alltägliche Mobilitätsverhalten am Samstag ..56
Abbildung 18: Fahrzeugnutzungsprofile für das alltägliche Mobilitätsverhalten am Sonntag ..57
Abbildung 19: Schematische Darstellung der Merit Order im Jahr 2020, Quelle: ELIAS, PowerFlex...58
Abbildung 20: Schematische Darstellung der Modellierung batterieelektrischer Pkw im Modul Elektromobilität im Strommarktmodell PowerFlex..........................62
Abbildung 21: Schematische Darstellung der Modellierung von Plug-In-Hybridfahrzeugen im Modul Elektromobilität im Strommarktmodell PowerFlex........65
Abbildung 22: Schematische Darstellung von Input- und Output-Größen der Strommarktmodellierung mit PowerFlex und dem Modul Elektromobilität....67
Abbildung 23: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – Basisszenario ohne Elektromobilität

Abbildung 24: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – mit Elektromobilität, Ladeszenario 2 (Laden auch tagsüber), ohne Lademanagement („ohne LM 2“)

Abbildung 25: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – mit Elektromobilität, Ladeszenario 2 (Laden auch tagsüber), mit Lademanagement („mit LM 2“)

Abbildung 26: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – mit Elektromobilität und zusätzlicher onshore Windeinspeisung, Ladeszenario 2 (Laden auch tagsüber), mit Lademanagement („mit LM 2 Wind“)

Abbildung 27: Graphische Darstellung des Brennstoffmixes der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2020

Abbildung 28: Spezifische CO₂-Emissionen der zusätzlichen Stromerzeugung („Fahrstrom“) und der gesamten Stromerzeugung sowie Anteil erneuerbarer Energien am Fahrstrom 2020

Abbildung 29: Graphische Darstellung des Brennstoffmixes der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2030

Abbildung 30: Spezifische CO₂-Emissionen der zusätzlichen Stromerzeugung („Fahrstrom“) und der gesamten Stromerzeugung sowie Anteil erneuerbarer Energien am Fahrstrom 2030

Abbildung 31: Differenz der CO₂-Emissionen zwischen Läufen mit Elektromobilität und Basislauf nach vorgelagerten und direkten Emissionen für 2020

Abbildung 32: Differenz der CO₂-Emissionen zwischen Läufen mit Elektromobilität und Basislauf nach vorgelagerten und direkten Emissionen für 2030

Abbildung 33: Nicht genutzte fluktuierende erneuerbare Energien in verschiedenen Modellläufen für 2030 im Vergleich zum Stromverbrauch der Elektrofahrzeuge

Abbildung 34: CO₂-Bilanz 2030 für unterschiedliche Stromerzeugungsoptionen, ohne Lademanagement – Vergleich der spezifischen CO₂-Emissionen eines konventionellen Benzinfahrzeugs der Größenklasse “mittel“ mit einem Fahrzeug mit Plug-In-Hybrid- bzw. batterieelektrischem Antrieb

Abbildung 36: Vergleich der jährlichen CO₂-Emissionen eines konventionellen Benzin-Pkw mit einem Plug-In-Hybrid- bzw. batterieelektrischen Pkw im Jahr 2030. (Emissionsfaktor der Stromerzeugung bei zusätzlichem Ausbau erneuerbarer Energien (Wind) und bei Lademanagement)
Abbildung 37: Endenergiebedarf des Pkw-Bestands im Szenario Elektromobilität97
Abbildung 38: Veränderung des Endenergiebedarfs im Szenario Elektromobilität gegenüber einer Referenzentwicklung ohne Elektrofahrzeuge.................................97
Abbildung 39: CO₂-Emissionen des Pkw-Bestands im Referenzfall ohne Elektromobilität und im Szenario Elektromobilität für unterschiedliche Stromerzeugungsoptionen ..98
Abbildung 40: Veränderung der CO₂-Emissionen des Pkw-Bestands im Szenario Elektromobilität gegenüber einer Referenzentwicklung ohne Elektrofahrzeuge ...99
Abbildung 41: Mögliche Effizienzentwicklung von konventionellen Pkw-Neuzulassungen unter Berücksichtigung des zunehmenden Anteils an Elektrofahrzeugen ..101
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Beschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1</td>
<td>Zuordnungskriterien bei fehlender Angabe des KBA-Segments</td>
<td>26</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td>Einteilung von Fahrzeugsegmenten in Größenklassen</td>
<td>30</td>
</tr>
<tr>
<td>Tabelle 3</td>
<td>Akzeptanz für elektrische Fahrzeuge</td>
<td>35</td>
</tr>
<tr>
<td>Tabelle 4</td>
<td>Durchschnittliche jährliche Wachstumsraten von Technologieinnovationen im Automobilsektor</td>
<td>41</td>
</tr>
<tr>
<td>Tabelle 6</td>
<td>Jahresfahrleistung differenziert nach Antriebtyp und Größenklasse</td>
<td>46</td>
</tr>
<tr>
<td>Tabelle 7</td>
<td>Anteil von Plug-In-Hybrid- und batterieelektrischen Pkw an der Gesamtfahrleistung, differenziert nach Energieträgereinsatz</td>
<td>49</td>
</tr>
<tr>
<td>Tabelle 8</td>
<td>Kriterien zur Einteilung in Fahrzeugnutzungsprofile</td>
<td>54</td>
</tr>
<tr>
<td>Tabelle 9</td>
<td>Überblick über die durchgeführten Modellläufe</td>
<td>68</td>
</tr>
<tr>
<td>Tabelle 10</td>
<td>Elektrische Nettoleistung konventioneller Kraftwerke nach Brennstoffen in den betrachteten Szenariojahren</td>
<td>69</td>
</tr>
<tr>
<td>Tabelle 11</td>
<td>Nettoleistung und Nettostromproduktion der erneuerbaren Energien im Basislauf ohne Elektromobilität in den betrachteten Szenariojahren</td>
<td>70</td>
</tr>
<tr>
<td>Tabelle 12</td>
<td>Erhöhte Stromproduktion aus Wind und Photovoltaik in den Szenarien mit zusätzlichem Wind- bzw. Solarstrom</td>
<td>70</td>
</tr>
<tr>
<td>Tabelle 13</td>
<td>Erhöhte Kapazität und Stromproduktion aus Biogas in den Szenarien mit zusätzlichen Biogasanlagen</td>
<td>71</td>
</tr>
<tr>
<td>Tabelle 14</td>
<td>Verwendete Brennstoff- und CO₂-Preise</td>
<td>71</td>
</tr>
<tr>
<td>Tabelle 15</td>
<td>Inputbezogene Emissionsfaktoren für die in der Modellierung verwendeten Energieträger</td>
<td>72</td>
</tr>
<tr>
<td>Tabelle 16</td>
<td>Kraftstoffverbrauch [l/100 km] der verbrennungsmotorischen Pkw-Neuzulassungen nach NEFZ</td>
<td>90</td>
</tr>
<tr>
<td>Tabelle 17</td>
<td>CO₂-Intensität von Otto- und Dieselkraftstoff [g CO₂/kWh] unter Berücksichtigung des ansteigenden Biokraftstoffanteils</td>
<td>91</td>
</tr>
<tr>
<td>Tabelle 18</td>
<td>CO₂-Intensität der Stromerzeugung für Elektromobilität [g CO₂/kWh] – Effekt eines zusätzlichen Ausbaus von Erneuerbare-Energien-(EE-)Anlagen und von Lademanagement (LM); Vergleich zur CO₂-Intensität des deutschen Strommixes</td>
<td>92</td>
</tr>
<tr>
<td>Tabelle 19</td>
<td>Spezifischer Energieverbrauch und elektrischer Fahranteil der Vergleichsfahrzeuge im Jahr 2030</td>
<td>93</td>
</tr>
</tbody>
</table>
Einleitung und Hintergrund zum Forschungsvorhaben

Unter anderem deshalb fördert die Bundesregierung die Elektromobilität in umfassender Weise. Ziel ist es, bis 2020 mindestens eine Million und bis 2030 sechs Millionen Elektrofahrzeuge in Deutschland auf den Markt zu bringen.

1.1 Ziel des Forschungsvorhabens

konventionellen Pkw ist daher nur unter Berücksichtigung der Gesamtemissionsbilanz inklusiver der Energiebereitstellung möglich.

Wie stark elektrische Antriebe zum Klimaschutz beitragen können, hängt neben der Art der Stromerzeugung davon ab, wie viele Elektrofahrzeuge sich zu einem bestimmten Zeitpunkt im Markt befinden, wie hoch deren Fahrleistung und der sich daraus ableitende reale Gesamtstrombedarf ist und welche konventionellen Fahrzeuge im Bestand ersetzt werden.

Im Rahmen des Forschungsprojektes OPTUM „Umweltentlastungspotenziale von Elektrofahrzeugen – Integrierte Betrachtung von Fahrzeugnutzung und Energiewirtschaft“ wird daher ein integrativer Ansatz zur Bilanzierung der Umweltentlastungspotenziale von Elektrofahrzeugen verfolgt, der neben der fahrzeugseitigen Betrachtung auch die Interaktionen mit dem Energimarkt berücksichtigt. Ein solch integrativer Ansatz wurde in bisherigen Studien zu Elektrofahrzeugen meist nur ansatzweise verfolgt, was zum einen mit der unzureichenden Datenlage, insbesondere zur Fahrzeugnutzung, aber auch mit der neuartigen Interaktion zwischen Transport- und Energiesektor begründet sein mag. Um den Gesamtumweltnutzen einer verstärkten Einführung von Elektrofahrzeugen bewerten zu können, werden im Rahmen des hier vorgestellten Forschungsvorhabens daher folgende zentrale Ziele verfolgt:

- **Analyse der Akzeptanz und Attraktivität von Elektrofahrzeugen**
 Grundlage für die Betrachtung der Umweltentlastungspotenziale von Elektromobilität ist zunächst eine eingehende Analyse von Akzeptanz und Attraktivität verschiedener Fahrzeugkonzepte.

- **Ableitung von Marktpotenzialen für Elektrofahrzeuge**
 Um abschätzen zu können, wie stark Elektrofahrzeuge zum Klimaschutz beitragen können, muss analysiert werden, ob sie die alltäglichen Mobilitätsbedürfnisse überhaupt erfüllen können. In Verbindung mit Annahmen zur Akzeptanz kann dann die Marktentwicklung für Elektrofahrzeuge bis ins Jahr 2030 abgeleitet werden.

- **Betrachtung der Interaktion mit dem Energiesektor**
 Zur Ermittlung der Treibhausgasintensität der Strombereitstellung müssen unterschiedliche Interaktionsmöglichkeiten zwischen Elektrofahrzeugen und Energiesektor berücksichtigt werden: Unter anderem sollte die Wirkung unterschiedlicher Optionen des Ladeverhaltens auf den Kraftwerkspark und verschiedene Möglichkeiten der Strombereitstellung detailliert betrachtet werden.

- **Bestimmung der CO₂-Minderungspotenziale von Elektromobilität**
 Ein abschließender Vergleich mit der Treibhausgasbilanz von zukünftigen verbrennungsmotorischen Fahrzeugen ermöglicht eine umfassende Bewertung des Umweltnutzens von Elektrofahrzeugen unter Berücksichtigung unterschiedlicher Optionen der Energieerzeugung.

1.2 Konzeption des Forschungsvorhabens

Die Ableitung von Marktpotenzialen für Elektromobilität bis zum Jahr 2030 sowie die Bestimmung der möglichen Umweltauswirkungen mit Fokus auf die CO₂-Minderungspotenziale erfordert ein mehrstufiges Vorgehen, welches sowohl die zukünftigen Rahmenbedingungen und mögliche Nutzungsmuster abbildet als auch die Wechselwirkungen mit der Energiewirtschaft berücksichtigt.

Ausgehend von den formulierten Zielen des Forschungsvorhabens wurden daher mehrere Arbeitsschritte definiert. Im Folgenden werden diese in Kürze dokumentiert, um deren zentrale Inhalte, und insbesondere aber auch deren Zusammenspiel überblicksartig zu veranschaulichen (Abbildung 1). In den folgenden Kapiteln werden anschließend die einzelnen Analyseschritte und das methodische Vorgehen ausführlich diskutiert und die zentralen Ergebnisse dokumentiert.

Abbildung 1: Modellkonzept OPTUM
Szenarioprozess
Die Voraussetzung zur Quantifizierung der zukünftigen Marktpotenziale und des CO₂-Minderungspotenzials von Elektromobilität ist die Definition plausibler Rahmenbedingungen für den Betrachtungszeitraum bis zum Jahr 2030. Neben realistischen Annahmen zur weiteren technologischen Entwicklung müssen auch weitere Einflussgrößen, wie die Veränderung der Energiepreise und die zukünftige Entwicklung des deutschen Kraftwerksparks, berücksichtigt werden.

Marktentwicklung Elektromobilität

Aus der Kombination von Maximalpotenzial und Akzeptanz ergibt sich ein Marktpotenzial, das die Obergrenze des möglichen Marktanteils von Elektrofahrzeugen im Betrachtungszeitraum darstellt. Unter zusätzlicher Berücksichtigung der Angebotsentwicklung („Technologiediffusion“), welche dem Umstand Rechnung trägt, dass sich die Verfügbarkeit einer neuen Technologie im Markt erst mit der Zeit entwickelt, kann die tatsächlich realisierbare Marktentwicklung von Elektromobilität in Form von Anteilen an den jährlichen Pkw-Neuzulassungen dargestellt werden.

Pkw-Bestandsentwicklung

Das entwickelte Bestandsmodell bietet die Möglichkeit, die Struktur des bundesdeutschen Pkw-Bestands jahresscharf und differenziert nach Größenklassen und Antriebssystemen abzubilden und die Bestandsentwicklung von Elektrofahrzeugen für den Betrachtungszeitraum

Die Daten zur Pkw-Bestandsentwicklung inklusive der Informationen zu Fahrleistungs- und Energienachfrageentwicklung bilden ferner die modelltechnische Grundlage für die Quantifizierung der CO₂-Effekte.

Fahrzeugnutzungsprofile Elektromobilität

Integration von Elektromobilität in den Strommarkt

CO₂-Bilanz Elektromobilität

Der Emissionsvergleich verschiedener Antriebsoptionen erfordert daher eine Gesamtbetrachtung (Well-to-Wheel-Ansatz), die sowohl die direkten als auch die indirekten Emissionen des Fahrzeugantriebs berücksichtigt.

Für den Vergleich auf Einzelfahrzeugebene werden die Ergebnisse der Strommarktmodellierung genutzt und die CO₂-Intensität der Strombereitstellung mit der Stromnachfrage entsprechend der erstellten Nutzungsprofile gekoppelt.
Szenarioprozess

2.1 Stakeholder-Dialog & Experten-Workshop

Ein bedeutendes Element für die Ausgestaltung von Szenarien mit plausiblen und konsistenten Rahmenbedingungen war daher im Forschungsvorhaben OPTUM der Austausch mit für das Thema Elektromobilität relevanten Akteuren. Zum einen fand zu Beginn des Forschungsvorhabens ein Arbeitstreffen mit Experten verschiedener Fachrichtungen statt, um eine Übersicht über den aktuellen Wissensstand und über wahrscheinliche Entwicklungen im Bereich der Elektromobilität zu erlangen.

Im weiteren Verlauf des Forschungsvorhabens wurde in vier Sitzungen der Austausch mit gesellschaftlich relevanten Akteuren fortgesetzt, um die Methodik der Modellentwicklung und mögliche Szenarioannahmen zur Diskussion zu stellen und Anmerkungen der Teilnehmer des Stakeholder-Dialogs in die hier präsentierten Betrachtungen mit einfließen zu lassen. Im sogenannten „Joint Fact Finding“ wurde von Seiten der Forschungsnehmer somit hohe Transparenz in Bezug auf die Modell- und Szenarienentwicklung gewährleistet, um unter den für die weitere Meinungsbildung und den politischen Prozess relevanten Akteuren eine möglichst hohe Akzeptanz für die Ergebnisse der Untersuchungen und die sich daraus ableitbaren Handlungsempfehlungen bezüglich der Umweltaspekte von Elektromobilität zu erlangen.

» Automobilwirtschaft
» Energiewirtschaft
» Mobilitätsanbietern
» Technologieunternehmen
» Verbraucherverbänden
» Umweltschutzverbänden
» Unternehmerverbänden
an den Diskussionen im Modell- und Szenarioprozess beteiligt, wodurch ein breites Spektrum an Meinungen und Sichtweisen in die Szenarienentwicklung einbezogen werden konnte.

2.2 Szenarioannahmen

Elektromobilität steht am Beginn des Markteintritts und erste Serienfahrzeuge mit elektrischem Antrieb werden mittlerweile als Alternative zu konventionellen Pkw zum Verkauf angeboten. Angesichts dieses frühen Entwicklungsstadiums des Elektromobilitätsmarktes stellt die Ableitung zukünftiger Marktpotenziale von Elektromobilität und deren Emissionsminderung eine besondere Herausforderung dar und ist mit zahlreichen Unsicherheiten behaftet.

Diese Unsicherheiten beziehen sich auf die weiteren technologischen Optimierungs- und Kostenminderungspotenziale der Antriebs- und Batterietechnologie, die Entwicklung der notwendigen Infrastruktur, aber auch des zukünftigen Mobilitätsverhaltens sowie der Entwicklung weiterer Rahmenbedingungen, wie der Energiepreisentwicklung, staatlicher Fördermaßnahmen oder der Entwicklung der Stromnachfrage und des deutschen Kraftwerksparks.

Sollen die möglichen zukünftigen Potenziale von Elektromobilität quantifiziert werden, so müssen diesbezüglich möglichst plausible Annahmen getroffen werden. Die Ausgestaltung eines Szenarios bietet dabei die Möglichkeit, einen Satz an plausiblen Ausprägungen relevanter Einflussgrößen in einem Szenario zu bündeln und dessen Wirkung im Vergleich zu Alternativentwicklungen aufzuzeigen. Durch Sensitivitätsanalysen, d.h. durch die Variation einzelner Parameter, lässt sich ferner der Einfluss einzelner Parameter auf das Gesamtergebnis quantifizieren.

Im Rahmen des Forschungsvorhabens wurde unter Beteiligung relevanter gesellschaftlicher Akteure für Elektromobilität (Abschnitt 2.1) ein Szenario entwickelt, welches eine plausible zukünftige Entwicklung von Elektromobilität und wichtige Rahmenbedingungen beschreibt und somit die Grundlage für die Analysen zum Marktpotenzial, den Wechselwirkungen mit dem Strommarkt und den möglichen Umweltentlastungseffekten darstellt. Neben der Szenariodiskussion im Rahmen des im Forschungsvorhaben durchgeführten Stakeholder-Dialogs wurden die Szenarioannahmen dabei mit Veröffentlichungen der Nationalen Plattform Elektromobilität und weiteren Angaben von Experten und Annahmen aus der Fachliteratur abgeglichen.

2.2.1 Fahrzeugtechnik & -kosten

Grundlage für die Analyse von Marktpotenzialen und Umwelteffekten von Elektrofahrzeugen bis zum Jahr 2030 ist die Definition von Referenzfahrzeugen, mit denen repräsentativ die Fahrzeugentwicklung bis ins Jahr 2030 beschrieben werden kann. Während die elektrische Reichweite und die Kostenstruktur (Kraftstoffkosten und Batteriekosten) von Elektrofahrzeugen besonders relevante Einflussgrößen für die Bestimmung des Marktpotenzials darstellen, ist der Energieverbrauch von maßgeblicher Bedeutung für die Emissionsbilanz von Elektrofahrzeugen.

Neben den Entwicklungsperspektiven von Elektrofahrzeugen muss aber auch die weitere Optimierung der konventionellen, d.h. alleine mit einem Verbrennungsmotor für den Vortrieb ausgestatteten, Vergleichsfahrzeuge (CV) im Szenario mit in Betracht gezogen werden, um die Konkurrenzsituation dieser Technologien abbilden zu können.

Folgende Grundannahmen werden für das betrachtete Szenario getroffen:

» Als Elektrofahrzeuge werden bis ins Jahr 2030 rein batterie-elektrische Pkw (City-BEV\(^1\) / BEV\(^2\)) und Plug-In-Hybridfahrzeuge (PHEV\(^3\)) auf dem Markt angeboten werden.

» Die nominelle elektrische Reichweite von City-BEV / BEV beträgt im Mittel 100 km bzw. 160 km. Für PHEV wird eine nominelle elektrische Reichweite von 50 km angesetzt, die Gesamtreichweite liegt dabei in der Größenordnung heutiger, konventioneller Fahrzeuge.

» Der Energieverbrauch beim elektrischen Fahren variiert je nach Größenklasse und Fahrzeugtyp und verringert sich bis 2030 durch weitere Effizienzmaßnahmen stetig. Werden PHEV im verbrennungsmotorischen Modus betrieben, entspricht der Energieverbrauch dem von konventionellen Pkw.

» Der Energieverbrauch der konventionellen verbrennungsmotorischen Vergleichsfahrzeuge (CV) verbessert sich durch den Einsatz von Effizienztechnologien gegenüber heute um 28 % (2020) bzw. 36 % (2030)\(^5\).

1 City-BEV: City-BEV stellen auf den Stadtverkehr optimierte batterie-elektrische Stadtfahrzeuge dar, die mit einer geringeren, aber für den Stadtverkehr ausreichenden Reichweite ausgestattet sind und für den Vortrieb alleine einen Elektromotor besitzen, der durch eine Batterie gespeist wird, die über die Verbindung zum Stromnetz geladen werden kann.

2 BEV (battery electric vehicle): BEV besitzen eine im Vergleich zu City-BEV höhere Reichweite und sind für den Vortrieb ebenfalls ausschließlich mit einem Elektromotor ausgestattet, der durch eine Batterie gespeist wird, die über die Verbindung zum Stromnetz geladen werden kann. Aufgrund der größeren Batterie sind die Anschaffungskosten im Vergleich zu City-BEV-Fahrzeugen höher.

3 PHEV (plug-in hybrid electric vehicle): PHEV besitzen neben einem Elektroantrieb, dessen Batterie über die Verbindung zum Stromnetz geladen werden kann, einen Verbrennungsmotor zum Vortrieb, der zum Einsatz kommt, wenn die Batterie für den Einsatz des Elektromotors keine Energie mehr besitzt.

4 Inklusive des KBA-Segments „Mini-Vans“
Da der Realenergieverbrauch durchschnittlich 10 % über dem Normverbrauch liegt und eine Mindestreserve der Batterie von 15 km / 20 km angenommen wird, ergibt sich für City-BEV / BEV eine reale Reichweite von etwa 75 km bzw. 124 km.

Die Zusatzkosten der Elektrofahrzeuge gegenüber konventionellen Pkw ergeben sich im Wesentlichen durch den Aufpreis der Batterie. Die Batteriekosten sinken im Szenario von 500 €/kWh (aktuell) auf 280 €/kWh (2020) bzw. 230 €/kWh (2030)\(^6\). Für PHEV entstehen zudem Mehrkosten durch den benötigten zweiten Antriebstrang.

2.2.2 Ladeinfrastruktur

Neben der Marktentwicklung hat die Ladeinfrastruktur zudem einen Einfluss, wann, wo und mit welcher Ladeleistung die Fahrzeugbatterien für die weitere Nutzung aufgeladen werden. Somit hat die Entwicklung der Ladeinfrastruktur auch einen entscheidenden Einfluss auf von Elektromobilität ausgehende Effekte auf den Stromsektor.

Ausgehend von den Annahmen der Nationalen Plattform Elektromobilität und den Diskussionen im Rahmen der Stakeholder-Beteiligung werden für die Ladeinfrastruktur folgende Annahmen getroffen:

- Fahrzeuge, die über keinen Stellplatz auf dem eigenen Privatgrundstück verfügen, sondern im Regelfall im (semi-)öffentlichen Raum geparkt werden, haben zu 30 % (2020) bzw. zu 50 % (2030) gesicherten und regelmäßigen Zugang zu öffentlichen Ladestationen.
- Grundsätzlich können Elektrofahrzeuge, sobald sie geparkt sind, mit den in den Szenarien für die jeweiligen Standorte hinterlegten Ladeleistungen geladen werden.
- Für Ladevorgänge wird ein durchschnittlicher Wirkungsgrad von 90 % angenommen.

\(^5\) Die Effizienzentwicklung von konventionellen Pkw berücksichtigt die Vorgaben des EU-Flottengrenzwerts und orientiert sich an den in TREMOD, Version 5, getroffenen Annahmen [12].

\(^6\) In Anlehnung an die Angaben der NPE [27]
2.2.3 Energiepreisentwicklung

In der Szenarioentwicklung wurde das Referenzszenario aus der Studie „Energieszenarien für ein Energiekonzept der Bundesregierung“ als Grundlage herangezogen [5]. In Ergänzung wurden weitere Sensitivitätsbetrachtungen angestellt, um den Einfluss veränderter Strom- und Kraftstoffpreise auf die Akzeptanz von Elektromobilität zu illustrieren bzw. weitere Kosten, wie beispielsweise Nutzungsentgelte für die Ladeinfrastruktur oder eine Fahrstromsteuer abzubilden. Die Grundannahmen aus dem Referenzszenario in [5] sind:

- Ein Anstieg des Benzinpreises für Endkunden (inklusive Steuern) auf 1,52 €/l (2020) bzw. 1,69 €/l (2030).
- Ein Anstieg des Strompreises für Haushaltskunden auf 21,7 €cent/kWh (2020) bzw. 22,2 €cent/kWh (2030).

2.2.4 Mobilitätsverhalten

Neben dem Marktpotenzial wird auch der Stromsektor entscheidend durch die Art der Fahrzeugnutzung und das Mobilitätsverhalten beeinflusst. Da sich aus der Fahrzeugnutzung die Energieverbräuche, Standzeiten und -orte der einzelnen Fahrzeuge ergeben, ist das Mobilitätsverhalten damit der entscheidende Faktor für Restriktionen der Fahrzeugladung. Im Szenario werden diesbezüglich daher folgende Annahmen getroffen:

- Es ist davon auszugehen, dass sich beim Einsatz von batterieelektrischen Pkw die Flexibilität der Fahrzeugnutzung durch die im Vergleich zu konventionellen Fahrzeugen geringere Reichweite und längeren Ladezeiten grundsätzlich verringert. Es wird dennoch angenommen, dass ein batterieelektrischer Pkw nur dann als Ersatz in Frage kommt, wenn es die Mobilitätsbedürfnisse bezüglich der Fahrzeugnutzung, aber auch der Fahrzeuggröße in gleicher (oder ähnlicher) Weise erfüllen kann. Für Plug-In-Hybridfahrzeuge treten die Beschränkungen in Bezug auf Reichweite und Ladedauer allerdings nicht auf.
- Nutzungskonflikte können insbesondere bei unregelmäßigen langen Fahrten auftreten, die bei Überschreiten der Reichweite mit batterieelektrischen Fahrzeugen nicht bewältigt werden können. Für die Berücksichtigung dieser Fälle werden folgende Annahmen getroffen:
Aufgrund der geringen Reichweite können City-BEV nur dann ein konventionelles Fahrzeug ersetzen, wenn ein weiterer Pkw ohne Reichweitenbeschränkung im Haushalt vorhanden ist.

Das heutige Mobilitätsverhalten ändert sich bis zum Jahr 2030 nur unwesentlich, so dass heutige Mobilitätsmuster die Grundlage für Nutzung von elektrischen Fahrzeugen bilden.

2.2.5 Modellansatz
Abschließend für die Darstellung der Szenarioannahmen wird an dieser Stelle auf einen grundlegenden Ansatz in der Betrachtung der Marktentwicklung elektrischer Fahrzeuge eingegangen. Einige Modellteile dieser Studie basieren auf der Datenerhebung MiD 2008, in der das Mobilitätsverhalten privat genutzter Pkw erfasst ist. In der im Forschungsvorhaben durchgeführten Befragung zur Bestimmung der Akzeptanz für Elektromobilität wurden ebenfalls ausschließlich private Neuwagenkäufer berücksichtigt, so dass in der Modellierung implizit davon ausgegangen wird, dass der gewerbliche Flottensektor sich in Bezug auf die Marktentwicklung und die Fahrzeugnutzung auf dieselbe Art und Weise verhält wie der private Fahrzeugmarkt.

7 Eine Grundlage der Potenzialabschätzungen und der Ableitung von Fahrprofilen ist die repräsentative Datenerhebung MiD 2008, in der das Mobilitätsverhalten von Haushalten in Deutschland erfasst wurde.
Marktentwicklung Elektromobilität

Die Marktentwicklung elektrischer Fahrzeuge wird in diesem Forschungsvorhaben unter Berücksichtigung von drei Faktoren bestimmt. Das Maximalpotenzial betrachtet das heutige Mobilitätsverhalten und leitet daraus das maximale Substitutionspotenzial elektrischer Pkw ab (Abschnitt 3.1). Über die Simulation einer Kaufentscheidungssituation, in der zwischen drei vergleichbaren Fahrzeugen der drei Fahrzeugtypen batterieelektrischer Pkw, Plug-In-Hybrid-Pkw und konventioneller Pkw entschieden werden muss, wird die Akzeptanz für elektrische Fahrzeuge ermittelt (Abschnitt 3.2), die ein bedeutender Faktor für die Marktentwicklung elektrischer Fahrzeuge ist. Für die Ableitung der Marktentwicklung und die sich daraus in Deutschland ergebenden Neuzulassungen von elektrischen Fahrzeugen wird in Abschnitt 3.4 zudem die Angebotsentwicklung von elektrischen Fahrzeugen berücksichtigt, die einen dämpfenden Faktor für die Marktentwicklung darstellt.

3.1 Maximalpotenzial Elektromobilität

Das Maximalpotenzial für Elektromobilität beschreibt den Anteil an Pkw im deutschen Bestand, der aufgrund der jeweiligen Größenklasse, insbesondere aber in Bezug auf die Pkw-Nutzung, im betrachteten Zeitraum von 2010 bis 2030 theoretisch durch Fahrzeuge mit elektrischem Antrieb gemäß der Szenariodefinition (Kapitel 2.2) substituiert werden könnte. Entscheidend für die Ableitung dieses maximalen Potenzials für die Substitution konventioneller Pkw durch elektrische Fahrzeuge ist die Annahme, dass sich die Mobilitätsbedürfnisse und somit das Mobilitätsverhalten bis ins Jahr 2030 nur unwesentlich ändern und mit elektrischen Fahrzeugen somit im Vergleich zu heute dieselben Fahrten mit Pkw derselben Größenklasse zurückgelegt werden.

In diesem ersten Analyseschritt stehen also die Fahrzeugnutzung sowie die Größenklasse der Fahrzeuge im Vordergrund der Betrachtung. Weitere Restriktionen wie Kundenakzeptanz und die Fahrzeugangebotsentwicklung werden erst in den folgenden Schritten der Modellierung der Marktentwicklung berücksichtigt.

Wesentliche Einflussfaktoren für die Ableitung des Maximalpotenzials sind somit:

» das KBA-Fahrzeugsegment,
» die Tagesfahrleistung,
» die Standzeiten und -orte\(^8\),
» die Wahrscheinlichkeit von Nutzungskonflikten bei langen Fahrten,
» regelmäßige Verfügbarkeit einer Ladestation,
» Verfügbarkeit weiterer Fahrzeuge im Haushalt.

\(^8\) Von Relevanz für die Ladeleistung während der Batterieladung.
3.1.1 Datengrundlage
Die Datengrundlage für die Maximalpotenzialanalysen bildet die umfassende Mobilitätsdatenerhebung „Mobilität in Deutschland“ [6]. Diese Datenerhebung stellt eine repräsentative Stichprobe des Bestands privat genutzter Pkw in Deutschland dar und dokumentiert für jeweils einen Stichtag detailliert das Mobilitätsverhalten einzelner Haushalte in Deutschland. Insgesamt wurde in der MiD 2008 das Mobilitätsverhalten von rund 77.000 Personen aus etwa 26.000 Haushalten für jeweils einen Stichtag aufgenommen.
Da in den befragten Haushalten alle Haushaltsmitglieder Angaben zu ihrem Mobilitätsverhalten an dem jeweiligen Stichtag gemacht haben, bietet die MiD eine gute Basis, das Mobilitätsverhalten auf Haushaltebene zu analysieren und somit bei der Untersuchung aller Fahrten eines Haushalts-Pkw zu berücksichtigen. Zudem wurden die teilnehmenden Haushalte über ein Jahr verteilt befragt, so dass die Daten der MiD nicht durch ein unterschiedliches Mobilitätsverhalten infolge der Jahreszeit und des Wetters verzerrt werden. Insgesamt haben die Befragten der MiD zusammen etwa 193.000 Wege an dem jeweiligen Stichtag zurückgelegt.
Neben maximal 12 Wegen – darunter befinden sich beispielsweise auch zu Fuß, mit dem Fahrrad oder mit der Bahn zurückgelegte Wege –, die jede befragte Person für den jeweiligen Stichtag angeben konnte, stehen für alle Haushalte soziodemographische Daten sowie Informationen über generelle Einstellungen zu Mobilität und über die Pkw, die sich im Haushaltsbesitz befinden, zur Verfügung.
Auf den folgenden Seiten wird in Abschnitt 3.1.2 auf die grundsätzliche Idee für die Ableitung des Maximalpotenzials eingegangen. Die dafür notwendige Datenaufbereitung sowie die Ergebnisse der Maximalpotenzialbestimmung sind in den Abschnitten 3.1.3 und 3.1.5 dargestellt, bevor das Maximalpotenzial in Kapitel 3.1.6 auf die Sensitivität bezüglich einzelner Parameter der Potenzialbestimmung analysiert wird.

3.1.2 Modellansatz
Auf der anderen Seite soll das allgemeine Mobilitätsverhalten Berücksichtigung in der Potenzialbetrachtung finden. Es fließt somit nicht nur das Alltagsverhalten in die Bewertung des Maximalpotenzials ein, sondern es werden auch unregelmäßige lange Fahrten beispielsweise in den Urlaub oder auf Dienstreisen berücksichtigt. Dafür wird aus allen in der MiD aufgeführten Fahrten die Wahrscheinlichkeit für die Häufigkeit des Auftretens von
Reichweitenüberschreitungen batterieelektrischer Fahrzeuge abgeleitet und somit das allgemeine Mobilitätsverhalten in der Bestimmung des Maximalpotenzials berücksichtigt. Als Grundlage für alle Betrachtungen bezüglich des Maximalpotenzials dienen die in Abschnitt 2.2 präsentierten Szenarioannahmen für Elektromobilität. Es wird für das weitere Vorgehen im Forschungsvorhaben OPTUM differenziert für alle betrachteten Größenklassen und alle elektrischen Fahrzeugtypen ermittelt.

Abbildung 2: Schema zum Vorgehen bei Maximalpotenzialbestimmung

3.1.3 Datenaufbereitung
Die Daten der MiD 2008 liegen auf Grund der Übersicht und der Befragungsmethodik in fünf getrennten Datensätzen vor, die über mehrere Identifikationsnummern miteinander verbunden werden können. Dabei sind die für die Betrachtung elementaren Daten der Wegeerhebung eines Stichtags wegen der Befragung aller Personen eines Haushalts auf Personenebene aufgeführt. Da die Betrachtung des alltäglichen Mobilitätsverhaltens allerdings nicht auf Personen- oder Fahrtenebene stattfinden soll, wurden Teile dieser Datensätze für die weiteren Betrachtungen im Rahmen von OPTUM zu einem Fahrzeugdatensatz zusammengeführt, in dem alle Fahrten eines Pkw zu einem Pkw-Profil zusammengefasst sind, auch wenn die Fahrten von mehreren Mitgliedern eines Haushalts durchgeführt wurden.
Der Vorteil einer Potenzialabschätzung auf Fahrzeugebene gegenüber Betrachtungen aggregierter Fahrt Daten oder auf der Personenebene liegt darin begründet, dass vor allem für die Berücksichtigung der Nutzungsrestriktionen batterieelektrischer Fahrzeuge das Wissen über alle Standorte und -zeiten, aber auch über alle gefahrenen Distanzen eines Fahrzeugs entscheidend ist. Neben der Umstrukturierung auf die Fahrzeugebene soll in der Analyse des alltäglichen Mobilitätsverhaltens zudem nicht nur die Fahrzeugnutzung eines Tages berücksichtigt werden, sondern das Mobilitätsverhalten einer gesamten Woche mit einfließen, weshalb die erstellten Pkw-Nutzungsprofile einzelner Tage zusätzlich zu Wochennutzungsprofilen zusammengefasst wurden. In allen Schritten dieser Datenumstrukturierung wurden fehlerhafte und irrelevante Daten aus dem Datensatz entfernt, fehlende Daten – wenn möglich – mit plausiblen Annahmen ergänzt, bestehende Daten umkodiert und teilweise neue Variablen gebildet, um für die Potenzialabschätzung und das weitere Vorgehen in OPTUM einen möglichst nützlichen, konsistenten und kompakten Datensatz zu verwenden.

Abbildung 3: Schematische Darstellung zum Vorgehen der Datenaufbereitung der MiD 2008 für die Maximalpotenzialabschätzung und zur Ableitung von Fahrzeugnutzungsprofilen
Der zentrale Datensatz der MiD 2008 zur Bestimmung des Maximalpotenzials ist der Wegedatensatz, in dem rund 193.000 Wege aller im Rahmen der MiD befragten Personen aufgeführt sind. Diese Daten wurden während der Datenaufbereitung um Daten aus dem Auto- und dem Personendatensatz ergänzt (Abbildung 4), um zusätzliche Aussagen zu den erhobenen Pkw und den befragten Haushalten in der Potenzialanalyse machen zu können. Im Folgenden soll dennoch zunächst auf die Datenaufbereitung des Wegedatensatzes eingegangen werden, bevor das Vorgehen bei den anderen beiden Datensätzen erläutert wird. Um in der Potenzialbetrachtung die alltägliche Pkw-Nutzung betrachten zu können, wurde in der Datenaufbereitung zunächst eine Auswahl von für die weitere Analyse notwendigen und relevanten Variablen und Datensatzeinträgen getroffen. Daher wurden alle Wege, die

» nicht als Fahrer eines zum Haushalt gehörenden Pkw angetreten wurden,
» als rein berufliche Wege deklariert wurden,
» nach 24 Uhr des Stichtags gestartet wurden,
» als Dublette identifiziert wurden,
» für einen Haushalt angegeben wurden, in dem mindestens ein Weg als „nicht normal“ angegeben wurde,

⁹ Variable s01 der Datenerhebung MiD 2008: War der Stichtag für Sie persönlich ein normaler Tag?
» eine zeitliche Überschneidung von Wegen / Fahrten auf Personen- bzw. Fahrzeugebene vorliegt,
» eine Pkw-Fahrt eine Durchschnittsgeschwindigkeit von mehr als 250 km/h besitzt,
» eine unplaausible Distanz\(^{10}\) für eine Pkw-Fahrt angegeben wurde,
» die erste Fahrt des Tag als Rückweg gekennzeichnet wurde,
» zwei Fahrten in Folge als Zielort „zuhause“ besitzen,
» für eine Pkw-Fahrt keine Zuordnung zu einem Pkw angegeben wurde.

Zudem wurden in der Datenaufbereitung einige Variablen umkodiert und zur Bildung neuer Variablen verwendet. Entscheidend für die Abschätzung eines möglichen Einsatzes elektrischer Fahrzeuge sind die Standorte und –zeiten der Pkw. Daher wurden aus den Angaben der Wegezwecke der Standort der Pkw abgeleitet. Dafür wurden, wenn möglich,

» Rückwege mit einem Wegezweck assoziiert,
» Hol- und Bringzwecke über Angaben von Mitfahren einem Wegezweck zugeordnet,
» Wegezwecke in Standorte umkodiert,
» Fahrten mit einer Standzeit von weniger als 15 Minuten in einer Fahrt zusammengefasst.

Abschließend wurden im Rahmen der Umstrukturierung auf Fahrzeugebene für die weitere Verwendung in der Analyse unter anderem. neue Variablen wie die längste Standzeit des Tages\(^{11}\), die Tagesfahrleistung der Pkw und mittlere Gewichtungsfaktoren gebildet.
Im Autodatensatz finden sich Angaben zu den Pkw der Haushalte, die im Rahmen der MiD 2008 befragt wurden. Entscheidende Größen des Autodatensatzes sind für die weitere Betrachtung unter anderem. die angegebenen Größenklassen der Fahrzeuge, die Verfügbarkeit eines Pkw-Stellplatzes auf dem eigenen Grundstück und die Jahresfahrleistung der Pkw.

\(^{10}\) In der Datenerhebung sind Pkw-Fahrten mit einer Distanz von mehr als 1.000 km als unplausbibel gekennzeichnet. Zudem wurden in der Datenaufbereitung Fahrten mit einer Distanz von 0 km als unplausbibel deklariert.
\(^{11}\) inkl. Standort der längsten Standzeit während des Tages

Tabelle 1: Zuordnungskriterien bei fehlender Angabe des KBA-Segments

<table>
<thead>
<tr>
<th>Leistung [kW]</th>
<th>KBA-Segmente</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>Mini</td>
</tr>
<tr>
<td>50 - 75l</td>
<td>Kleinwagen</td>
</tr>
<tr>
<td>75 – 120</td>
<td>Kompaktklasse</td>
</tr>
<tr>
<td>120 – 170(^a)</td>
<td>Mittelklasse</td>
</tr>
<tr>
<td>> 170(^a)</td>
<td>Obere Mittelklasse</td>
</tr>
</tbody>
</table>

\(^a\) Bei Dieselfahrzeugen wurde für die Abgrenzung zwischen Mittelklasse und Oberer Mittelklasse der Leistungswert 150 kW definiert.

Um in der Betrachtung der Fahrzeugnutzung soziodemographische Daten und Einstellungen der Haushalte zur Mobilität mit berücksichtigen zu können, wurden zudem Daten aus dem Personendatensatz dem bereits erstellten Datensatz des alltäglichen Mobilitätsverhaltens hinzugefügt.

Dieser neue Datensatz stellt bis zu diesem Stand der Datenaufbereitung allerdings nur das alltägliche Mobilitätsverhalten auf Tagesebene dar, da jeder in der MiD befragte Haushalt nur an einem Stichtag detaillierte Angaben zu seinem Mobilitätsverhalten gemacht hat. Hinsichtlich der besonderen Restriktionen beim Einsatz von elektrischen Fahrzeugen ist im Hinblick auf die

\(^\text{12}\) Besitzt der Haushalt ein anderes Fahrzeug der Größenklassen Sportwagen, Oberklasse, Obere Mittelklasse wird das Fahrzeug ohne Angabe des KBA-Segments der Mittelklasse zugeordnet. In allen restlichen Fällen wird der Pkw ohne Angabe des KBA-Segments als Kleinwagen deklariert.

\(^\text{13}\) Ökonomischer Status sehr hoch → KBA-Segment: Obere Mittelklasse; Ökonomischer Status hoch → KBA-Segment: Mittelklasse; Ökonomischer Status mittel → KBA-Segment: Kompaktklasse; Ökonomischer Status niedrig, sehr niedrig → KBA-Segment: Kleinwagen
Abschätzung des Maximalpotenzials eine Betrachtung eines längeren Zeitraums hilfreich. Zudem unterscheidet sich die Fahrzeugnutzung am Wochenende erheblich von der während der Werkstage, so dass entschieden wurde, die Potenzialbetrachtung auf Wochenebene durchzuführen.

Somit wurde ein weiterer Schritt in der Datenaufbereitung notwendig, um aus der Betrachtung auf Tagesebene14 Wochennutzungsprofile von Fahrzeugen für das alltägliche Mobilitätsverhalten zu erhalten. Die einzelnen Datensätze der Fahrzeuge wurden unter der Berücksichtigung der Parameter

\begin{itemize}
 \item Haushaltstyp
 \item KBA-Segment
 \item Jahresfahrleistung
 \item Anzahl der Fahrzeuge im Haushalt
 \item Kreistyp15
\end{itemize}

zufällig zu Wochennutzungsprofilen miteinander verbunden. Da bei der Verknüpfung der Datensätze nicht in allen Fällen eine Übereinstimmung für alle aufgeführten Parameter vorlag, wurden teilweise nur einige übereinstimmende Parameter für die Verknüpfung der Datensätze vorausgesetzt. Dabei entspricht die Priorität der Parameter bei der Verknüpfung der Reihenfolge der Auflistung, d.h. zumindest der Haushaltstyp stimmt bei den zu einem Wochenprofil zusammengefügten Datensätzen überein.

Durch dieses Vorgehen wurden Datensätze einzelner Fahrzeuge am Wochenende mehrfach in verschiedene Wochennutzungsprofile übernommen, da für die Kombination der Datensätze mehr Nutzungsprofile an Werktagen vorlagen als für die Wochenendtage. Da die einzelnen Datensätze für die Fahrzeugnutzung am Wochenende eine repräsentative Darstellung der Pkw-Nutzung am Wochenende sind, entsteht dadurch allerdings keine gravierende Verzerrung der Daten. Zudem wurden diesen Wochennutzungsprofilen alle Fahrzeugeigenschaften und soziodemographischen Daten der Datensätze der an Werktag befragten Haushalte zugesprochen, um eine repräsentative Darstellung dieser Werte beizubehalten.

3.1.4 Methodisches Vorgehen

14 differenziert nach Werktag, Samstag und Sonntag

15 Charakterisierung des Wohnortes des befragten Haushalts nach Raumtyp und Bevölkerungsdichte
» KBA-Segment,
» Tagesfahrleistung,
» Standzeiten und –orte

für jedes einzelne mit einem Wochennutzungsprofil hinterlegte Fahrzeug das Potenzial für die Nutzung elektrischer Fahrzeuge bestimmt werden kann. Die hier aufgezeigten Kriterien für die Potenzialbestimmung stellen allerdings nur für batterieelektrische Fahrzeuge eine Restriktion dar, da Plug-In-Hybrid-Pkw gemäß den Szenarioannahmen in allen Größenklassen zur Verfügung stehen werden und bezüglich der Reichweite und der Betankung im Vergleich mit konventionellen Fahrzeugen keine weitreichenden Beschränkungen auftreten. Für die Potenzialbetrachtung für batterieelektrische Pkw ist zudem noch erwähnenswert, dass die maximale, zulässige Tagesfahrleistung über der nutzbaren Reichweite eines batterieelektrischen Pkw liegen kann, wenn bei der Fahrzeugnutzung genügend lange Standzeiten an Standorten mit einer Lademöglichkeit hinterlegt sind.

Da das Mobilitätsverhalten in der MiD 2008 – wie bereits erwähnt – nur für jeweils einen Stichtag vorliegt, wird die Problematik der Reichweitenüberschreitungen im Mobilitätsverhalten mit Hilfe der Poisson-Verteilung behandelt (Gleichung 1).

\[P_\lambda(X = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda} \]

Die Poisson-Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung für unabhängig voneinander auftretende Ereignisse mit zwei Ergebnissen („Erfolg“ und „Misserfolg“). Im betrachteten Fall ist das betrachtete Ereignis \(k \) die Häufigkeit einer Fahrt über der angenommenen Reichweite eines batterieelektrischen Fahrzeugs während eines Jahres („Erfolg“). Somit kann bestimmt werden, mit welcher Wahrscheinlichkeit \(P \) für die betrachteten Fahrzeuge \(k \) Reichweitenüberschreitungen im Jahr auftreten.

Einziger Parameter der Poisson-Verteilung ist dabei der Erwartungswert \(\lambda \) der Wahrscheinlichkeitsverteilung. Dieser Erwartungswert entspricht in Gleichung 1 dem Jahresdurchschnitt an Fahrten über der Reichweitenbegrenzung der batterieelektrischen Pkw und wurde auf Basis aller in der MiD 2008 aufgeführten Fahrten bestimmt (\(\lambda_{\text{REV}} = 13,50 \) Reichweitenüberschreitung pro Jahr). Da über die einzeln aufgeführten Fahrten der
Stichtagsbefragung nicht die angegebenen Werte der Jahresfahrleistung darstellbar sind, ist davon auszugehen, dass speziell lange Fahrten in der MiD 2008 untererfasst sind. Daher wurde für die Bestimmung von λ die über die an dem jeweiligen Stichtag zurückgelegten Einzelfahrten bestimmte Jahresfahrleistung mit der durchschnittlich von den Befragten angegebenen Fahrleistung verglichen und annahmenbasiert die Zahl der fehlenden langen Fahrten abgeschätzt.

Unter der Berücksichtigung der maximal nutzbaren Reichweite batterieelektrischer Pkw wird mit Hilfe der Poisson-Verteilung für batterieelektrische Pkw (BEV) die Wahrscheinlichkeit für maximal acht Nutzungskonflikte auf 13,5% abgeschätzt. Für batterieelektrische Stadtfahrzeuge (City-BEV) liegt diese Wahrscheinlichkeit unter 1%, so dass für die Abschätzung des Maximalpotenzials von batterieelektrischen Stadtfahrzeugen im weiteren Vorgehen die Annahme getroffen wird, dass mindestens ein weiterer, mit einem konventionellen Motor ausgestatteter Pkw ohne Reichweitenbeschränkung im selben Haushalt vorhanden sein muss, um einem Datensatz in der Betrachtung des alltäglichen Mobilitätsverhaltens das Potenzial für ein batterieelektrisches Fahrzeug zuzuschreiben. Eine Restriktion aufgrund langer, unregelmäßiger Fahrten wird bei batterieelektrischen Stadt-Pkw dementsprechend nicht mehr berücksichtigt.

Haben Pkw-Besitzer die Möglichkeit ihr Fahrzeug auf dem eigenen Grundstück abzustellen, ist davon auszugehen, dass sie bei Interesse an einem Elektrofahrzeug die Möglichkeit nutzen, dieses Fahrzeug während ihres Aufenthalts zuhause aufzuladen. Somit werden in der MiD vorkommende Haushalte mit einem Stellplatz auf dem eigenen Grundstück bei der Ableitung des Maximalpotenzials zumindest nicht durch die Verfügbarkeit eines Ladeplatzes eingeschränkt.

16 Über die durchschnittliche Tagesfahrleistung der Pkw an Werktagen, am Samstag und am Sonntag lässt sich anhand der Stichtagsbefragung eine Jahresfahrleistung von 10.100 km ableiten. Die Teilnehmer der MiD gaben in der Datenerhebung im Durchschnitt allerdings eine Jahresfahrleistung von 13.670 km an.

17 Für die Ableitung der Zahl an fehlenden, langen Fahrten wurde die durchschnittliche Länge von Fahrten der Kategorien 250 km - 500 km, 500 km - 750 km und > 750 km bestimmt. Fahrt dieser drei Kategorien wurden jeweils mit Hin- und Rückfahrt in der Reihenfolge von kurzen zu langen Fahrten solange zu der über die Stichtagsbefragung ermittelte Jahresfahrleistung hinzugefügt, bis der von den Befragten angegebene Wert von 13.670 km erreicht wird.

18 Maximal nutzbare Reichweite: 75 km (City-BEV) / 124 km (BEV)
Für Fahrzeuge von Haushalten ohne eigenen Stellplatz besteht jedoch eine Beschränkung, da diese bei Erwerb eines elektrischen Fahrzeugs von der Infrastruktur im (semi-)öffentlichen Raum abhängig sind. Daher wird durch die Szenarioannahmen eine Obergrenze für das Maximalpotenzial von Haushalten festgelegt, die keine Möglichkeit besitzen, einen Pkw auf dem eigenen Grundstück abzustellen19.

3.1.5 Bestimmung des Maximalpotenzials

Tabelle 2: Einteilung von Fahrzeugsegmenten in Größenklassen

<table>
<thead>
<tr>
<th>Größenklassen</th>
<th>KBA-Segmente</th>
</tr>
</thead>
<tbody>
<tr>
<td>klein</td>
<td>Mini, Kleinwagen</td>
</tr>
<tr>
<td>mittel</td>
<td>Kompaktklasse, VANs, Utilities</td>
</tr>
<tr>
<td>groß</td>
<td>Mittelklasse, Obere Mittelklasse, Oberklasse, Geländewagen</td>
</tr>
</tbody>
</table>

19 Maximal 30 % (2020) bzw. 50 % (2030) der Haushalte ohne eigenen Stellplatz können ein Elektrofahrzeug besitzen.
hinterlegt sind, die gemäß den Szenarioannahmen aufgrund ihres Fahrzeugsegments nicht als potenzielle batterieelektrische Pkw deklariert werden.

Für batterieelektrische Pkw ist die regelmäßige Verfügbarkeit an Ladestationen mit der vorgestellten Methodik keine bedeutende Restriktion, da die Obergrenze des Maximalpotenzials bereits durch die Betrachtung der unregelmäßig vorkommenden, langen Fahrten gegeben ist. Für Plug-In-Hybridfahrzeuge ist diese Begrenzung allerdings die einzige Restriktion in der Betrachtung, da sich die Nutzungsmöglichkeiten eines Plug-In-Hybrid-Pkw in Bezug auf das alltägliche Mobilitätsverhalten und unregelmäßig lange Fahrten nicht von denen eines konventionellen Pkw unterscheiden. Das unterschiedliche Potenzial zwischen den Größenklassen ist davon geprägt, dass die in der MiD befragten Haushalte mit kleineren Fahrzeugen im Durchschnitt seltener einen Stellplatz auf dem eigenen Grundstück besitzen als solche mit großen Fahrzeugen und sich somit bei kleineren Fahrzeugen die Beschränkung der Ladestationen im (semi-)öffentlichen Raum stärker auswirkt.

Der entscheidende Faktor für den geringen Anstieg des Maximalpotenzials im Jahr 2030 ist daher die stärkere Verbreitung (semi-)öffentlicher Infrastruktur, so dass für einen Teil der Haushalte ohne Pkw-Stellplatz auf dem eigenen Grundstück die Möglichkeit besteht, elektrische Pkw zu nutzen. Erkennbar ist dies vor allem bei der Betrachtung von Plug-In-Hybridfahrzeugen, bei denen die regelmäßige Verfügbarkeit von Ladeoptionen die einzige Begrenzung des Maximalpotenzials darstellt.

3.1.6 Sensitivitätsanalyse

Sensitivitätsanalysen stellen eine Möglichkeit dar, die Wirkung einzelner Parameter auf die Ergebnisse eines Modells zu analysieren. Bei der Betrachtung des Maximalpotenzials wurde deutlich, dass das alltägliche Mobilitätsverhalten der meisten Haushalte mit elektrischen Fahrzeugen problemlos bewältigt werden kann. Da davon auszugehen ist, dass der Effekt von Einflussgrößen, die in die Untersuchung des alltäglichen Mobilitätsverhaltens eingehen, bei realistischen Variationen gering ist, wird auf eine Sensitivitätsuntersuchung des Maximalpotenzials in Bezug auf das alltägliche Mobilitätsverhalten verzichtet.
Eine entscheidende Größe für die Bestimmung des Maximalpotenzials ist die Untersuchung der Häufigkeit von unregelmäßig vorkommenden Fahrten über der Reichweite batterieelektrischer Pkw. Da diese Fahrten keinen Einfluss auf das Maximalpotenzial von Plug-In-Hybridfahrzeugen haben und für den Einsatz eines batterieelektrischen Stadtfahrzeugs ein zweiter, mit einem Verbrennungsmotor ausgestatteter Pkw im Haushalt vorausgesetzt wird, wird die Sensitivität dieser Größe alleine für batterieelektrische Pkw untersucht.

In der Sensitivität „Reichweite (-)“ wird von einer maximal nutzbaren Reichweite von nur 100 km ausgegangen, wogegen die Reichweite in der Sensitivitätsbetrachtung „Reichweite (+)“ auf 250 km erhöht wird. Zu erwähnen ist dabei, dass die Reichweite dabei nur für die Betrachtung der langen Fahrten variiert wird und somit mit Bezug auf die Betrachtung des alltäglichen Mobilitätverhaltens kein konsistentes Szenario mehr vorliegt. Als zweite Größe wird die Akzeptanz von Reichweitenüberschreitungen verändert. Dies könnte ein Szenario mit einer hohen Verbreitung an Schnellladesäulen oder mit einer verstärkten Vernetzung von Verkehrsträgern entsprechen, in denen Fahrten über der Reichweite batterieelektrischer Pkw häufiger ohne bedeutenden Mehraufwand bewältigt werden können.

Das Potenzial für batterieelektrische Pkw sinkt selbst bei einer geringen Reduzierung der maximal nutzbaren Reichweite („Sensitivität (-)“) erheblich ab. Dies hängt damit zusammen, dass die für diese Reichweite ermittelte Wahrscheinlichkeit von maximal acht Reichweitenüberschreitungen pro Jahr auf 4 % absinkt. Bei einer Reichweite von 250 km („Reichweite (+)“) erhöht sich dieser Wert bereits auf 59 %, womit die in Abbildung 6 dargestellte Steigerung des Maximalpotenzials batterieelektrischer Pkw zu erklären ist. Noch höher ist das Maximalpotenzial, wenn batterieelektrische Pkw zwar die im Marktszenario angenommene Reichweite besitzen, die Pkw-Nutzer aber mehr Nutzungskonflikte akzeptieren. In diesem Fall wird das Maximalpotenzial auch nicht mehr alleine durch die Betrachtung unregelmäßig vorkommender, langer Fahrten begrenzt, sondern auch durch die begrenzte Verfügbarkeit von Lademöglichkeiten für Pkw-Besitzer ohne Stellplatz auf dem eigenen Grundstück.

20 Die Reichweitenänderung müsste selbstverständlich auch in der Betrachtung des alltäglichen Mobilitätverhaltens berücksichtigt werden. Zudem würden sich bei einer größeren Batterie der Energieverbrauch der Fahrzeuge sowie die Ladepuffer der Batterien verändern.
3.2 Akzeptanzbetrachtung

Neben dem theoretischen Substitutionspotenzial von konventionellen Pkw, welches durch das im vorigen Kapitel präsentierte Maximalpotenzial für elektrische Pkw beschrieben ist, dient die Akzeptanz für elektrische Pkw als zweite bedeutende Größe für die Ableitung der Marktentwicklung von elektrischen Fahrzeugen. Im Rahmen des Forschungsvorhabens OPTUM wurde vom Institut für sozial-ökologische Forschung daher eine Befragung von rund 1.500 potenziellen Neuwagenkäufern durchgeführt, um die Akzeptanz für elektrische Fahrzeuge ableiten zu können. Dafür wurde in einer Conjoint-Analyse eine Kaufentscheidung zwischen jeweils drei Pkw simuliert, in der neben konventionellen Pkw auch Plug-In-Hybridfahrzeuge und batterieelektrische Pkw abgebildet wurden.

In der Akzeptanzanalyse wurde zudem zwischen Personen mit und ohne Pkw-Stellplatz auf dem eigenen Grundstück unterschieden, da dieser Parameter in der Modellierung des Maximalpotenzials als ein entscheidender Faktor für die regelmäßige Verfügbarkeit einer Ladestation herangezogen wurde und sich die Akzeptanz in Hinblick auf diese Eigenschaft unterscheidet. Eine weitere Differenzierung zwischen Pkw der Segmente „Mini“ und
„Kleinwagen“ wurde in der Größenklasse „klein“ gemacht, um in dieser Größenklasse sowohl die Kaufentscheidung für City-BEV als auch für BEV simulieren zu können.

Tabelle 3: Akzeptanz für elektrische Fahrzeuge

<table>
<thead>
<tr>
<th>Größenklasse</th>
<th>Akzeptanz (2020 / 2030) [%]</th>
<th>CV</th>
<th>PHEV</th>
<th>BEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Stellplatz</td>
<td>43,9 / 40,4</td>
<td>36,8 / 41,4</td>
<td>19,3 / 18,2</td>
<td></td>
</tr>
<tr>
<td>ohne Stellplatz</td>
<td>32,1 / 40,2</td>
<td>35,8 / 39,9</td>
<td>32,1 / 30,1</td>
<td></td>
</tr>
<tr>
<td>gesamt</td>
<td>38,4 / 35,5</td>
<td>36,3 / 40,7</td>
<td>25,3 / 23,8</td>
<td></td>
</tr>
<tr>
<td>Kleinwagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Stellplatz</td>
<td>45,9 / 40,2</td>
<td>40,1 / 42,7</td>
<td>14,0 / 17,1</td>
<td></td>
</tr>
<tr>
<td>ohne Stellplatz</td>
<td>34,2 / 30,3</td>
<td>41,7 / 41,4</td>
<td>24,1 / 28,3</td>
<td></td>
</tr>
<tr>
<td>gesamt</td>
<td>40,4 / 35,6</td>
<td>40,8 / 42,1</td>
<td>18,8 / 22,3</td>
<td></td>
</tr>
<tr>
<td>mittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Stellplatz</td>
<td>42,2 / 38,3</td>
<td>48,8 / 47,0</td>
<td>9,0 / 14,7</td>
<td></td>
</tr>
<tr>
<td>ohne Stellplatz</td>
<td>39,2 / 36,0</td>
<td>44,6 / 39,1</td>
<td>16,2 / 24,9</td>
<td></td>
</tr>
<tr>
<td>gesamt</td>
<td>40,8 / 37,3</td>
<td>47,0 / 43,5</td>
<td>12,2 / 19,2</td>
<td></td>
</tr>
<tr>
<td>groß</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Stellplatz</td>
<td>41,4 / 38,4</td>
<td>58,6 / 61,6</td>
<td>- / -</td>
<td></td>
</tr>
<tr>
<td>ohne Stellplatz</td>
<td>35,5 / 32,3</td>
<td>64,5 / 67,7</td>
<td>- / -</td>
<td></td>
</tr>
<tr>
<td>gesamt</td>
<td>40,0 / 36,9</td>
<td>60,0 / 63,1</td>
<td>- / -</td>
<td></td>
</tr>
</tbody>
</table>

*a Die Eigenschaften des batterieelektrischen Pkw entsprechen denen eines batterieelektrischen

3.3 Marktpotenzial Elektromobilität

Für die Bestimmung der Marktentwicklung werden das theoretische Maximalpotenzial und die Ergebnisse der Akzeptanzanalyse miteinander kombiniert, um einerseits die Mobilitätsbedürfnisse bzw. das Mobilitätsverhalten und andererseits die Einstellung in Bezug auf Elektromobilität in der Ableitung der Marktentwicklung zu berücksichtigen. Aus der Verknüpfung dieser beiden Betrachtungen ergibt sich das Marktpotenzial, womit die theoretische Obergrenze für die Marktentwicklung elektrischer Pkw dargestellt wird, da in der Betrachtung des Marktpotenzials der Aspekt der tatsächlichen Angebotsentwicklung von Elektrofahrzeugen zunächst nicht berücksichtigt wird. Für beide bisher angestellten Betrachtungen ist zudem angenommen, dass sie sich aus heutigen Analysen ableiten lassen und sich weder die Mobilitätsbedürfnisse noch die Einstellung zu Elektromobilität ändern.

3.3.1 Methodisches Vorgehen

In der Bestimmung des Marktpotenzials geht die Limitierung der Zahl an elektrischen Fahrzeugen durch das Maximalpotenzial und durch die Akzeptanzanalyse gleichwertig ein. Größenklassenspezifisch und nach Haushalten mit und ohne Stellplatz auf dem eigenen Grundstück differenziert bestimmt der geringere Wert von Maximalpotenzial und Akzeptanz die
Höhe des Marktpotenzials. Es wird allerdings so vorgegangen, dass, wenn die Akzeptanz für ein batterieelektrisches Fahrzeug das Maximalpotenzial übersteigt, diese „verlorene“ Akzeptanz für batterieelektrische Fahrzeuge auf die Akzeptanz für Plug-In-Hybridfahrzeuge aufgeschlagen wird.

3.3.2 Bestimmung des Marktpotenzials

21 Die Größenklasse „klein“ setzt sich gemäß dem aus der MiD 2008 erstellten Datensatz zu alltäglicher Mobilität zu 20 % aus Fahrzeugen des Segments Mini und zu 80 % aus Fahrzeugen des Segments Kleinwagen zusammen. In diesem Verhältnis wird das für batterieelektrische Pkw ermittelte Marktpotenzial der Größenklasse „klein“ auf die beiden Segmente aufgeteilt.
Ein zweiter entscheidender Punkt für den Anstieg des Marktpotenzials elektrischer Fahrzeuge im Jahr 2030 ist der in den Szenarioannahmen hinterlegte, stärkere Ausbau der Ladeinfrastruktur. In der Betrachtung beider Jahre wird das Marktpotenzial für elektrische Fahrzeuge, deren Besitzer über keinen Stellplatz auf dem eigenen Grundstück verfügen und somit auf die (semi-)öffentliche Infrastruktur angewiesen sind, zu einem großen Teil durch das Maximalpotenzial und somit zumindest teilweise durch die Infrastruktur begrenzt.

3.4 Technologiediffusion & Entwicklung der Pkw-Neuzulassungen

3.4.1 Technologiediffusion

Technische Innovationen, die sich in einem Markt mit konkurrierenden Technologien befinden, können ihr vollständiges Marktpotenzial in der Regel erst mit der Zeit erschließen. In der Technikgeschichte kann diese Entwicklung anhand zahlreicher Beispiele (Abbildung 8) nachvollzogen werden. Die Marktentwicklung von erfolgreichen Technologien nimmt dabei typischerweise einen S-förmigen Verlauf: auf eine Phase der Nischenanwendung folgt eine Phase der zunehmenden Marktdurchdringung, bevor sich das

Abbildung 7: Marktpotenzial elektrischer Fahrzeuge in den Jahren 2020 und 2030 (SP: Stellplatz)
Wachstum wieder abschwächt und die Technologie ihr Sättigungsniveau – also das Marktpotenzial – erreicht.

Die Ursachen für die zeitverzögerte Erschließung des Marktpotenzials können vielfältig sein; bezogen auf die Marktentwicklung von Elektrofahrzeugen wird die Annahme getroffen, dass sich vor allem das Angebot an Fahrzeugen und das Vertrauen der Kunden in die Technologie erst langsam entwickeln und somit die Marktnachfrage insbesondere in den ersten Jahren stark dämpfen wird. Insbesondere im frühen Marktstadium ist eine geringe Stückzahl und Modellauswahl an Elektrofahrzeugen zu erwarten, da zunächst neue kapitalintensive Produktionskapazitäten aufgebaut und Forschungs- und Entwicklungsmittel investiert werden müssen.

Das Gompertz-Wachstumsmodell kann durch Gleichung (2) beschrieben werden:

\[AM(t) = M e^{-ae^{-bt}} \]

(2)

Die Marktentwicklung elektrischer Fahrzeuge \(AM \), d.h. der Anteil am Marktpotenzial, der unter Berücksichtigung der Technologiediffusion tatsächlich auf dem Markt verkauft wird, ergibt sich aus dem Marktpotenzial \(M \) (siehe Abschnitt 3.3) sowie einem Regressionsfaktor \(a \) und einer Wachstumsrate \(b \). Die Variablen \(a \) und \(b \) wurden mittels der Methode der kleinsten Quadrate aus aktuellen Neuzulassungsdaten von Hybrid-Pkw in den USA [8] unter der Annahme eines Potenzials für Hybrid-Pkw am US-Gesamtmarkt von 33 % [10] bestimmt. Die Zeit nach Markteintritt der Elektrofahrzeuge ist dabei durch die Variable \(t \) dargestellt.

Die generierte Technologiediffusionskurve (Abbildung 9) stellt die Dämpfungsfunktion für die Marktentwicklung von Elektrofahrzeugen dar und bezieht sich dabei auf das jeweilige Marktpotenzial im Bezugsjahr. Nach etwa 10 Jahren würden demnach 15 % des Marktpotenzials erschlossen sein, nach 20 Jahren wären bereits mehr als 50 % erreicht.
3.4.2 Entwicklung der Pkw-Neuzulassungen

Das Verhältnis des ermittelten Marktpotenzials von batterieelektrischen Pkw und Plug-In-Hybridfahrzeugen der Jahre 2020 und 2030 zum Pkw-Bestand in der jeweiligen Fahrzeuggrößenklasse (klein, mittel, groß) bildet die Grundlage für die Bestimmung des Anteils an möglichen neuzugelassenen Elektrofahrzeugen im jeweiligen Jahr. Die Neuzulassungsstruktur der Zwischenjahre wird über Interpolation ermittelt. Um die tatsächlichen jährlichen Neuzulassungen an batterieelektrischen Pkw zu ermitteln, wird in einem letzten Schritt die erzeugte Technologiediffusionskurve als Dämpfungsfunktion in Jahresschritten angewendet.

Der in Abbildung 10 veranschaulichte Verlauf der jährlichen Nachfrage nach Elektrofahrzeugen bildet die Grundlage für die Simulation der Bestandsentwicklung (siehe Kapitel 5).

Tabelle 4: Durchschnittliche jährliche Wachstumsraten von Technologieinnovationen im Automobilsektor

<table>
<thead>
<tr>
<th>Technologie [Land]</th>
<th>Mittlere jährliche Wachstumsrate</th>
<th>Zeitraum</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel-Pkw [D]</td>
<td>8,5 % p.a.</td>
<td>20 Jahre</td>
<td>[11]</td>
</tr>
<tr>
<td>Hybrid-Pkw [D]</td>
<td>33 % p.a.</td>
<td>8 Jahre</td>
<td>[11]</td>
</tr>
<tr>
<td>Automatikgetriebe [USA]</td>
<td>15 % p.a.</td>
<td>20 Jahre</td>
<td>[8]</td>
</tr>
<tr>
<td>Vorderradantrieb [USA]</td>
<td>16,5 % p.a.</td>
<td>20 Jahre</td>
<td>[8]</td>
</tr>
</tbody>
</table>
Im Kontext dieser historischen Vergleichsdaten wird der hier dargestellte Verlauf der Marktentwicklung von Elektromobilität als äußerst ambitioniert bewertet. Diese Entwicklung setzt voraus, dass sich das Marktumfeld innerhalb weniger Jahre besonders vorteilhaft für Elektromobilität entwickelt und das Angebot an Elektrofahrzeugen bis zum Jahr 2020 sich mit großer Dynamik entwickelt.
Entwicklung Pkw-Bestand und Fahrleistung

4.1 Bestandsmodell

Das im Rahmen des Forschungsvorhabes OPTUM entwickelte Pkw-Bestandsmodell ermöglicht es, die Entwicklung des deutschen Pkw-Bestands bis zum Jahr 2030 abzubilden und die Veränderung von Fahrleistung und Energiebedarf differenziert nach Kraftstoffen zu quantifizieren.

Größenklassen und Antriebstypen

Simulation der Bestandsentwicklung

<table>
<thead>
<tr>
<th></th>
<th>Otto</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>klein</td>
<td>groß</td>
</tr>
<tr>
<td>klein</td>
<td>23,7 %</td>
<td>10,1 %</td>
</tr>
<tr>
<td>mittel</td>
<td>23,9 %</td>
<td>17,7 %</td>
</tr>
<tr>
<td>groß</td>
<td>10,1 %</td>
<td>22,3 %</td>
</tr>
</tbody>
</table>

Für die jährlichen Pkw-Neuzulassungen wird angenommen, dass sich die Anzahl der Neuzulassungen, wie auch in TREMOD, im Betrachtungszeitraum auf einem Niveau von 3,2 Millionen Pkw einpendeln. Den jährlichen Neuzulassungen gegenüber stehen Fahrzeuge, die aus dem Bestand ausscheiden. In Anlehnung an TREMOD wird differenziert nach Antriebtyp und Größenklassen die Dauer der Bestandszugehörigkeit definiert. Tendenziell scheiden Fahrzeuge mit geringer Fahrleistung (Otto-Pkw) später als Pkw mit hoher Jahresfahrleistung (Diesel-Pkw) aus dem Bestand aus. Wie in Abbildung 11 veranschaulicht, gehören 10 Jahren nach der Zulassung noch etwa 80 % der Otto-Pkw dem Bestand an, während im Fall von Diesel Fahrzeugen bereits 50 % aus dem Bestand ausgeschieden sind. Nach etwa 20 Jahren sind weniger als 10 % der Fahrzeuge noch in Betrieb. Für batterieelektrische und Plug-In-Hybrid-Pkw wird die Annahme getroffen, dass sich deren Bestandszugehörigkeit nach 10 Jahren auf 90 % und in den folgenden 10 Jahren auf 5 % verringert.

Für das Szenario Elektromobilität bildet die in Kapitel 3.4 dargestellte Neuzulassungsstruktur von batterieelektrischen und Plug-In-Hybrid-Pkw die wesentliche Eingangsgröße, um die Bestandsentwicklung für den Zeitraum 2010 bis 2030 zu simulieren. Im Bestandsmodell

Jahresfahrleistung

In der Bestandsbetrachtung wird angenommen, dass konventionelle Fahrzeuge durch elektrische Fahrzeuge substituiert werden. Wie in Tabelle 6 veranschaulicht, haben insbesondere batterieelektrische Pkw jedoch eine deutlich geringere Jah resfahrleistung, d.h., sie werden lediglich konventionelle Fahrzeuge mit unterdurchschnittlicher Jahresfahrleistung ersetzen können. Im Umkehrschluss bedeutet dies aber auch, dass bei entsprechender Substitution die durchschnittliche Jahresfahrleistung der verbleibenden konventionellen Pkw im Bestand weiter ansteigt. Dies wird bei der Bestandsmodellierung berücksichtigt, so dass sich die Gesamt fahrleistung des Pkw-Bestands auch nach der zunehmenden Marktdurchdringung von Elektrofahrzeugen von einer Entwicklung ohne Elektrofahrzeuge nicht unterscheidet.
Tabelle 6: Jahresfahrleistung differenziert nach Antriebstyp und Größenklasse

<table>
<thead>
<tr>
<th>Antriebstyp</th>
<th>Größenklassen</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otto</td>
<td>klein</td>
<td>9.529 km</td>
<td>10.765 km</td>
<td>11.165 km</td>
</tr>
<tr>
<td></td>
<td>mittel</td>
<td>10.724 km</td>
<td>12.116 km</td>
<td>12.666 km</td>
</tr>
<tr>
<td></td>
<td>groß</td>
<td>10.909 km</td>
<td>12.324 km</td>
<td>12.782 km</td>
</tr>
<tr>
<td>Diesel</td>
<td>klein</td>
<td>16.581 km</td>
<td>18.732 km</td>
<td>19.428 km</td>
</tr>
<tr>
<td></td>
<td>mittel</td>
<td>19.434 km</td>
<td>21.955 km</td>
<td>22.771 km</td>
</tr>
<tr>
<td></td>
<td>groß</td>
<td>20.974 km</td>
<td>23.694 km</td>
<td>24.575 km</td>
</tr>
<tr>
<td>City-BEV</td>
<td>klein</td>
<td>7.432 km</td>
<td>7.432 km</td>
<td>7.159 km</td>
</tr>
<tr>
<td>BEV</td>
<td>klein, mittel</td>
<td>7.909 km</td>
<td>7.909 km</td>
<td>8.014 km</td>
</tr>
<tr>
<td>PHEV</td>
<td>klein, mittel, groß</td>
<td>13.672 km</td>
<td>13.672 km</td>
<td>13.672 km</td>
</tr>
</tbody>
</table>

4.2 Bestandsentwicklung Elektromobilität

Wie aus den Ergebnissen des Kapitels 3 hervorgeht, steigt die Marktentwicklung von Elektrofahrzeugen bis zum Jahr 2030 mit zunehmender Dynamik an. Wie zuvor erläutert, bildet die ermittelte jährliche Neuzulassungsstruktur die Grundlage für die Simulation des Fahrzeugbestands bis zum Jahr 2030. Wie Abbildung 12 veranschaulicht, erreicht der Bestand an batterieelektrischen und Plug-In-Hybrid-Pkw im Szenario Elektromobilität etwa 538.000 Fahrzeuge im Jahr 2020 und rund 5.870.000 Fahrzeuge im Jahr 2030. Die Millionenmarke wird in diesem Szenario im Jahr 2022 überschritten. Der Bestand an Elektrofahrzeugen wird mit etwa 88% von Plug-In-Hybridfahrzeugen dominiert. Diese erreichen bereits im Jahr 2020 rund 473.000 Fahrzeuge im Bestand, während BEV und City-BEV lediglich 57.000 bzw. 8.000 Fahrzeuge im selben Jahr stellen. Bis 2030 steigt die Zahl der PHEV auf rund 5.080.000 Pkw an, BEV und City-BEV steigern sich ebenfalls deutlich auf 700.000 bzw. 90.000 Fahrzeuge. Plug-In-Hybridfahrzeuge sind überdurchschnittlich häufig in der Kategorie „groß“ vertreten,

Die durchschnittliche jährliche Wachstumsrate des Bestands an Elektrofahrzeugen beträgt in den ersten 20 Jahren etwa 74 %. In der zweiten Dekade ab 2021 beträgt das durchschnittliche Bestandswachstum 24 %.

Abbildung 12: Entwicklung des Bestands an Elektrofahrzeugen

4.3 Entwicklung der elektrischen Fahrleistung

Wie bereits in Abschnitt 4.1 diskutiert, zeichnen sich insbesondere batterieelektrische Pkw im Vergleich zu konventionellen Vergleichsfahrzeugen durch eine deutlich geringere Jahresfahrleistung aus. Unter Berücksichtigung der antriebs- und größenklassenspezifischen Jahresfahrleistung ermöglicht das Bestandsmodell, für unterschiedliche Bestandsentwicklungen die Struktur der Pkw-Gesamtfahrleistung zu analysieren. Wie bereits erläutert, bildet die Verkehrsprognose 2025 dabei die Referenz für die Entwicklung der Gesamtfahrleistung. Insbesondere für die CO₂-Betrachtung (Kapitel 7) ist relevant, wie sich die elektrische Fahrleistung darstellt. Zwar bildet die Entwicklung des Bestands an Elektrofahrzeugen die Grundlage für diese Analysen, entscheidend für die Quantifizierung von Energiebedarf und Emissionen des Pkw-Verkehrs ist jedoch in welcher Größenordnung konventionelle durch elektrische Fahrleistung substituiert wird.
Abbildung 14 veranschaulicht die Entwicklung der Pkw-Fahrleistung im Betrachtungszeitraum 2010 bis 2030 differenziert nach Antriebstyp und eingesetztem Kraftstoff. Plug-In-Hybrid-Pkw und batterieelektrische Fahrzeuge erreichen demnach bis zum Jahr 2020 einen Anteil an der Pkw-Gesamtfahrleistung von 1,1 %. Da Plug-In-Hybrid-Pkw teilweise auch verbrennungsmotorisch betrieben werden, beträgt die rein elektrische Fahrleistung nur etwa 0,8 %. Bis zum Jahr 2030 steigt die Fahrleistung von Elektrofahrzeugen auf über 11 %, die rein elektrische Fahrleistung erreicht knapp 8 %. Der Anteil von batterieelektrischen Fahrzeugen an der Gesamtfahrleistung bleibt auch im Jahr 2030 unter 1 %, obwohl diese dann bereits einen Anteil am Fahrzeugbestand von 1,3 % haben. Dies erklärt sich mit der unterdurchschnittlichen Jahresfahrleistung von batterieelektrischen Pkw im Vergleich zu konventionellen Pkw und Plug-In-Hybridfahrzeugen.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>PHEV & BEV (Strom & Benzin)</th>
<th>BEV & PHEV (Strom)</th>
<th>BEV (Strom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>2020</td>
<td>1,1 %</td>
<td>0,8 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>2030</td>
<td>11,3 %</td>
<td>7,9 %</td>
<td>0,9 %</td>
</tr>
</tbody>
</table>

Fahrzeugnutzungsprofile Elektromobilität

Für die Bestimmung der Stromnachfrage von Elektromobilität und der assoziierten Treibhausgasemissionen sind neben der Entwicklung des absoluten Fahrzeugbestands (Kapitel 4) Informationen zur Nutzung der Fahrzeuge erforderlich. Grundsätzlich beruht bereits die ermittelte Marktentwicklung auf Fahrzeugen, die aufgrund ihrer Nutzung für den Einsatz von batterieelektrischen Pkw in Frage kommen. Für die Strommarktmodellierung (PowerFlex) ist es jedoch notwendig, detaillierte Informationen zu deren Fahrprofil zu erhalten, um mögliche Ladezeitpunkte und -orte zu bestimmen und die Stromnachfrage zeitlich aufgelöst zu simulieren.

Im Rahmen der Ableitung der Marktentwicklung wurde aus den Daten der MiD 2008 ein Fahrzeugdatensatz für das alltägliche Mobilitätsverhalten aufbereitet, in dem detailliert Aufschluss über die Fahrdistanzen, Fahrt- und Standdauern sowie über die jeweiligen Standorte der Fahrzeuge gegeben wird. Durch die Kombination der Nutzungsprofile einzelner Pkw der Stichtagsbefragung zu Wochennutzungsprofilen liegen in diesem Datensatz Fahrprofile über eine gesamte Woche vor, so dass das unterschiedliche Mobilitätsverhalten zwischen Werktagen und dem Wochenende für das alltägliche Mobilitätsverhalten damit abgedeckt ist und aus diesem Datensatz typische Nutzungsprofile für die verschiedenen Arten an elektrischen Pkw abgeleitet werden können. Abschließend werden insgesamt 60 Fahrprofile ausgewählt, die in der Strommarktmodellierung und in der CO2-Bilanzierung repräsentativ die Nutzung elektrischer Pkw darstellen.

5.1 Vorgehen / Datengrundlage

22 Auf die Strommarktmodellierung wird detailliert in Kapitel 6 eingegangen.
Während der angesprochenen Umstrukturierung der Daten der MiD 2008 zu Wochennutzungsprofilen wurden damit für jedes Fahrzeug u.a.

» der Start der ersten Fahrt des Tages,
» die längste Standzeit des Tages inklusive des Standortes,
» das Ende der letzten Fahrt des Tages,
» die Tagesfahrleistung

erfasst, die im weiteren Vorgehen als Eigenschaften für die Darstellung der Fahrzeugnutzung in Fahrzeugnutzungsprofilen dienen. Mit diesem Vorgehen sind die entscheidenden Größen der Fahrzeugnutzung für die Strommarktmodellierung abgebildet und die Gesamtfahrleistung der batterieelektrischen Fahrzeuge kann für die Treibhausgasbilanzierung abgeleitet werden.

Mit der Begrenzung auf die vier aufgeführten Eigenschaften bei der Ableitung der Fahrzeugnutzungsprofile wird in der Strommarktmodellierung angenommen, dass alle Pkw über Nacht, d.h. zwischen der letzten Fahrt desselben und der ersten Fahrt des folgenden Tages, zuhause stehen und die erste und die letzte Fahrt des Tages zuhause beginnt bzw. endet. Zudem werden dadurch für alle betrachteten Fahrzeuge pro Tag nur zwei Fahrten und eine Standzeit während des Tages mit der Möglichkeit der Batterieladung dargestellt. Dadurch wird für die Strommarktmodellierung die Annahme getroffen, dass in den restlichen, kürzeren Standzeiten des Tages nicht geladen wird und mehrere, aufeinander folgende Fahrten zu einer Fahrt mit der Gesamtfahrleistung dieser Fahrten zusammengefasst werden.

Da bei Plug-In-Hybrid-Pkw neben dem elektrischen Antrieb ein Verbrennungsmotor zur Verfügung steht und so auch bei niedrigem Batterieladestand der Fahrzeugbetrieb gewährleistet ist, können auch lange Fahrten problemlos zurückgelegt werden. Daher müssen solche Fahrten für diese Fahrzeuge gesondert betrachtet und zu der aus dem alltäglichen Mobilitätsverhalten abgeleiteten Fahrzeugnutzung hinzugefügt werden. Im Modell wurde daher die Differenz zwischen der durchschnittlichen Jahresfahrleistung konventioneller Pkw und der Jahresfahrleistung, die sich alleine aus der Summe des alltäglichen Fahrzeugeinsatzes ergibt, für Plug-In-Hybrid-Fahrzeuge durch die Integration zusätzlicher unregelmäßiger langer Fahrten

23 In der Ableitung des Maximalpotenzials werden dagegen alle Standzeiten und -orte für die Bestimmung des Maximalpotenzials verwendet.

5.2 Typische Fahrzeugnutzung im Alltag

In diesem Abschnitt wird auf die Fahrzeugnutzungsprofile eingegangen, die sich aus dem Datensatz des alltäglichen Mobilitätsverhaltens ableiten und nach der Kombination zu Wochennutzungsprofilen in der Strommarktmodellierung und zur CO₂-Bilanzierung eingesetzt werden. Diese Nutzungsprofile werden aufgrund des unterschiedlichen Nutzungsverhaltens an den einzelnen Tagen getrennt für Werktag, Samstag und Sonntag präsentiert. Durch die Zusammenfassung dieser Profile zu Wochennutzungsprofilen entstehen auf Basis der MiD-Datenaufbereitung (Abschnitt 3.1.3) insgesamt 99 Wochennutzungsprofile. Die Auswahl der 60 Nutzungsprofile, die im weiteren Verlauf des Vorgehens die Nutzung von Elektrofahrzeugen repräsentieren, wird im folgenden Kapitel erläutert.

Bei der Einteilung in Fahrzeugnutzungsprofile wird aufgrund der sehr unterschiedlichen Nutzung darauf verzichtet, für alle Tage dieselben Kriterien zur Einteilung in Profile zu verwenden (Tabelle 8). Vielmehr wurden in einem ersten Analyseschritt detaillierte Fahrzeugnutzungsprofile mit denselben Einteilungskriterien ermittelt, diese dann aber anhand ähnlicher Ausprägungen in den Eigenschaften der Fahrzeugnutzung zu wenigen Fahrzeugnutzungsprofilen zusammengefasst.

Wie in Tabelle 8 erkennbar ist, wird bei Betrachtung des alltäglichen Mobilitätsverhaltens an allen Tagen ein großer Teil der Fahrzeuge überhaupt nicht bewegt. Die Nicht-Nutzung der Pkw ist am Wochenende verständlicherweise stärker ausgeprägt, da an diesen Tagen nur wenige Fahrten unternommen werden, um zur Arbeit zu gelangen. Fahrten zu Einkaufs- und Freizeitzecken überwiegen daher an den Wochenendtagen, so dass sich für die betrachteten Tage eine stark unterschiedliche Nutzung der Pkw ergibt.
<table>
<thead>
<tr>
<th>Profil</th>
<th>Tag</th>
<th>Anzahl Fahrten</th>
<th>Zweck</th>
<th>Start der ersten Fahrt</th>
<th>Tagesfahrleistung [km]</th>
<th>Anteil je Tag [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_0</td>
<td>Werktag</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>1_1</td>
<td>Werktag</td>
<td>-</td>
<td>-</td>
<td>00:00 – 12:00</td>
<td>> 37,5</td>
<td>19</td>
</tr>
<tr>
<td>1_2</td>
<td>Werktag</td>
<td>-</td>
<td>mindestens 1 Fahrt zur Arbeitsstelle</td>
<td>-</td>
<td>< 37,5</td>
<td>18</td>
</tr>
<tr>
<td>1_3</td>
<td>Werktag</td>
<td>-</td>
<td>keine Fahrt zur Arbeitsstelle</td>
<td>00:00 – 12:00</td>
<td>< 37,5</td>
<td>16</td>
</tr>
<tr>
<td>1_4</td>
<td>Werktag</td>
<td>-</td>
<td>-</td>
<td>12:00 – 24:00</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>2_0</td>
<td>Samstag</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td>2_1</td>
<td>Samstag</td>
<td>2-3</td>
<td>keine Fahrt zur Arbeitsstelle</td>
<td>00:00 – 12:00</td>
<td>< 37,5</td>
<td>15</td>
</tr>
<tr>
<td>2_2</td>
<td>Samstag</td>
<td>-</td>
<td>-</td>
<td>12:00 – 24:00</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>2_3</td>
<td>Samstag</td>
<td>-</td>
<td>mindestens 1 Fahrt zur Arbeitsstelle + keine Fahrt zur Arbeitsstelle (> 3 Fahrten)</td>
<td>00:00 – 12:00</td>
<td>< 37,5</td>
<td>13</td>
</tr>
<tr>
<td>2_4</td>
<td>Samstag</td>
<td>-</td>
<td>-</td>
<td>12:00 – 24:00</td>
<td>> 37,5</td>
<td>11</td>
</tr>
<tr>
<td>3_0</td>
<td>Sonntag</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>66</td>
</tr>
<tr>
<td>3_1</td>
<td>Sonntag</td>
<td>-</td>
<td>-</td>
<td>12:00 – 24:00</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>3_2</td>
<td>Sonntag</td>
<td>-</td>
<td>-</td>
<td>00:00 – 12:00</td>
<td>< 37,5</td>
<td>14</td>
</tr>
<tr>
<td>3_3</td>
<td>Sonntag</td>
<td>-</td>
<td>-</td>
<td>00:00 – 12:00</td>
<td>> 37,5</td>
<td>6</td>
</tr>
</tbody>
</table>
Zur Veranschaulichung der Fahrzeugnutzung an den jeweiligen Tagen sind die abgeleiteten Nutzungsprofile in Abbildung 16 bis Abbildung 18 graphisch dargestellt.

Abbildung 16: Fahrzeugnutzungsprofile für das alltägliche Mobilitätsverhalten am Werktag

Wie bereits erwähnt, ist die Fahrzeugnutzung an Werktagen maßgeblich durch Fahrten zur Arbeit geprägt. In den beiden Profilen 1_1 und 1_2 stehen die Fahrzeuge während der längsten Standzeit des Tages zum großen Teil bei der Arbeitsstelle. Sie stellen somit typische Pendelprofile dar. Im Vergleich zu den anderen beiden ermittelten Profilen 1_3 und 1_4, die vor allem Einkaufs-, Freizeit- und Begleitfahrten repräsentieren, beginnt bei diesen Pendelprofilen die erste Fahrt des Tages früher und die längste Standzeit des Tages vergrößert sich auf annähernd acht Stunden. Auffallend ist zudem, dass die Fahrzeuge der Profile 1_3 und 1_4 deutlich länger zu Hause abgestellt sind und eine geringe Fahrleistung aufweisen.

Einkaufs- und Freizeitfahrten dominieren die Fahrzeugnutzung an Samstagen. Generell ist zu erkennen, dass die Fahrten an Samstagen im Vergleich zu Werktagen später gestartet werden und die Pkw wieder eher zuhause abgestellt werden. Dadurch verringert sich im Vergleich zu den Pendelprofilen am Werktag die längste Standzeit während der Fahrzeugnutzung erheblich. Mit den Profilen 2_1 und 2_3 sind vor allem Fahrten zu Einkaufszwecken abgebildet.
und weisen im Vergleich zu den Profilen 2_2 und 2_4, mit denen mehrheitlich Fahrten für Freizeitzwecke dargestellt sind, eine kürzere Tagesfahrleistung24 auf.

Abbildung 17: Fahrzeugnutzungsprofile für das alltägliche Mobilitätsverhalten am Samstag

An Sonntagen finden fast ausschließlich Fahrten zu Freizeitzwecken und Begleitfahrten statt. Die Änderung der Fahrgründe im Vergleich zu den anderen Tagen wird in der durchschnittlichen Fahrleistung der einzelnen Profile sichtbar, da sich die Tagesfahrleistungen im Vergleich zu den entsprechenden Profilen der anderen Tage erhöhen. Ähnlich wie an Samstagen werden die Pkw „erst“ gegen 9 Uhr morgens gestartet und sind generell nur für kurze Zeit nicht zu Hause abgestellt.

Die in Abbildung 16 bis Abbildung 18 präsentierten Fahrzeugnutzungsprofile für die einzelnen Tage werden nach deren Kombination in Wochennutzungsprofile unter anderem als Eingangsgröße für die Darstellung der zusätzlichen Stromnachfrage durch Elektrofahrzeuge in der Strommarktmodellierung eingesetzt. Da das Strommarktmodell PowerFlex den Kraftwerkseinsatz in stündlicher Auflösung simuliert, müssen die für die Abbildung der zusätzlichen Stromnachfrage von Elektrofahrzeugen verwendeten Nutzungsprofile auch in

24 Dieser Effekt ist übrigens auch in den für die Werkstage abgeleiteten Profilen 1_3 und 1_4 zu erkennen. In den Daten des Profils 1_3 ist ein höherer Anteil an Einkaufsfahrten als an Freizeitfahrten hinterlegt, für Profil 1_4 stellt sich dies in umgekehrter Weise dar. Die Fahrleistung von Profil 1_4 ist dementsprechend höher als diejenige von Profile 1_3.
In der stündlichen Auflösung in das Strommarktmodell integriert werden. Dadurch kann die in den Profilen ermittelte Fahrtdauer nicht exakt in der Strommarktmodellierung abgebildet werden und wird daher für die Integration in PowerFlex auf die nächste Stunde gerundet. Die Fahrtzeit wird dabei so festgelegt, dass die Fahrt in den Stunden stattfindet, in denen die entsprechende Fahrt in den hier gezeigten Profilen hauptsächlich durchgeführt wird. Zusätzlich wird für die Integration der Fahrzeugnutzungsprofile in PowerFlex angenommen, dass sich die Tagesfahrleistung entsprechend der Fahrtdauer auf die beiden in den Profilen abgebildeten Fahrten aufteilt.

Abbildung 18: Fahrzeugnutzungsprofile für das alltägliche Mobilitätsverhalten am Sonntag

25 Beispiel 1: Profil 1_2 weist eine Fahrt von 07:36 – 08:20 auf. Diese Fahrt wird in PowerFlex als eine Fahrt von 07:00 – 08:00 dargestellt.
Beispiel 2: Profil 3_4 weist eine Fahrt von 09:27 – 11:01 auf. Diese Fahrt wird in PowerFlex als eine Fahrt von 09:00 – 11:00 dargestellt.
26 Beispiel: Die erste in Profil 1_1 hinterlegte Fahrt hat eine Dauer von 74 Minuten (48 % der Gesamtfahrtdauer des Profils), die zweite Fahrt dauert dagegen 79 Minuten (52 % der Gesamtfahrtdauer des Profils). Entsprechend der Verteilung der Fahrtdauer wird die Tagesfahrleistung von 76 km zu 48 % auf die erste Fahrt (37 km) und zu 52 % auf die zweite Fahrt (39 km) verteilt.
5.3 Integration von Nutzungsprofilen elektrischer Fahrzeuge in die Strommarktmodellierung

Aufgrund von Restriktionen bezüglich der Rechenleistung muss für die Integration der Fahrzeugnutzung in das Strommarktmodell PowerFlex für die einzelnen Typen an Elektrofahrzeugen eine Auswahl an Wochennutzungsprofilen getroffen werden. Insgesamt werden 60 Nutzungsprofile in das Strommarktmodell PowerFlex integriert, wobei batterieelektrische Stadtfahrzeuge (City-BEV) durch zehn, batterieelektrische Pkw (BEV) durch 20 und Plug-In-Hybridfahrzeuge durch 30 Nutzungsprofile in der Strommarktmodellierung repräsentiert werden. Bei der Nutzung elektrischer Fahrzeuge ohne Möglichkeit das Fahrzeug auf dem eigenen Grundstück abzustellen, wird angenommen, dass die Fahrzeuge im öffentlichen Raum beladen werden und somit nach der Ankunft zuhause eine andere Ladeleistung zur Verfügung steht als bei der Ladung auf dem eigenen Grundstück. Somit können Fahrprofile mit und ohne Stellplatz auf dem eigenen Grundstück nicht gemeinsam in PowerFlex integriert werden und stellen jeweils ein eigenes Nutzungsprofil dar. Aus diesem Grund wird für alle Pkw-Typen ein Teil der Nutzungsprofile für die sogenannten „Laternenparker“ reserviert, um die unterschiedlichen Ladeleistungen in der Strommarktmodellierung berücksichtigen zu können.

Als Grundlage für die Auswahl von Nutzungsprofilen, mit denen die Nutzung elektrischer Fahrzeuge möglichst gut beschrieben wird, dient die Betrachtung des alltäglichen Mobilitätsverhaltens in Bezug auf das Maximalpotenzial, da in dieser Betrachtung jeder einzelne Datensatz und somit jedes hinterlegte Wochennutzungsprofil auf die mögliche Nutzung als elektrisches Fahrzeug analysiert wurde. Somit kann für jeden elektrischen Fahrzeugtyp die relative Verteilung derjenigen Wochennutzungsprofile bestimmt werden, die in der Maximalpotenzialanalyse als elektrische Pkw deklariert wurden.

Durch die Beschränkung auf insgesamt 60 Wochennutzungsprofile entsteht bei jeder Auswahl der Profile eine Verzerrung gegenüber der Abbildung des Mobilitätsverhaltens mit allen Profilen. Durch eine Auswahl der häufigsten Wochennutzungsprofile würde die Fahrzeugnutzung der elektrischen Fahrzeuge an Werktagen über- und am Wochenende unterschätzt werden, da bei einem solchen Vorgehen vor allem Wochennutzungsprofile ohne Fahrten an Werktagen und mit Fahrten am Wochenende nicht berücksichtigt werden würden. Daher werden in der Auswahl häufig auftretende Wochennutzungsprofile mit Fahrten an allen Wochentagen und ohne Fahrten an Werktagen, dafür aber mit Fahrten am Wochenende speziell behandelt und in der Auswahl bevorzugt berücksichtigt. Über einen Korrekturfaktor wird zudem die Häufigkeit dieser Profile erhöht, um mit den ausgewählten Profilen entsprechend der in Abschnitt 5.2 vorgestellten Fahrzeugnutzung darstellen zu können, dass ein gewisser Teil der Pkw nicht an allen Tagen genutzt wird.

27 Neben der zeitlich aufgelösten Fahrzeugnutzung werden mit den Nutzungsprofilen auch die Energieverbräuche und die Standorte der Fahrzeuge mit an das Strommarktmodell PowerFlex übergeben.

28 Beispiel: Insgesamt werden batterieelektrische Pkw (BEV) durch 20 Nutzungsprofile repräsentiert. Neun Nutzungsprofile (drei für „Laternenparker“) weisen keine Fahrten am Wochenende auf, sieben Profile (vier für „Laternenparker“) besitzen Fahrten an allen Wochentagen und drei Profile (eins für „Laternenparker“) haben nur Fahrten am Wochenende.
Eine Besonderheit besteht bei den Fahrzeugnutzungsprofilen batterieelektrischer Stadtfahrzeuge, da einige Nutzungsprofile eine Tagesfahrleistung über der maximal nutzbaren Reichweite dieser Fahrzeuge ausweisen. In Fällen, in denen ein Nutzungsprofil mit einer Fahrleistung über der maximal nutzbaren Reichweite batterieelektrischer Stadtfahrzeuge ausgewählt wird, wird die Tagesfahrleistung auf deren maximale, nutzbare Reichweite begrenzt.

Wie bereits in Abschnitt 5.1 erläutert, stellen auch die Plug-In-Hybrid-Fahrzeuge einen Sonderfall dar, da neben der alltäglichen Nutzung weitere unregelmäßige lange Fahrten in die Profile integriert sind. Diese modifizierten Profile entsprechen der Nutzung von Fahrzeugen ohne Reichweitenrestriktion, welche neben regelmäßigen alltäglichen Einsatzmustern auch unregelmäßige Einsatzzwecke, wie beispielsweise Urlaubs- oder Dienstreisen, abbilden.

Die ausgewählten Wochennutzungsprofile bilden somit die Grundlage für die Abbildung der Nutzung batterieelektrischer privat genutzter Fahrzeuge in der Strommarktmessung mit PowerFlex. Für die Strommarktmessung wird allerdings die Darstellung der Fahrzeugnutzung über ein gesamtes Jahr benötigt, so dass angenommen wird, dass die elektrischen Fahrzeuge über das Jahr dieselben Wochennutzungsmuster besitzen. Zudem werden die so ermittelten Jahresnutzungsmuster entsprechend ihrer relativen Häufigkeit auf die Struktur des elektrischen Fahrzeugbestands (Abschnitt 4.2) angewendet.

Wird in der Strommarktmessung von der Batterieladung ohne Lademanagement ausgegangen, lässt sich aus den in den Nutzungsprofilen hinterlegten Fahrten und Standorten die zeitlich aufgelöste, zusätzliche Stromnachfrage durch Elektromobilität problemlos als Input für PowerFlex generieren. Im Falle der Strommarktmessung mit Lademanagement für die elektrischen Fahrzeuge ergibt sich die zeitlich aufgelöste Stromnachfrage unter Berücksichtigung der Fahrzeugnutzungsprofile aus der Strommarktsimulation. Daher werden für diese Betrachtung die Energieverbräuche beim Fahren sowie die Standzeiten und –orte, für die mit den Szenarioannahmen eine gewisse maximale Ladeleistung definiert ist, an PowerFlex übergeben.

Da die ausgewählten Nutzungsprofile die Fahrzeugnutzung aller elektrischen Fahrzeuge repräsentieren, lässt sich zudem die für die CO₂-Bilanzierung benötigte aggregierte

29 Ohne Lademanagement: Die Fahrzeugnutzer verbinden das Fahrzeug nach Fahrtende unverzüglich mit einer Ladestation und die Fahrzeuge werden sofort mit der maximalen Ladeleistung dieser Ladestation geladen.
30 Die Ladung der Fahrzeuge wird unter Berücksichtigung der Restriktionen durch die Fahrzeugnutzung in preisgünstige Stunden verschoben.
Interaktion von Elektrofahrzeugen mit dem Stromsektor

In diesem Kapitel wird die im Rahmen dieses Forschungsvorhabens untersuchte Interaktion der Elektromobilität mit dem Stromsektor dargestellt. Zunächst werden die Motivation und die grundlegenden Mechanismen des Strommarkts beschrieben. Danach werden das methodische Vorgehen, die zugrunde gelegten Szenarioannahmen und die Ergebnisse vorgestellt.

6.1 Motivation

6.2 Kraftwerkseinsatz am Strommarkt

Kraftwerke kommen am Strommarkt gemäß einer bestimmten Reihenfolge, der Merit Order, zum Einsatz, in der die Kraftwerke entsprechend ihren kurzfristigen Grenzkosten für die Stromerzeugung geordnet sind. Die kurzfristigen Grenzkosten, also die Kosten, die für das Produzieren einer Kilowattstunde Strom entstehen, bestehen für die konventionellen Kraftwerke hauptsächlich aus den Brennstoff- und gegebenenfalls CO₂-Kosten und zu einem kleinen Teil aus sonstigen kurzfristigen Kosten für Betrieb und Wartung.

Im Fall von Wasser, Wind oder Photovoltaik fallen keine Brennstoffkosten an, so dass ihre kurzfristigen Grenzkosten zur Produktion einer Kilowattstunde Strom tatsächlich nahezu Null sind. Für Biomasse sind dagegen Brennstoffkosten zu zahlen, die jedoch durch die Einspeisevergütung kompensiert werden.
Steigt die Stromnachfrage in einer Stunde, zum Beispiel durch die neu ins System kommenden Elektrofahrzeuge, so kommt die nächstgünstige, noch freie Stromerzeugungskapazität zum Einsatz. Die zeitliche Struktur der Nachfrage ist deshalb für den Kraftwerkseinsatz entscheidend. Dies wirkt sich nicht nur auf die Umweltbilanz der Elektrofahrzeuge aus, sondern auch auf den Strommarkt, zum Beispiel wenn Lastspitzen entstehen, die nur unter hohen Kosten zu decken sind.

6.3 Methodisches Vorgehen

6.3.1 Grundsätzliche Beschreibung

Um die Interaktionen zwischen Elektrofahrzeugen und Strommarkt detailliert und mit einer hohen zeitlichen Auflösung zu untersuchen, werden die in diesem Projekt entwickelten Fahrzeugnutzungsprofile (Kapitel 5) in das Strommarktmodell PowerFlex (Abschnitt 6.3.2) eingespeist.

Zur Analyse der Umweltauswirkungen, die der Stromverbrauch der Elektrofahrzeuge verursacht, wird aus Modellläufen ermittelt, durch welche Kraftwerke der zusätzlich benötigte Strom produziert wird. Dazu wird die Differenz zwischen unterschiedlichen Szenarien mit Elektromobilität und einem Basisszenario ohne Elektromobilität betrachtet: So ergibt sich der Brennstoffmix des zusätzlich produzierten Stroms aus der Differenz der Stromerzeugung aller eingesetzten Brennstoffe jeweils zwischen den Läufen mit Elektrofahrzeugen und dem Basislauf. Ferner wurden die zusätzlichen CO₂-Emissionen aus der Differenzbetrachtung ermittelt. Der Emissionsfaktor des zusätzlich produzierten Stroms ergibt sich aus dem
Verhältnis der Differenz der CO₂-Emissionen und der Differenz der Stromproduktion. Dieser Emissionsfaktor wird dann für die Quantifizierung der CO₂-Effekte von Elektromobilität zugrunde gelegt.

6.3.2 Das Strommarktmodell PowerFlex - Modellbeschreibung

Das am Öko-Institut entwickelte Strommarktmodell PowerFlex ist ein Fundamentalmodell, welches thermische Kraftwerke, Stromeinspeisung aus erneuerbaren Energien, Pumpspeicherkraftwerke und flexible Stromverbraucher kostenminimal einsetzt, um die Stromnachfrage zu decken. Die zu minimierende Zielfunktion ist die Summe über die im Jahr anfallenden, kurzfristigen Stromerzeugungskosten. Das Modell PowerFlex ist sowohl als lineares als auch als gemischt-ganzzahliges Optimierungsproblem formuliert und wird gegenwärtig zur Ex-ante-Szenarioanalyse von Ausbaupfaden für erneuerbare Energien, Elektromobilität und Smart Grids sowie zur Ex-post-Bewertung von Politikmaßnahmen, wie z. B. dem europäischen Emissionshandel, eingesetzt.

Die Stromnachfrage wird wie zur fluktuierenden Stromeinspeisung aus erneuerbaren Energien in stündlicher Auflösung vorgegeben. Das Nachfrageprofil setzt sich aus der Netznachlast und einer angenommenen Gleichverteilung der Industriestromnachfrage zusammen. Die Bereitstellung
von Regelleistung wird durch Vorgabe einer ganzjährigen Sockellast thermischer Kraftwerke in Höhe von 14 GW abgebildet.

Der kostenminimale Einsatz von thermischen Kraftwerken, Stromeinspeisung aus erneuerbaren Energien und Pumpspeicherkraftwerken wird auf Basis einer vollständigen Voraussicht unter Berücksichtigung technischer und energiewirtschaftlicher Nebenbedingungen, wie zum Beispiel Deckung der Last, Bereitstellung von KWK-Wärme oder Regelleistung, bestimmt.

Als Modellergebnisse werden basierend auf dem stundenscharfen Kraftwerkseinsatz der dazugehörige Brennstoffmix, die entsprechenden CO₂-Emissionen und der daraus resultierende Strompreis ausgegeben. Darüber hinaus können je nach Fragestellung weitere Modellergebnisse, wie z. B. die Menge nicht genutzter fluktuierender Stromerzeugung oder die Einsatzprofile, Benutzungsstunden und Deckungsbeiträge von thermischen Kraftwerken, Speichern und Flexibilitäsoptionen, dargestellt und ausgewertet werden.

6.3.3 Modul Elektromobilität im Strommarktmmodell PowerFlex

Im Rahmen dieses Projekts wurde ein Modul zur detaillierten Abbildung des Ladeverhaltens von Elektrofahrzeugen und den damit verbundenen Auswirkungen auf die Stromerzeugung für das PowerFlex-Modell entwickelt. Damit kann eine große Anzahl verschiedener Fahrzeugnutzungsprofile (zurzeit rund 60) im Modell stundenscharf verarbeitet werden. Dies erlaubt die Abbildung detaillierter Inputdaten für die Elektromobilität. Im Modul E-Mobilität sind sowohl reine batterieelektrische Fahrzeuge als auch Plug-In-Hybridfahrzeuge, die einen Teil ihres Energiebedarfs durch Kraftstoff decken können, implementiert.

Der Stromverbrauch für die Batterieladung der Fahrzeuge kann ohne Lademanagement (ungesteuert) oder mit Lademanagement (preisoptimiert gesteuert) in die Modellierung des Strommarkts integriert werden. Im ungesteuerten Fall ist die Nachfrage der Fahrzeuge ein fest vorgegebenes Profil, das zur bisherigen Stromnachfrage hinzukommt.

In Fall des Ladens mit Lademanagement werden pro Fahrzeugnutzungsprofil zwei Zeitreihen an das Strommarktmmodell übergeben: der Verbrauch im Fahrzeug beim Fahren und die in jeder Stunde zur Ladung verfügbare maximale Anschlussleistung. Die durchgeführten Fahrten sind dabei dieselben wie im Fall ohne Lademanagement.

³² General Algebraic Modeling System
Abbildung 20 und Abbildung 21 zeigen die in der Modellierung der batterieelektrischen Pkw und der Plug-In-Hybridfahrzeuge im Fall des Lademanagements implementierten Nebenbedingungen. Für batterieelektrische Fahrzeuge kann das Modell die in Abbildung 20 dargestellten Größen Ladeleistung und Batteriefüllstand zu jedem Zeitpunkt bestimmen. Dabei ist die dargestellte Bilanzgleichung für die Batterie einzuhalten, nach der sich der Batteriefüllstand zu einem Zeitpunkt aus der Differenz des Energieflusses in die Batterie (Ladeleistung*Ladewirkungsgrad) und dem Energiefluss aus der Batterie (Verbrauch des Autos beim Fahren) sowie dem Batteriefüllstand im vorigen Zeitschritt ergibt. Die Ladeleistung ist dabei beschränkt durch die zum jeweiligen Zeitpunkt zur Verfügung stehenden Anschlussleistung und durch die Bedingung, dass während des Fahrens nicht geladen werden kann.

Abbildung 20: Schematische Darstellung der Modellierung batterieelektrischer Pkw im Modul Elektromobilität im Strommarktmmodell PowerFlex
Für die Plug-In-Hybridfahrzeuge gelten zwei Bedingungen: Zum einen gilt eine ähnliche Bilanzgleichung um die Batterie wie für batterieelektrische Fahrzeuge. Der Strom, der die Batterie verlässt (Batterieentladung) entspricht hier jedoch nicht genau dem vorgegebenen Verbrauch zum Antrieb der Räder, sondern dieser kann entweder aus der Batterieentladung oder aus einer ebenfalls vom Modell bestimmmbaren Tankleistung gedeckt werden. Da diese Tankleistung im Modell wiederum mit hohen Kosten behaftet ist, wird jedoch das elektrische Laden, wann immer es möglich ist, vorgezogen.

Abbildung 22 zeigt die beschriebenen Input- und Output-Größen für die Strommarktmmodellierung inklusive der Abbildung der Elektromobilität im Überblick.
6.4 Szenarioannahmen

6.4.1 Szenariodefinition

Einfluss auf die hier untersuchten Größen Brennstoffmix und CO₂-Emissionsfaktor, wurde die als lineares Optimierungsproblem formulierten Modellvariante verwendet.

Tabelle 9: Überblick über die durchgeführten Modellläufe

<table>
<thead>
<tr>
<th>Modellläufe 2020 und 2030</th>
<th>Ladeszenario 1 (nach letzter Fahrt)</th>
<th>Ladeszenario 2 (auch tagsüber)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne LM</td>
<td>mit LM</td>
</tr>
<tr>
<td>ohne Elektromobilität</td>
<td>Basislauf</td>
<td></td>
</tr>
<tr>
<td>mit Elektromobilität</td>
<td>ohne LM 1</td>
<td>mit LM 1</td>
</tr>
<tr>
<td>plus Wind onshore</td>
<td>Wind</td>
<td>Wind</td>
</tr>
<tr>
<td>plus Photovoltaik</td>
<td>ohne LM 1</td>
<td>mit LM 1</td>
</tr>
<tr>
<td>plus Biogas</td>
<td>Biogas</td>
<td>Biogas</td>
</tr>
</tbody>
</table>

(LM = Lademanagement)

Im Folgenden werden die Annahmen für die Inputgrößen in allen betrachteten Szenarien im Einzelnen dargestellt.

6.4.2 Kraftwerkspark

Der konventionelle Teil des Kraftwerksparks, der für die Jahre 2020 und 2030 als Input für das PowerFlex-Modell dient, wurde mit dem Kraftwerksinvestitionsmodell ELIAS berechnet (Tabelle 10).
Tabelle 10: Elektrische Nettoleistung konventioneller Kraftwerke nach Brennstoffen in den betrachteten Szenariojahren

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernenergie</td>
<td>8,2</td>
<td>0,0</td>
</tr>
<tr>
<td>davon neue Kondensations-KW</td>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td>davon neue Kondensations-KW (CCS)</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>davon alte Kondensations-KW</td>
<td>17,8</td>
<td>17,8</td>
</tr>
<tr>
<td>davon alte KWK</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>23,1</td>
<td>23,1</td>
</tr>
<tr>
<td>davon neue Kondensations-KW</td>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td>davon neue Kondensations-KW (CCS)</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>davon alte Kondensations-KW</td>
<td>17,8</td>
<td>17,8</td>
</tr>
<tr>
<td>davon alte KWK</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>24,8</td>
<td>24,1</td>
</tr>
<tr>
<td>davon neue Kondensations-KW</td>
<td>6,3</td>
<td>6,3</td>
</tr>
<tr>
<td>davon neue Kondensations-KW (CCS)</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>davon neue KWK</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>davon alte Kondensations-KW</td>
<td>14,1</td>
<td>14,1</td>
</tr>
<tr>
<td>davon alte KWK</td>
<td>4,4</td>
<td>3,8</td>
</tr>
<tr>
<td>Erdgas</td>
<td>16,6</td>
<td>13,1</td>
</tr>
<tr>
<td>davon neue Kondensations-KW</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>davon neue Kondensations-KW (CCS)</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>davon neue KWK</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>davon alte Kondensations-KW</td>
<td>2,8</td>
<td>2,7</td>
</tr>
<tr>
<td>davon alte KWK</td>
<td>11,8</td>
<td>8,4</td>
</tr>
<tr>
<td>Sonstige</td>
<td>10,8</td>
<td>10,7</td>
</tr>
</tbody>
</table>

Quelle: ELIAS (Öko-Institut)

Tabelle 11 zeigt die verwendeten Leistungen und Stromproduktionen aus erneuerbaren Energien in den Basisläufen ohne Elektromobilität.
Tabelle 11: Nettoleistung und Nettostromproduktion der erneuerbaren Energien im Basislauf ohne Elektromobilität in den betrachteten Szenariojahren

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leistung (netto)</td>
<td>Leistung (netto)</td>
</tr>
<tr>
<td></td>
<td>GW</td>
<td>GW</td>
</tr>
<tr>
<td>Laufwasser</td>
<td>4,53</td>
<td>4,71</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>35,14</td>
<td>36,52</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>9,83</td>
<td>24,13</td>
</tr>
<tr>
<td>PV</td>
<td>51,04</td>
<td>61,00</td>
</tr>
<tr>
<td>Biogas</td>
<td>2,97</td>
<td>3,23</td>
</tr>
<tr>
<td>Deponiegas / Klärgas</td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td>Pflanzenöl</td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td>feste Biomasse</td>
<td>3,21</td>
<td>3,69</td>
</tr>
<tr>
<td>biogener Abfall</td>
<td>1,32</td>
<td>1,30</td>
</tr>
<tr>
<td>Geothermie</td>
<td>0,21</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Quelle: [4], eigene Berechnungen

Tabelle 12: Erhöhte Stromproduktion aus Wind und Photovoltaik in den Szenarien mit zusätzlichem Wind- bzw. Solarstrom

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erhöhte Stromproduktion in GWh aus</td>
<td>Ladeszenario 1 (nach letzter Fahrt)</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>75,112</td>
<td>75,339</td>
</tr>
<tr>
<td>Steigerung gegenüber Basisfall:</td>
<td>1,2 %</td>
<td>1,5 %</td>
</tr>
<tr>
<td>PV</td>
<td>44,209</td>
<td>44,435</td>
</tr>
<tr>
<td>Steigerung gegenüber Basisfall:</td>
<td>2,0 %</td>
<td>2,5 %</td>
</tr>
</tbody>
</table>
Tabelle 13: Erhöhte Kapazität und Stromproduktion aus Biogas in den Szenarien mit zusätzlichen Biogasanlagen

<table>
<thead>
<tr>
<th></th>
<th>Ladeszenario 1 (nach letzter Fahrt)</th>
<th>Ladeszenario 2 (auch tagsüber)</th>
<th>Ladeszenario 1 (nach letzter Fahrt)</th>
<th>Ladeszenario 2 (auch tagsüber)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistung</td>
<td>3,11</td>
<td>3,14</td>
<td>4,61</td>
<td>4,95</td>
</tr>
<tr>
<td>Steigerung gegenüber Basisfall:</td>
<td>4,7 %</td>
<td>6,0 %</td>
<td>42,8 %</td>
<td>53,6 %</td>
</tr>
</tbody>
</table>

6.4.3 Kosten für Brennstoffe, Importstrom und CO₂-Preise

Tabelle 14: Verwendete Brennstoff- und CO₂-Preise

<table>
<thead>
<tr>
<th>Brennstoffpreise in € (2008) / MWh</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uran</td>
<td>3,50</td>
<td>-</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>4,40</td>
<td>4,69</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>13,52</td>
<td>14,89</td>
</tr>
<tr>
<td>Erdgas</td>
<td>39,49</td>
<td>46,92</td>
</tr>
<tr>
<td>Heizöl leicht</td>
<td>64,60</td>
<td>76,72</td>
</tr>
<tr>
<td>Heizöl schwer</td>
<td>41,03</td>
<td>48,96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO₂-Preise in € (2008) / t</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
</table>

Quelle: Politikszenerien VI [17]

Importstrom ist in der Modellierung mit Kosten, die 1 ct/MWh über den kurzfristigen Grenzkosten des teuersten inländischen Kraftwerk liegen, abgebildet, so dass inländische Kraftwerke die Stromnachfrage weitgehend decken und Importstrom nur als Leistungsreserve verwendet wird.

6.4.4 CO₂-Emissionsfaktoren

Für die Berechnung der CO₂-Emissionen wurden brennstoffbezogene CO₂-Emissionsfaktoren aus der Datenbank GEMIS 4.7 [18] verwendet, wobei sowohl die direkten Emissionen, als auch die Emissionen aus vorgelagerten Prozessen wie Brennstoffextraktion und Anlagenbau berücksichtigt werden.
Tabelle 15: Inputbezogene Emissionsfaktoren für die in der Modellierung verwendeten Energieträger

<table>
<thead>
<tr>
<th>Prozess</th>
<th>CO₂-Emissionsfaktor in g/kWh Brennstoff</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>direkt</td>
<td>vorgelagert</td>
<td>direkt</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>414,62</td>
<td>9,84</td>
<td>414,62</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>347,78</td>
<td>26,74</td>
<td>347,78</td>
</tr>
<tr>
<td>Erdgas</td>
<td>201,53</td>
<td>18,07</td>
<td>201,50</td>
</tr>
<tr>
<td>Heizöl leicht</td>
<td>267,93</td>
<td>41,82</td>
<td>267,99</td>
</tr>
<tr>
<td>Heizöl schwer</td>
<td>285,69</td>
<td>39,67</td>
<td>285,69</td>
</tr>
<tr>
<td>Hochofengas</td>
<td>378,71</td>
<td>6,17</td>
<td>378,71</td>
</tr>
<tr>
<td>Raffineriegas</td>
<td>216,02</td>
<td>37,40</td>
<td>216,02</td>
</tr>
<tr>
<td>Kokereigas</td>
<td>378,71</td>
<td>6,17</td>
<td>378,71</td>
</tr>
<tr>
<td>Grubengas</td>
<td>198,34</td>
<td>6,17</td>
<td>198,34</td>
</tr>
<tr>
<td>Müll fossil</td>
<td>10,52</td>
<td>0,00</td>
<td>10,52</td>
</tr>
<tr>
<td>AKW (Uran)</td>
<td>0,00</td>
<td>12,84</td>
<td>0,00</td>
</tr>
<tr>
<td>Geothermie</td>
<td>0,00</td>
<td>60,69</td>
<td>0,00</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>0,00</td>
<td>75,29</td>
<td>0,00</td>
</tr>
<tr>
<td>Laufwasser</td>
<td>0,00</td>
<td>37,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>0,00</td>
<td>21,81</td>
<td>0,00</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>0,00</td>
<td>21,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>0,00</td>
<td>2,51</td>
<td>0,00</td>
</tr>
<tr>
<td>Pflanzenöl</td>
<td>0,00</td>
<td>47,13</td>
<td>0,00</td>
</tr>
<tr>
<td>Biogas</td>
<td>0,00</td>
<td>65,04</td>
<td>0,00</td>
</tr>
<tr>
<td>Klärgas</td>
<td>0,00</td>
<td>0,0006</td>
<td>0,00</td>
</tr>
<tr>
<td>Deponiages</td>
<td>0,00</td>
<td>0,0008</td>
<td>0,00</td>
</tr>
<tr>
<td>Müll biogen</td>
<td>0,00</td>
<td>4,38</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Quelle: GEMIS 4.7 [18]

6.4.5 Stromnachfrage

6.4.6 Elektrofahrzeuge

Für die Szenariojahre 2020 und 2030 wurde eine Flotte von Elektrofahrzeugen bestehend aus batterieelektrischen und Plug-In-Hybridfahrzeugen im Strommarktmodell abgebildet, die gemäß verschiedener Nutzungsprofile (siehe Kapitel 5) eingesetzt werden. Insgesamt werden 540.000 Elektrofahrzeuge im Jahr 2020 und 5.870.000 Elektrofahrzeuge im Jahr 2030 angenommen, wobei Plug-In-Hybride den größten Teil der Fahrzeuge stellen. Ihr
Stromverbrauch beträgt insgesamt im Jahr 2020 rund 1 TWh und damit unter 0,2 % der gesamten jährlichen Nettostromnachfrage. Im Jahr 2030 sind es je nach Ladeszenario zwischen 9 und 11 TWh, was 1,5 bis 1,8 % des Nettostromverbrauchs entspricht.

6.5 Ergebnisse

6.5.1 Kraftwerkseinsatz in stundenscharfer Darstellung

Negative Werte auf der vertikalen Achse entsprechen dem Verbrauch der Pumpspeicherkraftwerke. Wo diese, gesteuert vom Optimierungskalkül des Modells, Strom nachfragen, unterscheidet sich die exogen vorgegebene Stromnachfrage (dünnere Linie) von der insgesamt produzierten Strommenge („Erzeugung insgesamt“, dickere Linie).

Sichtbar wird auch die im Modell vorgegebene Restriktion, dass für die Bereitstellung von Primärregelleistung stets eine thermische Kraftwerksleistung von 14 GW verfügbar sein muss, wobei dazu auch Kraftwerke auf Biomassebasis zählen. Zusammen mit den must-run-Kapazitäten ergibt sich dadurch eine Leistung von knapp 18 GW, die in der dargestellten Woche am Sonntag und Montag nicht weiter reduziert werden kann, obwohl noch fluktuierende erneuerbare Energien vorhanden wären; deshalb kommt es zu erneuerbaren Stromüberschüssen (schraffiert dargestellt).

Solcher nicht integrierter, überschüssiger Strom aus einzelnen erneuerbaren Energien ist jedoch als Überschuss der Summe aller in dieser Stunde verfügbaren fluktuierenden erneuerbaren Energien zu interpretieren.
Abbildung 23: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – Basisszenario ohne Elektromobilität

Abbildung 24 zeigt den Kraftwerkseinsatz in einem Modellauf mit Elektrofahrzeugen, deren Stromverbrauch neben dem Verbrauch der Pumpspeicherkraftwerke als negativer Wert auf der vertikalen Achse dargestellt ist. In diesem Fall werden die Fahrzeuge mit einem festen Nachfrageprofil entsprechend dem Ladeszenario 2 (Laden auch tagsüber) ohne Lademanagement geladen. Erkennbar sind deutliche Nachfragespitzen, die insbesondere am Abend auftreten, wenn auch im Basilauf ohne Elektromobilität die Stromnachfrage hoch ist. Dies führt auf der Erzeugungsseite zu einem Anstieg der Stromerzeugung aus Reservekraftwerken auf Heizölbasis und zu Stromimporten (rot markiert).
Die Wirkung des preisoptimierten Lademanagements zeigt sich in Abbildung 25. Die Stromnachfrage für das Laden der Elektrofahrzeuge ist nun in andere Stunden verschoben worden, so dass die Nachfragespitzen am Abend aus Abbildung 24 hier vollständig verschwunden sind. Das Laden der Fahrzeuge findet nun bevorzugt in Stunden statt, in denen zuvor die Pumpspeicherkraftwerke Strom nachgefragt haben, weil in diesen Stunden die Stromerzeugung besonders günstig ist.

Von der zuvor überschüssigen, fluktuierenden Stromeinspeisung kann ein Teil nun zur Ladung der Fahrzeugbatterien genutzt werden, wie die in Abbildung 25 sichtbare, gestiegene Nachfrage bei Überschuss zeigt. In den Zeiträumen ohne überschüssiges erneuerbares Energieangebot wird die Nachfrage der Fahrzeuge bevorzugt in die Nachtstunden verschoben. In diesen Stunden steigt insbesondere die Stromerzeugung aus Braun- oder Steinkohle, wie sich im Vergleich der orange markierten Bereiche in Abbildung 24 und Abbildung 25 zeigt.

Abbildung 24: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – mit Elektromobilität, Ladeszenario 2 (Laden auch tagsüber), ohne Lademanagement („ohne LM 2“)
Abbildung 25: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – mit Elektromobilität, Ladeszenario 2 (Laden auch tagsüber), mit Lademanagement („mit LM 2“)

Wird dem Modell zusätzliche Windeinspeisung zur Verfügung gestellt, wie in Abbildung 26 dargestellt, kann zum einen die Stromproduktion aus konventionellen Kraftwerken in einigen Stunden verringert werden, zum anderen erhöhen sich aber auch die nicht nutzbaren erneuerbaren Überschüsse, wie beispielhaft in den orange markierten Bereichen sichtbar wird.
Abbildung 26: Kraftwerkseinsatz in stündlicher Auflösung für eine ausgewählte Oktoberwoche im Szenariojahr 2030 – mit Elektromobilität und zusätzlicher onshore Wind einspeisung, Ladeszenario 2 (Laden auch tagsüber), mit Lademanagement („mit LM 2 Wind“)

Für eine quantitative Auswertung der Modellierungsergebnisse werden im Folgenden für alle Modellläufe die jährlichen Werte einzelner Ergebnisgrößen in ihrer Veränderung gegenüber dem Basislauf ohne Elektromobilität analysiert.

6.5.2 Brennstoffmix und spezifische CO₂-Emissionen der zusätzlichen Stromerzeugung für Elektromobilität

Szenario „mit Elektromobilität“ – Darstellung der Ergebnisse
Grundsätzlich wird für das Ladeszenario 2 (Laden auch tagsüber) etwas mehr Strom bereitgestellt, als für das Ladeszenario 1 (Laden nach letzter Fahrt), da die Plug-In-Hybridfahrzeuge durch die häufiger zu Verfügung stehende Ladeinfrastruktur in Szenario 2 einen höheren elektrischen Fahranteil und damit einen höheren Stromverbrauch erreichen. Für die Zusammensetzung des zusätzlich produzierten Stroms treten jedoch zwischen den beiden Ladeszenarien keine strukturellen Unterschiede auf.

Auch auf die Zusammensetzung des zusätzlich produzierten Stroms wirkt sich das Lademanagement aus: Da das Laden in möglichst kostengünstige Stunden verschoben wird, steigt in beiden Jahren und für beide Ladeszenarien der Anteil der Braunkohle durch das Lademanagement an, während sich der Anteil von Steinkohle und Erdgas verringert. Im Jahr 2020, in dem noch Kernenergie in der Stromerzeugung vorhanden ist, führt das Lademanagement auch zu einem erhöhten Anteil von Kernenergie in der zusätzlichen Stromerzeugung. Der Anteil der erneuerbaren Energien an der zusätzlichen Stromerzeugung bleibt dagegen im Jahr 2020 auch mit Lademanagement auf einem niedrigen Niveau von maximal 3%. Im Jahr 2030 steigt der Anteil der erneuerbaren Energien durch das Lademanagement von vorher 4% bzw. 5% auf 19%. Der Einsatz teurer Reservekraftwerke oder teurer Importe wird durch das Lademanagement reduziert.
Abbildung 27: Graphische Darstellung des Brennstoffmixes der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2020

Abbildung 28: Spezifische CO₂-Emissionen und EE-Anteil am Fahrstrom 2020
Abbildung 29: Graphische Darstellung des Brennstoffmixes der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2030

Abbildung 30: Spezifische CO₂-Emissionen der zusätzlichen Stromerzeugung („Fahrstrom“) und der gesamten Stromerzeugung sowie Anteil erneuerbarer Energien am Fahrstrom 2030
Szenario „mit Elektromobilität“ – Diskussion der Ergebnisse

Bei den fluktuierenden erneuerbaren Energien gibt es dann noch freie Kapazitäten, wenn bei hoher Einspeisung und niedriger Nachfrage das Dargebot den Bedarf übersteigt. Diese im Basislauf „überschüssigen“ erneuerbaren Energien können dann im Rahmen der für die Elektrofahrzeuge geltenden Restriktionen mit Hilfe des Lademanagements genutzt werden (siehe Abschnitt 6.5.3). Im Jahr 2030, wenn diese „Überschuss-Situationen“ häufiger auftreten als 2020, erhöht sich damit der Anteil der erneuerbaren Energien des Fahrstroms von ca. 5% im ungesteuerten Fall auf 19% mit Lademanagement.

Insgesamt erhöht das Lademanagement also sowohl den Anteil erneuerbarer Energien, falls es nutzbare Überschüsse gibt, als auch den Anteil an tendenziell emissionsintensiven Grundlastkraftwerken. Der zusätzlich produzierte Strom verursacht daher mit und ohne Lademanagement etwa gleich hohe CO₂-Emissionen. Im Jahr 2020 bewegen sich diese je nach Ladeszenario zwischen 0,7 Mt (Ladeszenario 1) und 1 Mt (Ladeszenario 2), im Jahr 2030 steigen sie auf 6,3 Mt (Ladeszenario 1) bis 8,2 Mt (Ladeszenario 2) (siehe Abbildung 31 und Abbildung 32). Da die zusätzliche Stromproduktion durch den geringeren Einsatz der Pumpspeicherkraftwerke in den Läufen mit Lademanagement geringer ist, ergibt sich im Jahr 2030 mit Lademanagement bei etwa gleich hohen CO₂-Emissionen ein etwas höherer Emissionsfaktor (Abbildung 28 und Abbildung 30 links).

Ordnet man die zusätzliche Stromproduktion ursächlich der Elektromobilität zu, die als einziger Faktor zusätzlich ins System gekommen ist, so kann man diese Stromproduktion auch als „Fahrstrom“ interpretieren. Sein CO₂-Emissionsfaktor liegt in den bisher betrachteten Modellläufen mit knapp 900 g/kWh im Jahr 2020 bzw. ca. 700 g/kWh im Jahr 2030 deutlich über dem durchschnittlichen Emissionsfaktor der gesamten Stromproduktion mit 520 g/kWh (2020) bzw. 490 g/kWh im Jahr 2030 (siehe Abbildung 28 und Abbildung 30). Durch den zusätzlichen Verbrauch der Elektrofahrzeuge wird also nicht einfach mehr Strom mit durchschnittlicher Emissionsintensität produziert, sondern besonders CO₂-intensiver Strom.
Abbildung 31: Differenz der CO₂-Emissionen zwischen Läufen mit Elektromobilität und Basislauf nach vorgelagerten und direkten Emissionen für 2020

Abbildung 32: Differenz der CO₂-Emissionen zwischen Läufen mit Elektromobilität und Basislauf nach vorgelagerten und direkten Emissionen für 2030
Szenarien „Elektromobilität und zusätzliche erneuerbare Energien“ - Darstellung der Ergebnisse

In den Läufen mit **zusätzlicher Stromerzeugung aus onshore Windkraftanlagen** verdrängt diese im Fall ohne Lademanagement im Jahr 2020 hauptsächlich Strom aus Braunkohle- und zum Teil aus Kernkraftwerken (Abbildung 27, negative Balken). Im Jahr 2030 geht die zusätzliche Windeinspeisung ohne Lademanagement ebenfalls zu Lasten von Braunkohle, zum Teil wird aber auch offshore Windeinspeisung verdrängt (Abbildung 29, negative Balken). Dabei ist zu beachten, dass hier die Modellmechanik bestimmt, welche fluktuierende erneuerbare Stromeinspeisung das Modell als „überschüssig“ interpretiert (siehe Abschnitt 6.5.1): Dass in der Darstellung der Ergebnisse offshore Wind verdrängt wird, lässt sich daher so interpretieren, dass das Hinzufügen von onshore Windeinspeisung dazu führt, dass in mehr Stunden als im Fall ohne zusätzliche erneuerbare Energien die Summe aller fluktierenden erneuerbaren Energien den Bedarf übersteigt.

Für die Pumpspeicherkraftwerke führen Elektromobilität ohne Lademanagement und zusätzliche PV-Anlagen zu einem vergleichsweise hohen zusätzlichen Einsatz, während das Lademanagement den Strom aus Pumpspeicherkraftwerken gegenüber dem Basislauf nur minimal reduzieren kann.

Szenarien „Elektromobilität und zusätzliche erneuerbare Energien“ - Diskussion der Ergebnisse

Der Anteil erneuerbarer Energien an der Differenzstromerzeugung variiert in den betrachteten Modellläufen von 76 % bis 120 % (s. Abbildung 28 und Abbildung 30). Im ungesteuerten Fall verdrängt im Jahr 2030 zusätzliche Windeinspeisung bisherige Windeinspeisung, so dass der erneuerbare Anteil insgesamt hier nur 76 % beträgt. Durch das Lademanagement kann
überschüssiger erneuerbarer Strom generell besser integriert werden, so dass der erneuerbare Anteil auf nahezu 100 % steigt.

In allen Varianten mit zusätzlichen erneuerbaren Energien und Lademanagement kann der Fahrstrom damit als vollständig erneuerbar angesehen werden. In den Varianten mit zusätzlichen PV- und Biogas-Anlagen steht nicht nur deren zusätzliche Stromerzeugung zur Verfügung, sondern das Lademanagement kann außerdem bisher nicht integrierbaren überschüssigen erneuerbaren Strom nutzen, so dass sich rechnerisch ein erneuerbarer Anteil an der Differenzstromerzeugung von über 100% ergibt. Es wird also nicht nur der Bedarf der Fahrzeuge gedeckt, sondern darüber hinaus auch konventioneller Strom verdrängt.

Die Emissionsfaktoren des zusätzlich erzeugten Stroms liegen zwischen maximal 179 g/kWh und niedrigen negativen Werten, wenn durch Verdrängungseffekte weniger CO₂ emittiert wurde als im Basislauf. Für die erneuerbare Stromerzeugung sind dabei die CO₂-Emissionen aus den vorgelagerten Prozessketten relevant, wie auch aus Abbildung 31 und Abbildung 32 ersichtlich wird, in denen die Differenzen der absoluten CO₂-Emissionen gegenüber dem Basislauf dargestellt sind.

6.5.3 Beitrag der Elektromobilität zur Integration der erneuerbaren Energien

Eine Möglichkeit, Elektrofahrzeuge mit erneuerbarem Strom zu laden, besteht darin, erneuerbaren Strom zu nutzen, der bisher „überschüssig“ war. So heißt es im Regierungsprogramm Elektromobilität [22] vom Mai 2011:

„Der zusätzliche Bedarf an elektrischer Energie in diesem Sektor ist durch Strom aus Erneuerbaren Energien zu decken. Vorrangig sollte dafür der anderweitig nicht nutzbare Strom aus fluktuierenden Erneuerbaren Energien im Rahmen des Lastmanagements durch Elektromobilität genutzt werden. Für den darüber hinaus gehenden Strombedarf für Elektromobilität sind weitere Ausbaupotentiale der Erneuerbaren Energien zu erschließen."

Neben dem Nutzen für die Fahrzeuge wäre mit der Ladung von „Überschuss“-Strom auch ein Beitrag für die Integration der erneuerbaren Energien verbunden, der im Folgenden diskutiert wird.

Abbildung 33: Nicht genutzte fluktuierende erneuerbare Energien in verschiedenen Modellläufen für 2030 im Vergleich zum Stromverbrauch der Elektrofahrzeuge

Im Basisszenario ohne Elektromobilität sind im Jahr 2030 knapp 6 TWh aus fluktuierenden erneuerbaren Energien in diesem Sinne überschüssig. Die Stromnachfrage der Elektrofahrzeuge im Jahr 2030 liegt im Fall von Ladeszenario 2 (Laden auch tagsüber) bei gut 11 TWh. Rechnerisch könnte also ungefähr die Hälfte des Bedarfs der Elektromobilität durch bisher überschüssige erneuerbare Energie gedeckt werden. Aufgrund der Restriktionen, die für die Fahrzeuge gelten, die für die vorgegebenen Fahrten mit ausreichend voller Batterie zur Verfügung stehen müssen, und deren Speicherkapazität begrenzt ist, lässt sich dieses Potential jedoch nur zum Teil nutzen. Das Lademanagement schöpft dieses Potential im Rahmen der genannten Restriktionen soweit wie möglich aus, mit dem Ergebnis, dass die Überschüsse je nach Ladeszenario auf 4,1 bzw. 3,8 TWh sinken. Die nun genutzten 1,7 bzw. 2 TWh machen den größten Teil des oben dargestellten erneuerbaren Anteils am Fahrstrom in Höhe von 19 % in Abbildung 29 und Abbildung 30 aus.

Bezogen auf das Dargebot fluktuierender erneuerbarer Energie von insgesamt rund 250 TWh im Jahr 2030 (vgl. Abschnitt 6.4.1) beträgt die nicht nutzbare erneuerbare Energie hingegen im Basisszenario nur 2,3 %. Betrachtet man nur Wind und Photovoltaik, so sind 2,5 % des Dargebots überschüssig. Im Jahr 2020 treten nicht nutzbare erneuerbare Überschüsse in noch kleinerem Maße auf; im Basislauf sind es nur 0,1 % des insgesamt vorhandenen Dargebots.

Mit den für die Modellierung verwendeten Annahmen scheint also die Nicht-Integrierbarkeit fluktuierender erneuerbarer Energien erst ab erneuerbaren Anteilen am Stromsystem, wie sie hier für 2030 angenommen wurden, überhaupt eine nennenswerte Rolle zu spielen. Aus Sicht des Energiesystems ist deshalb auch der Beitrag, den die Elektromobilität in Kombination mit Lademanagement für die Integration erneuerbarer Energien bis dahin leisten kann, eher
gering. Um den Anteil der erneuerbaren Energien am Fahrstrom zu steigern, ist jedoch, wie
dargestellt, ein preisoptimiertes Lademanagement durchaus zielführend.
Durch zusätzliche erneuerbare Energien wird zwar der Fahrstrom, wie dargestellt,
„erneuerbarer“, gleichzeitig steigen jedoch im Fall von zusätzlichem Wind- und Solarstrom die
nicht nutzbaren Überschüsse an. Ohne Lademanagement sind es in knapp 8 TWh bei
zusätzlicher Windeinspeisung und knapp 7 TWh bei zusätzlichen PV-Anlagen. Mit
Lademanagement sinken die Überschüsse auf gut 6 TWh (Wind) bzw. 5 TWh (PV). Nur in der
Variante mit zusätzlichen, steuerbaren Biogas-Anlagen sinken die Überschüsse auf dieselben
Werte wie im Fall ohne zusätzliche erneuerbare Energien bei gleichem Ladeszenario.

EXKURS: Netzengpässe und Abregelung von Windkraftanlagen
Die dargestellten Zahlen stehen, wie oben erwähnt, unter dem Vorbehalt, dass Netzengpässe,
die zu nicht nutzbarer Stromerzeugung aus erneuerbaren Energien führen, nicht abgebildet
werden. Die vorliegende Modellierung entspricht damit einer Welt, in der die Netze so
weitgehend ausgebaut wurden, dass Netzengpässe kein relevantes Problem für die nahezu
vollständige Nutzung des fluktuierend einspeisenden erneuerbaren Stroms darstellen. In wie
weit diese Annahme für die Jahre 2020 und 2030 zutrifft, ist Thema anderer
Forschungsarbeiten. Auch inwieweit es volkswirtschaftlich und gesellschaftlich sinnvoll ist,
möglichst jede Kilowattstunde Wind- oder Solarstrom zu nutzen, wenn dafür ein immenser
Netzausbau notwendig wäre, kann hier nicht beantwortet werden.
Historische Daten geben einen Anhaltspunkt dafür, dass zumindest heute Netzengpässe, die
zur Abregelung insbesondere von Windkraftanlagen führen, hauptsächlich im Verteilnetz
auftreten. So haben [23] die von Einspeisemanagement betroffenen Windenergieanlagen in
verschiedenen Netzgebieten für 2009 untersucht und kommen zu dem Ergebnis, dass 0,2 %
der insgesamt in Deutschland eingespeisten Windenergie nicht ins Netz eingespeist werden
konnten. Allerdings variieren die Werte zwischen verschiedenen Netzbetreibern erheblich. Im
Zeitraum von 2004 bis 2009 konstatierten die Autoren eine Steigerung der Ausfallarbeit auf das
Siebenfache, weisen aber darauf hin, dass die Datenlage keine Aussage über die zukünftige
Entwicklung erlaubt.
Inwieweit in der Zukunft durch einen befürchteten mangelnden Ausbau vor allem auf
Übertragungsnetzebene Windenergie verloren geht, lässt sich aus der heutigen Situation, in
der vor allem Verteilnetze den Engpass bilden, nicht ableiten. Qualitativ lässt sich feststellen,
dass Elektromobilität durchaus dann einen Beitrag zur Integration erneuerbarer Energien in
einer Netzengpasssituation leisten könnte, wenn durch ihren Einsatz der Stromtransport auf
den kritischen Trassen reduziert werden kann. Dazu ist jedoch Voraussetzung, dass die
räumliche Verteilung der Fahrzeuge eine solche Entlastung mit sich bringt, die
Elektrofahrzeuge also dort stehen, wo auch der sonst nicht transportierbare, erneuerbare
Strom anfällt und die Fahrzeuge dort genau dann laden, wenn der lokale Überschuss auftritt.
Ist dies gegeben, so könnte der Beitrag der Elektrofahrzeuge zur Integration der erneuerbaren
Energien über das in der Modellierung dargestellte Maß hinausgehen.
CO₂-Bilanz Elektromobilität

7.1 Hintergrund

7.2 Vorgehen und Rahmenbedingungen

Fahrleistung

Spezifischer Energieverbrauch

Fahrzeuge mit batterieelektrischem und Plug-In-Hybrid-Antrieb zeichnen sich im elektrischen Betrieb durch eine ausgesprochen hohe Energieeffizienz aus. Gemäß der Szenarioannahmen (siehe Abschnitt 2.2) ist in den kommenden zwei Dekaden mit einer weiteren Effizienzsteigerung um bis zu 10 % zu rechnen. Eine detaillierte Übersicht der Annahmen zu den fahrzeugspezifischen Energieverbräuchen findet sich in Anhang A.

Tabelle 16: Kraftstoffverbrauch [l/100 km] der verbrennungsmotorischen Pkw-Neuzulassungen nach NEFZ

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Otto klein</th>
<th>Otto mittel</th>
<th>Otto groß</th>
<th>Diesel klein</th>
<th>Diesel mittel</th>
<th>Diesel groß</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5,2</td>
<td>6,4</td>
<td>8,6</td>
<td>3,6</td>
<td>4,8</td>
<td>6,4</td>
</tr>
<tr>
<td>2020</td>
<td>3,8</td>
<td>4,7</td>
<td>6,2</td>
<td>2,6</td>
<td>3,5</td>
<td>4,6</td>
</tr>
<tr>
<td>2030</td>
<td>3,3</td>
<td>4,1</td>
<td>5,5</td>
<td>2,3</td>
<td>3,0</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Gegenüber dem Ausgangsjahr 2010 verringern sich damit der Energieverbrauch – und somit auch die direkten CO₂-Emissionen – von verbrennungsmotorischen Pkw bis zum Jahr 2020 um weitere 28 % und bis zum Jahr 2030 um 36 %.

Die dargestellten Verbrauchswerte für elektrische, wie auch verbrennungsmotorische Pkw stellen jedoch nicht reale Energieverbrauchswerte, sondern unter normierten Messbedingungen erzielte Werte dar. Da die CO₂-Bilanzierung sich jedoch auf reale Emissionen des Pkw-Bestands bezieht und diese im Regelfall deutlich über den Normwerten liegen, wird für die Emissionsberechnung ein Realverbrauchsaufschlag von 10 % für alle betrachteten Antriebtypen vorgenommen. Für Fahrzeuge mit elektrischem Antrieb wird ferner für die Batterieladung ein durchschnittlicher Wirkungsgrad von 90 % angenommen, welcher den Energieverbrauch weiter erhöht.

CO₂-Intensität der Kraftstoffe

Für die Bilanzierung der CO₂-Emissionen von Otto- und Dieselkraftstoff werden diese Entwicklungen im Modell in Anlehnung an TREMOD [12] folgendermaßen berücksichtigt:

Ethanol und Biodiesel besitzen dabei gegenüber konventionellem Otto- und Dieselkraftstoff eine um 52 % (2010) bzw. 60 % (2020 bzw. 2030) geringere CO₂-Intensität.

Tabelle 17 veranschaulicht die Entwicklung der CO₂-Intensität von Otto- und Dieselkraftstoff im Betrachtungszeitraum unter Berücksichtigung des zunehmenden Anteils an Biokraftstoffen und deren abnehmender CO₂-Intensität. Die aufgeführte Entwicklung bildet die Grundlage für die Bestimmung der CO₂-Bilanz von Flüssigkraftstoffen im Bestandsmodell.

Tabelle 17: CO₂-Intensität von Otto- und Dieselkraftstoff [g CO₂/kWh] unter Berücksichtigung des ansteigenden Biokraftstoffanteils

<table>
<thead>
<tr>
<th>Kraftstoff</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direkte Emissionen</td>
<td>259,2</td>
<td>259,2</td>
<td>259,2</td>
</tr>
<tr>
<td>indirekte Emissionen</td>
<td>50,5</td>
<td>56,6</td>
<td>56,6</td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direkte Emissionen</td>
<td>259,2</td>
<td>259,2</td>
<td>259,2</td>
</tr>
<tr>
<td>indirekte Emissionen</td>
<td>-110,5</td>
<td>-132,9</td>
<td>-132,9</td>
</tr>
<tr>
<td>Anteil</td>
<td>4,0%</td>
<td>10,0%</td>
<td>10,0%</td>
</tr>
<tr>
<td>Benzin / Ethanol</td>
<td>Gesamtemissionen</td>
<td>303,3</td>
<td>296,9</td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direkte Emissionen</td>
<td>266,4</td>
<td>266,4</td>
<td>266,4</td>
</tr>
<tr>
<td>indirekte Emissionen</td>
<td>35,4</td>
<td>39,7</td>
<td>39,7</td>
</tr>
<tr>
<td>Biodiesel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direkte Emissionen</td>
<td>254,9</td>
<td>254,9</td>
<td>254,9</td>
</tr>
<tr>
<td>indirekte Emissionen</td>
<td>-110,0</td>
<td>-132,5</td>
<td>-132,5</td>
</tr>
<tr>
<td>Anteil</td>
<td>7,0%</td>
<td>13,0%</td>
<td>13,0%</td>
</tr>
<tr>
<td>Diesel / Biodiesel</td>
<td>Gesamtemissionen</td>
<td>290,8</td>
<td>282,2</td>
</tr>
</tbody>
</table>

Die CO₂-Intensität der durch Elektrofahrzeuge nachgefragten Strommenge ergibt sich aus der Strommarktmодellierung. Wie in Kapitel 6 ausführlich diskutiert, beziehen sich die ermittelten Emissionsfaktoren der, durch Elektromobilität generierten, Stromnachfrage jeweils auf die Treibhausgasintensität dieser zusätzlich erzeugten Strommenge. Damit werden alle Emissionen, die durch die zusätzliche Stromnachfrage entstehen, dem Einsatz von Elektrofahrzeugen zugesprochen.

Wie im Kapitel 6 aufgezeigt, stellt der Umstand, ob für die zusätzliche Stromnachfrage von Elektromobilität zusätzliche Erneuerbare-Energien-Anlagen gebaut werden, die wirksamste Einflussgröße auf die CO₂-Intensität der Stromerzeugung für Elektrofahrzeuge dar. Ferner ist zu beobachten, dass Lademanagement – also die zeitliche Steuerung der Batterieladung – erheblichen Einfluss auf die Integration erneuerbarer Energien und somit auf die CO₂-Intensität der Stromerzeugung haben kann.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>ohne zusätzlichen EE-Ausbau</th>
<th>mit zusätzlichem EE-Ausbau (Wind)</th>
<th>Vergleich: deutscher Strommix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne LM</td>
<td>mit LM</td>
<td>ohne LM</td>
</tr>
<tr>
<td></td>
<td>894</td>
<td>888</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>713</td>
<td>752</td>
<td>62</td>
</tr>
</tbody>
</table>

7.3 CO₂-Bilanz auf Fahrzeugebene

Die Treibhausgasbilanzierung auf Fahrzeugebene veranschaulicht die CO₂-Minderung, die durch den Einsatz eines Plug-In-Hybrid-Pkw bzw. eines batterieelektrischen Fahrzeugs anstelle eines herkömmlichen verbrennungsmotorischen Pkw je gefahrenem Kilometer realisiert werden kann.

Exemplarisch wird der CO₂-Bilanzvergleich der betrachteten Antriebsarten am Beispiel eines Fahrzeugs der Größenklasse „mittel“ und für das Jahr 2030 aufgezeigt. Die CO₂-Bilanzierung berücksichtigt den realen Energieverbrauch eines im Jahr 2030 neu zugelassenen Pkw
Für Fahrzeuge mit (teil-)elektrischem Antrieb wird ferner ein mittlerer Batterieladewirkungsgrad von 90 % unterstellt. Der elektrische Fahranteil des Plug-In-Hybridfahrzeugs leitet sich als Durchschnittswert aus den Simulationen der Fahrzeugnutzung ab.

Unter Vernachlässigung der direkten Effekte von Elektromobilität auf die Stromwirtschaft wird häufig auch die durchschnittliche CO2-Intensität der Gesamtstromerzeugung herangezogen. In diesem Fall würden sich die spezifischen Fahrzeugemissionen um 13 % (Plug-In-Hybrid-Pkw) bzw. 24 % (batterieelektrischer Pkw) gegenüber einem konventionellen Vergleichsfahrzeug verringern.

(Tabelle 19).

In Abbildung 35 wird zusätzlich der Effekt eines Lademanagements, das die Batterieladung auf möglichst preisoptimale Zeitpunkte verschiebt, für die beiden Möglichkeiten der Stromerzeugung aufgezeigt. Im Falle des unveränderten Kraftwerkparks (ohne zusätzliche EE-Anlagen) würde sich das Emissionsniveau von Elektrofahrzeugen sogar noch weiter erhöhen. Ursache: die Batterieladung würde vorwiegend in Zeiten geringer Lastnachfrage verschoben und die Stromnachfrage durch Kraftwerke mit überdurchschnittlich hoher CO₂-Intensität (Braun- & Steinkohle) befriedigt.

Ganz anders das Bild im Falle eines zusätzlichen Baus von Windenergieanlagen. Durch das Lademanagement kann die Integration des fluktuierenden Windstromangebots weiter optimiert werden, so dass in Konsequenz auch die CO₂-Intensität der für Elektromobilität erzeugten Strommenge weiter sinkt (siehe auch Tabelle 18) und dieser nahezu emissionsfrei bereitgestellt werden kann. Daraus ergibt sich ein CO₂-Vorteil gegenüber dem konventionellen Vergleichsfahrzeug von 65 % für ein Plug-In-Hybridfahrzeug und 97 % für das batterieelektrische Fahrzeugpendant.
Zunächst legt der Vergleich der spezifischen Emissionen im optimalen Fall eines zusätzlichen Ausbaus von regenerativen Energien den Schluss nahe, dass batterieelektrische Fahrzeuge auf Fahrzeugebene den höchsten CO₂-Minderungsbeitrag bei der Substitution konventioneller Pkw erzielen können. Entscheidend für die Bestimmung der absoluten CO₂-Bilanz auf Fahrzeugebene ist jedoch neben den spezifischen Emissionen, die Berücksichtigung der tatsächlichen Pkw-Fahrleistung. Denn erst das Produkt aus spezifischen Fahrzeugemissionen und der Fahrleistung quantifiziert die absolute Höhe der CO₂-Emissionen. Wie in Abschnitt 4.3 aufgezeigt, zeichnen sich batterieelektrische Fahrzeuge im Vergleich zu Plug-In-Hybridfahrzeugen durch eine um durchschnittlich etwa 40 % geringere Jahresfahrleistung aus. Im Umkehrschluss bedeutet dies, dass beim Einsatz eines batterieelektrischen Pkw anstelle eines konventionellen Fahrzeugs eine im Vergleich zum Plug-In-Hybrid-Pkw geringere Fahrleistung substituiert wird. In Abbildung 36 ist dieser Effekt für die jährlichen CO₂-Emissionen am Beispiel der beiden elektrischen Antriebtypen und ihrer jeweiligen Jahresfahrleistung für den Fall einer Energieerzeugung aus zusätzlichen Windanlagen illustriert. Zwar erreicht auch hier das batterieelektrische Fahrzeug gegenüber einem herkömmlichen Pkw – dank nahezu emissionsfreier Strombereitstellung – mit 97 % eine deutlich höhere relative CO₂-Minderung als das Plug-In-Hybrid-Fahrzeug (65 %). Die absolute CO₂-Einsparung pro Jahr liegt allerdings angesichts der höheren Fahrleistung im Falle des PHEV trotz eines konventionellen Fahranteils von 33 % mit 1.135 kg CO₂ / a um 13 % höher als für das batterieelektrische Fahrzeug (983 kg CO₂-Einsparung pro Jahr).
Abbildung 36: Vergleich der jährlichen CO₂-Emissionen eines konventionellen Benzin-Pkw mit einem Plug-In-Hybrid- bzw. batterieelektrischen Pkw im Jahr 2030. (Emissionsfaktor der Stromerzeugung bei zusätzlichem Ausbau erneuerbarer Energien (Wind) und bei Lademanagement)

7.4 CO₂-Bilanz im Kontext des deutschen Pkw-Bestands

Entwicklung des Endenergiebedarf

Wie Abbildung 37 veranschaulicht, verringert sich der Endenergiebedarf des Pkw-Bestands im Szenario Elektromobilität bis zum Jahr 2030 trotz weiter ansteigender Fahrleistung um 28 % auf etwa 1.000 PJ. Wesentlicher Treiber für diese Entwicklung ist insbesondere die deutliche Effizienzsteigerung der konventionellen Pkw. Der Bestand von etwa 5.870.000 Elektrofahrzeugen im Jahr 2030 trägt zur Minderung des Endenergiebedarfs mit etwa 5 Prozentpunkten bei.

Entwicklung der CO₂-Emissionen

Für das betrachtete Szenario Elektromobilität, welches bis zum Jahr 2020 einen Bestand von etwa 537.000 Elektrofahrzeuge (64.000 BEV / 473.000 PHEV) und im Jahr 2030 rund 5,8 Millionen Fahrzeuge (780.000 BEV / 5.080.000 PHEV) umfasst, die in den jeweiligen Segmenten konventionelle Pkw ersetzen, werden bei der Bilanzierung der CO₂-Gesamteffekte auf den Pkw-Bestand zwei Energieerzeugungsoptionen berücksichtigt.
Neben einem Referenzfall ohne Elektromobilität wird der Effekt des Elektromobilitätsszenarios auf die Gesamtemissionen des Pkw-Bestands zum Einen für den Fall eines zusätzlichen Ausbaus regenerativer Energien (Windanlagen) sowie zum Anderen ohne entsprechenden Zubau von Erneuerbare-Energien-Anlagen betrachtet. Auch hier sei nochmals erwähnt, dass entsprechend der Methodik der Strommarktbetrachtung, die CO2-Intensität der Strombereitstellung sich jeweils auf die zusätzliche Stromerzeugung für Elektrofahrzeuge bezieht und nicht die mittleren Emissionen der Gesamtstromerzeugung darstellt.

Wie das in Abbildung 39 veranschaulichte Ergebnis der Emissionsberechnung zeigt, führt Elektromobilität unter diesen Umständen nur im Falle eines zusätzlichen Ausbaus von Kapazitäten zur regenerativen Stromerzeugung zu einem CO2-Minderungseffekt. Andernfalls steigen die Gesamtemissionen sogar über die Referenzentwicklung ohne Elektromobilität.

Abbildung 39: CO2-Emissionen des Pkw-Bestands im Referenzfall ohne Elektromobilität und im Szenario Elektromobilität für unterschiedliche Stromerzeugungsoptionen

Im Falle eines zusätzlichen Ausbaus von Erneuerbare-Energien-Anlagen sinken die Gesamtemissionen des Pkw-Bestands durch den verstärkten Einsatz von Elektrofahrzeugen um 0,6 Millionen Tonnen CO2 (2020) bzw. 5,2 Millionen Tonnen (2030). Dies bedeutet eine Minderung der CO2-Emissionen des Pkw-Bestands in Deutschland um 0,6 % im Jahr 2020 und um 6,0 % im Jahr 2030. Ohne einen zusätzlichen Ausbau von Anlagen zur regenerativen Stromerzeugung würden die CO2-Emissionen gegenüber einer Referenzentwicklung ohne Elektrofahrzeuge um 3,1 Millionen Tonnen bzw. 3,6 % im Jahr 2030 ansteigen.
7.5 Exkurs: Mögliche Wechselwirkung zwischen Elektromobilität und der Effizienzentwicklung von konventionellen Pkw

Wie in Abschnitt 7.2 erläutert, wird bei der CO₂-Bilanzierung des deutschen Pkw-Bestands für herkömmliche Verbrennungsmotorische Fahrzeuge eine Effizienzentwicklung angenommen, die sich bis zum Jahr 2020 an der EU-Verordnung zu Emissionsnormen für neue Personenfahrzeuge [26] orientiert. In Anlehnung an TREMOD [12] wird für die deutsche Pkw-Neuzulassungsstruktur im Jahr 2020 ein Durchschnittswert von 108 g CO₂/km unterstellt, welcher sich auf den EU-Zielwert von 95 g CO₂/km für die europaweiten Pkw-Neuzulassungen bezieht. Die ebenfalls aus TREMOD übernommene Fortschreibung eines Zielwertes von 95 g CO₂/km für die Pkw-Neuzulassungen im Jahr 2030 orientiert sich an der Annahme eines gesamteuropäischen Durchschnittswerts von 80 g CO₂/km zu diesem Zeitpunkt. Dieser langfristige Zielwert ist bisher noch nicht rechtsverbindlich, gilt jedoch als eine realistische Umsetzungsvariante.

Im Folgenden wird dieser Sachverhalt näher erläutert und die möglichen Auswirkungen am Beispiel einer Extrembetrachtung veranschaulicht.

Im Folgenden wurde die mögliche Wechselwirkung von Elektrofahrzeugen und der Effizienzsteuerung von konventionellen Pkw am Beispiel des Szenarios Elektromobilität veranschaulicht (Abbildung 41). Batterieelektrische Pkw gehen gemäß Definition als Null-Emissions-Fahrzeuge in die Bestimmung des durchschnittlichen CO₂-Flottengrenzwerts ein. Die für die Bilanzierung relevanten direkten Emissionen von Plug-In-Hybridfahrzeugen ergeben sich aus der Simulation der Fahrzeugnutzung. Für den betrachteten Anteil an Plug-In-Hybrid-Pkw im Szenario Elektromobilität ergibt sich ein Durchschnittswert von 43 bis 45 g CO₂/km. Dieser bildet die Grundlage für die Berücksichtigung von Plug-In-Hybrid-Pkw bei der folgenden CO₂-Grenzwertbetrachtung.

Unter der Annahme, dass der für die deutsche Pkw-Struktur anvisierte CO₂-Zielwert nicht übererfüllt wird, könnte sich die Effizienzsteuerung von konventionellen Pkw bis 2020 gegenüber dem Referenzfall ohne Elektromobilität folglich leicht abschwächen. Der mittlere CO₂-Wert der konventionellen Pkw-Neuzulassungen würde im Jahr 2020 113 g CO₂/km betragen und damit 4,4 % über dem Wert bei einer Entwicklung ohne Elektrofahrzeuge liegen. Unter der Annahme, dass bis 2030 für die Pkw-Neuzulassungen in Deutschland ein Durchschnittswert von 95 g CO₂/km als Zielwert zu erreichen ist (entspricht einem EU-weiten Wert von 80 g CO₂/km), würde der Druck zur Effizienzsteigerung bei konventionellen Pkw – angesichts eines zunehmenden Anteils an Elektrofahrzeugen mit geringen oder keinen direkten CO₂-Emissionen – weiter abnehmen und die durchschnittlichen CO₂-Emissionen der konventionellen Pkw-Neuzulassungen könnten gegenüber der Referenzentwicklung ohne Elektrofahrzeuge um etwa 25 % auf 119 g CO₂/km ansteigen.

Die Effizienzsteuerung von Pkw, die sich an der Erreichung eines durchschnittlichen CO₂-Zielwertes für die Pkw-Neuzulassungen in einem bestimmten Jahr orientiert, führt nicht automatisch zu einer entsprechend hohen Emissionsminderung im realen Fahrzeugbetrieb. Hauptgrund hierfür ist, dass bei der CO₂-Gesamtbilanz die fahrzeugspezifische Energieeffizienz mit der jeweiligen Jahresfahrleistung gewichtet wird, dies bei der Ermittlung des durchschnittlichen CO₂-Flottenwerts jedoch nicht geschieht. Das bedeutet, dass beispielsweise eine überdurchschnittlich Effizienzsteigerung in einem Fahrzeugsegment mit durchschnittlich geringer Jahresfahrleistung zwar zu einer signifikanten Minderung des CO₂-Flottenwerts beiträgt, sich dies in der realen Minderung der CO₂-Emissionen jedoch nicht in

Wie sich die skizzierte mögliche Interaktion von Elektromobilität und der Effizienzentwicklung von konventionellen verbrennungsmotorischen Pkw auf die Gesamtemissionen des Pkw-Bestands für den Fall der Marktszenarios Elektromobilität darstellen könnte, wurde im Rahmen einer Extrembetrachtung untersucht. Dabei werden die jeweiligen Effekte für den Pkw-Bestand im Vergleich für eine Entwicklung mit und ohne Berücksichtigung der möglichen Auswirkungen des Flottengrenzwerts auf die Effizienzentwicklung von konventionellen Pkw am Beispiel des Marktszenarios Elektromobilität dargestellt. Durch die moderatere Effizienzentwicklung konventioneller Pkw bei einer entsprechenden Interaktion zwischen Elektromobilität und Flottengrenzwert würde der Endenergiebedarf des Pkw-Bestands gegenüber einer Entwicklung ohne Berücksichtigung der beschriebenen Wechselwirkung um 1,6 % (2020) bzw. 13,8 % (2030) höher ausfallen. Folglich würden auch die Gesamtemissionen angesichts des höheren Kraftstoffverbrauchs von konventionellen Pkw 1,3 % (2020) bzw. 9,7 % (2030) über den Werten einer Entwicklung ohne Berücksichtigung der möglichen Interaktion von Elektromobilität und Flottengrenzwert liegen. In Bezug zum Referenzfall ohne Elektromobilität würden trotz der nahezu emissionsfreien Stromerzeugung für Elektrofahrzeuge die Gesamtemissionen des Pkw-Bestands 0,8 % (2020) und 3,2 % (2030) über dem Niveau einer Entwicklung ohne Elektrofahrzeuge liegen. Das heißt, dass bei unveränderten Annahmen zur Ausgestaltung der europäischen CO₂-Emissionsnorm für Pkw-Neuzulassungen und einer Fortschreibung entsprechend der diskutierten Annahmen bis zum Jahr 2030 selbst bei einer nahezu emissionsfreien Strombereitstellung für Elektromobilität die

Sollte sich Elektromobilität bis zum Jahr 2030 ähnlich dynamisch wie im hier aufgezeigten Szenario am Markt durchsetzen, so zeigen die Analysen auf, dass die Fortschreibung der Flottengrenzwerte unter Berücksichtigung der zunehmenden Anzahl von Elektrofahrzeugen deutlich ambitionierter vorgenommen werden müsste, um auch langfristig eine deutliche Effizienzsteigerung aller Pkw-Antriebsarten sicherzustellen.
OPTUM: Marktpotenziale und CO₂-Bilanz von Elektromobilität

8. Zusammenfassung

OPTUM: Marktpotenziale und CO₂-Bilanz von Elektromobilität

Wie stark elektrische Antriebe zum Klimaschutz beitragen können, hängt neben der Art der Stromerzeugung davon ab, wie viele Elektrofahrzeuge sich zu einem bestimmten Zeitpunkt im Markt befinden, wie hoch deren Fahrleistung und der sich daraus ableitende reale Gesamtstrombedarf ist und welche konventionellen Fahrzeuge im Bestand ersetzt werden.

Um die CO₂-Effekte einer verstärkten Einführung von Elektrofahrzeugen umfassend bewerten zu können, wurden im Forschungsvorhabens OPTUM daher folgende Arbeitsschritte formuliert:

» Analyse der Akzeptanz und Attraktivität von Elektrofahrzeugen
» Ableitung von Marktpotenzialen für Elektrofahrzeuge
» Betrachtung der Interaktion mit dem Energiesektor
» Bestimmung der CO₂-Minderungspotenziale von Elektromobilität.

Marktszenario Elektromobilität

Eine plausible Simulation der Marktentwicklung von Elektromobilität bildet die Grundlage für die Bestimmung möglicher CO₂-Minderungspotenziale von Elektrofahrzeugen im Pkw-Bestand.

Neben der Betrachtung technischer Einsatzrestriktionen spielt die Akzeptanz von Elektrofahrzeugen bei potenziellen Käufern eine entscheidende Rolle für die Marktentwicklung von Elektromobilität. Im Rahmen einer empirischen Akzeptanzanalyse wurde daher ermittelt, unter welchen Umständen sich Pkw-Nutzer für ein Elektrofahrzeug entscheiden würden. Aus

Unter Berücksichtigung des heutigen Mobilitätsverhaltens liegt das Maximalpotenzial für batterieelektrische Pkw bezogen auf den Gesamtbestand bei unter 10 %. Das Maximalpotenzial von Plug-In-Hybridfahrzeugen ist nur durch den Ausbau der öffentlichen Infrastruktur begrenzt und liegt im betrachteten Szenario im Jahr 2030 bei rund 85 % aller Fahrzeuge.

Die Verknüpfung von Maximalpotenzial und Akzeptanz zeigt, dass in den meisten Fahrzeugklassen das Potenzial durch die Akzeptanz begrenzt ist. Das Marktpotenzial steigt von 49 % in 2020 auf knapp 57 % in 2030, was vor allem an einer steigenden Akzeptanz bei geringeren Batteriekosten und kürzeren Ladedauern liegt. Die Verfügbarkeit von Ladestationen im semi-öffentlichen bzw. öffentlichen Raum begrenzt insbesondere das Potenzial für Pkw-Nutzer ohne eigenen Stellplatz auf dem Grundstück.

Dies spiegelt sich auch in der Bestandsentwicklung wider. Im Marktszenario Elektromobilität nimmt die Dynamik von Elektrofahrzeugen im Zeitverlauf deutlich zu: bis 2020 befinden sich etwas mehr als 500.000 Elektrofahrzeuge im Bestand. Dieser steigt dann bis 2030 auf etwa 5,9 Millionen an. Im Jahr 2022 wird die Millionenmarke im Bestand überschritten. Damit

Interaktion von Elektrofahrzeugen mit dem Stromsektor

Aus der Differenz zwischen unterschiedlichen Szenarien mit Elektromobilität und einem Basisszenario ohne Elektromobilität wird ermittelt, welche Kraftwerke den zusätzlich benötigten Strom produzieren, und wie hoch die zusätzlichen CO₂-Emissionen sind, die aus dem gestiegenen Brennstoffeinsatz resultieren.

Das Lademanagement steigert auch den Anteil an tendenziell emissionsintensivem Strom aus klassischen Grundlastkraftwerken am Fahrstrom, solange der Kraftwerkspark unverändert bleibt. Werden jedoch dem Modell zusammen mit der Elektromobilität zusätzliche erneuerbare

Ferner zeigen die Ergebnisse der Strommarktmodellierung, dass der Beitrag von Elektromobilität zur Erhöhung der Flexibilität im Stromsystem und zur Integration erneuerbarer Energien auch im Kontext mit anderen Flexibilitätsoptionen, wie beispielsweise anderen intelligenten Verbrauchern und Speichern oder dem Netzausbau, betrachtet werden sollte.

CO2-Bilanzierung von Elektromobilität

Elektrofahrzeuge substituieren im Bestand konventionelle Fahrzeuge und deren Fahrleistung. Im Falle einer Energieerzeugung aus zusätzlichen Anlagen aus erneuerbaren Energien kann
im Jahr 2030 von nahezu emissionsfreiem elektrischem Fahren ausgegangen werden. In diesem Fall können die Emissionen des Pkw-Bestands um 0,6 Millionen Tonnen CO₂ im Jahr 2020 bzw. 5,2 Millionen Tonnen im Jahr 2030 gegenüber einer Referenzentwicklung ohne Elektromobilität gesenkt werden. Dies entspricht einer Minderung der Gesamtemissionen um 0,6 % bis zum Jahr 2020 bzw. 6,0 % bis zum Jahr 2030. Ohne zusätzlichen Erneuerbaren-Energien-Ausbau würden die Gesamtemissionen im Jahr 2030 hingegen mit 3,1 Millionen Tonnen CO₂ um 3,6 % über dem Referenzfall liegen.

Fazit

Literaturverzeichnis

Anhang A: Szenarioannahmen

Tabelle (Anhang) 1: Rahmenbedingungen für Elektromobilität

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Annahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für elektrische Pkw geeignete KBA-Segmente</td>
<td>City-BEV: Mini / BEV: Kleinwagen, Kompaktklasse, Mini-Van</td>
</tr>
<tr>
<td></td>
<td>PHEV: alle</td>
</tr>
<tr>
<td>Nominelle elektrische Reichweite</td>
<td>City-BEV: 100 km / BEV: 160 km / PHEV: 50 km¹</td>
</tr>
<tr>
<td>Mindestreserve Batterie</td>
<td>City-BEV: 15 km / BEV: 20 km</td>
</tr>
<tr>
<td>Verbrauch Nebenaggregate</td>
<td>10 % von nominellen Energieverbrauch</td>
</tr>
<tr>
<td>Nutzbare elektrische Reichweite</td>
<td>City-BEV: 75 km / BEV: 124 km / PHEV: 45 km</td>
</tr>
<tr>
<td>Ladeleistung</td>
<td>Eigenes Grundstück & Arbeitsstelle: 3 kW (2020) / 7 kW (2030)</td>
</tr>
<tr>
<td></td>
<td>Restliche Standorte: 11 kW (2020 & 2030)</td>
</tr>
<tr>
<td>Ladewirkungsgrad</td>
<td>90 %</td>
</tr>
<tr>
<td>Ladekurve</td>
<td>Ab 90 % Batteriefüllstand verringert sich die maximale Ladeleistung auf</td>
</tr>
<tr>
<td></td>
<td>80 % der Ladeleistung des jeweiligen Standortes.</td>
</tr>
<tr>
<td>Ladeinfrastrukturdichte</td>
<td>30 % (2020) / 50 % (2030) der Personen ohne Stellplatz auf dem eigenem</td>
</tr>
<tr>
<td></td>
<td>Grundstück besitzen die Möglichkeit der regelmäßigen Ladung im</td>
</tr>
<tr>
<td></td>
<td>öffentlichen Raum</td>
</tr>
<tr>
<td>Batterieentladungstiefe</td>
<td>80 %</td>
</tr>
<tr>
<td>Batteriekosten</td>
<td>280 €/kWh (2020) / 230 €/kWh (2030)</td>
</tr>
<tr>
<td>Benzinpreis</td>
<td>1,52 €/l (2020) / 1,69 €/l (2030)</td>
</tr>
<tr>
<td>Strompreis (Fahrzeugnutzung)</td>
<td>0,217 €/kWh (2020) / 0,222 €/kWh (2030)</td>
</tr>
<tr>
<td>Mobilitätsverhalten</td>
<td>Das Mobilitätsverhalten ändert sich nur unwesentlich bis ins 2030.</td>
</tr>
<tr>
<td></td>
<td>Es werden jährlich maximal acht Nutzungskonflikte bei langen Fahrten</td>
</tr>
<tr>
<td></td>
<td>toleriert.</td>
</tr>
<tr>
<td>Kraftwerkspark</td>
<td>aus Kraftwerksinvestitionsmodell ELIAS</td>
</tr>
</tbody>
</table>

¹ Für die Akzeptanzanalyse wurde ein elektrischer Fahranteil von 67 % angenommen.
Optimierung der Umweltentlastungspotenziale von Elektromobilität

Tabelle (Anhang) 2: Annahmen zu Anschaffungskosten elektrischer Fahrzeuge

<table>
<thead>
<tr>
<th>Größenklasse</th>
<th>PHEV 2020</th>
<th>BEV² 2020</th>
<th>PHEV 2030</th>
<th>BEV² 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini</td>
<td>13.525 €</td>
<td>14.100 €</td>
<td>12.925 €</td>
<td>13.075 €</td>
</tr>
<tr>
<td>Kleinwagen</td>
<td>18.175 €</td>
<td>22.190 €</td>
<td>17.490 €</td>
<td>20.260 €</td>
</tr>
<tr>
<td>mittel</td>
<td>27.700 €</td>
<td>32.070 €</td>
<td>26.880 €</td>
<td>29.800 €</td>
</tr>
<tr>
<td>groß I</td>
<td>40.640 €</td>
<td>-</td>
<td>39.670 €</td>
<td>-</td>
</tr>
<tr>
<td>groß II</td>
<td>50.640 €</td>
<td>-</td>
<td>49.670 €</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ Die Angaben in der Größenklasse „Mini“ beziehen sich auf City-BEV.
² In der Größenklasse groß wurde in der Akzeptanzanalyse für die Eigenschaft Anschaffungspreis zwischen groß I (Mittelklasse und Geländewagen) und groß II (Obere Mittelklasse) unterschieden.

Tabelle (Anhang) 3: Annahmen zu Anschaffungskosten konventioneller Otto-Fahrzeuge

<table>
<thead>
<tr>
<th>Größenklasse</th>
<th>Otto 2020</th>
<th>Otto 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini</td>
<td>10.900 €</td>
<td>11.500 €</td>
</tr>
<tr>
<td>Kleinwagen</td>
<td>15.250 €</td>
<td>16.100 €</td>
</tr>
<tr>
<td>mittel</td>
<td>24.400 €</td>
<td>25.300 €</td>
</tr>
<tr>
<td>groß I</td>
<td>35.200 €</td>
<td>36.430 €</td>
</tr>
<tr>
<td>groß II</td>
<td>45.200 €</td>
<td>46.430 €</td>
</tr>
</tbody>
</table>

¹ In der Größenklasse groß wurde in der Akzeptanzanalyse für die Eigenschaft Anschaffungspreis zwischen groß I (Mittelklasse und Geländewagen) und groß II (Obere Mittelklasse) unterschieden.

Tabelle (Anhang) 4: Annahmen zu dem nominellen elektrischen Energieverbrauch von elektrischen Fahrzeugen

<table>
<thead>
<tr>
<th>Größenklasse</th>
<th>Energieverbrauch [kWh/km] 2020</th>
<th>Energieverbrauch [kWh/km] 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHEV</td>
<td>BEV</td>
</tr>
<tr>
<td>Mini</td>
<td>0,13</td>
<td>0,12</td>
</tr>
<tr>
<td>Kleinwagen</td>
<td>0,15</td>
<td>0,14</td>
</tr>
<tr>
<td>kompakt</td>
<td>0,18</td>
<td>0,17</td>
</tr>
<tr>
<td>groß</td>
<td>0,21</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabelle (Anhang) 5: Annahmen zu Kraftstoffverbrauch (real) und direkte CO₂-Emissionen (NEFZ) konventioneller Fahrzeuge

<table>
<thead>
<tr>
<th>Größenklasse</th>
<th>Jahr</th>
<th>Otto</th>
<th>CO₂-Emissionen</th>
<th>Diesel</th>
<th>CO₂-Emissionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini</td>
<td>2020</td>
<td>4,1 l/100km</td>
<td>86 g/km</td>
<td>2,6 l/100km</td>
<td>63 g/km</td>
</tr>
<tr>
<td>Kleinwagen</td>
<td>2020</td>
<td>4,4 l/100km</td>
<td>93 g/km</td>
<td>2,9 l/100km</td>
<td>69 g/km</td>
</tr>
<tr>
<td>mittel</td>
<td>2020</td>
<td>5,4 l/100km</td>
<td>114 g/km</td>
<td>3,9 l/100km</td>
<td>94 g/km</td>
</tr>
<tr>
<td>groß I³</td>
<td>2020</td>
<td>7,1 l/100km</td>
<td>151 g/km</td>
<td>5,1 l/100km</td>
<td>123 g/km</td>
</tr>
<tr>
<td>groß II³</td>
<td>2020</td>
<td>7,5 l/100km</td>
<td>158 g/km</td>
<td>5,4 l/100km</td>
<td>129 g/km</td>
</tr>
<tr>
<td>Kleinwagen</td>
<td>2030</td>
<td>3,6 l/100km</td>
<td>75 g/km</td>
<td>2,3 l/100km</td>
<td>56 g/km</td>
</tr>
<tr>
<td>mittel</td>
<td>2030</td>
<td>4,7 l/100km</td>
<td>100 g/km</td>
<td>3,5 l/100km</td>
<td>83 g/km</td>
</tr>
<tr>
<td>groß I³</td>
<td>2030</td>
<td>6,3 l/100km</td>
<td>133 g/km</td>
<td>4,5 l/100km</td>
<td>108 g/km</td>
</tr>
<tr>
<td>groß II³</td>
<td>2030</td>
<td>6,6 l/100km</td>
<td>139 g/km</td>
<td>4,7 l/100km</td>
<td>113 g/km</td>
</tr>
</tbody>
</table>

³ In der Größenklasse groß wurde in der Akzeptanzanalyse für die Eigenschaften Kraftstoffverbrauch und CO₂-Emissionen zwischen groß I (Mittelklasse und Geländewagen) und groß II (Obere Mittelklasse) unterschieden.
<table>
<thead>
<tr>
<th>Tag</th>
<th>Profil</th>
<th>Anzahl Fahrten</th>
<th>Zweck</th>
<th>Startzeit der ersten Fahrt</th>
<th>Tagesfahrleistung [km]</th>
<th>Anteil pro Tag [%]</th>
<th>Tagesfahrleistung [km]</th>
<th>Start der ersten Fahrt</th>
<th>Längste Standzeit während des Tages (Uhrzeit)</th>
<th>Ende der letzten Fahrt</th>
<th>Längste Standzeit während des Tages (Standort)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werktag 1_0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>38</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Werktag 1_1</td>
<td>-</td>
<td>-</td>
<td>0 – 12 h</td>
<td>> 37,5</td>
<td>19</td>
<td>76</td>
<td>07:36</td>
<td>08:50 – 16:03</td>
<td>Arbeitsstelle</td>
<td>18:22</td>
<td></td>
</tr>
<tr>
<td>Werktag 1_2</td>
<td>-</td>
<td>mindestens 1x A</td>
<td>0 – 12 h</td>
<td>< 37,5</td>
<td>18</td>
<td>19</td>
<td>07:36</td>
<td>08:20 – 16:16</td>
<td>Arbeitsstelle</td>
<td>17:44</td>
<td></td>
</tr>
<tr>
<td>Werktag 1_3</td>
<td>-</td>
<td>0 x A</td>
<td>0 – 12 h</td>
<td>< 37,5</td>
<td>16</td>
<td>16</td>
<td>09:11</td>
<td>10:06 – 13:38</td>
<td>Einkaufsort</td>
<td>14:52</td>
<td></td>
</tr>
<tr>
<td>Werktag 1_4</td>
<td>-</td>
<td>-</td>
<td>12 – 24 h</td>
<td>-</td>
<td>9</td>
<td>21</td>
<td>15:38</td>
<td>16:09 – 18:00</td>
<td>Freizeitort</td>
<td>18:31</td>
<td></td>
</tr>
<tr>
<td>Samstag 2_0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Samstag 2_1</td>
<td>2 – 3</td>
<td>0 x A</td>
<td>0 – 12 h</td>
<td>< 37,5</td>
<td>15</td>
<td>12</td>
<td>09:55</td>
<td>10:17 – 12:13</td>
<td>Einkaufsort</td>
<td>12:38</td>
<td></td>
</tr>
<tr>
<td>Samstag 2_2</td>
<td>-</td>
<td>-</td>
<td>12 – 24 h</td>
<td>-</td>
<td>14</td>
<td>25</td>
<td>15:00</td>
<td>15:33 – 17:37</td>
<td>Freizeitort</td>
<td>18:11</td>
<td></td>
</tr>
<tr>
<td>Samstag 2_3</td>
<td>-</td>
<td>mindestens 1x A & 0x A (> 3 Fahrt)</td>
<td>0 – 12 h</td>
<td>< 37,5</td>
<td>13</td>
<td>18</td>
<td>09:23</td>
<td>10:40 – 15:27</td>
<td>zu Hause</td>
<td>16:52</td>
<td></td>
</tr>
<tr>
<td>Samstag 2_4</td>
<td>-</td>
<td>-</td>
<td>0 – 12 h</td>
<td>> 37,5</td>
<td>11</td>
<td>80</td>
<td>08:38</td>
<td>10:53 – 16:13</td>
<td>Freizeitort</td>
<td>18:41</td>
<td></td>
</tr>
<tr>
<td>Sonntag 3_0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>66</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sonntag 3_1</td>
<td>-</td>
<td>-</td>
<td>12 – 24 h</td>
<td>-</td>
<td>14</td>
<td>29</td>
<td>14:58</td>
<td>15:34 – 18:08</td>
<td>Freizeitort</td>
<td>18:42</td>
<td></td>
</tr>
<tr>
<td>Sonntag 3_2</td>
<td>-</td>
<td>-</td>
<td>0 – 12 h</td>
<td>< 37,5</td>
<td>14</td>
<td>16</td>
<td>09:47</td>
<td>10:37 – 14:20</td>
<td>Freizeitort</td>
<td>15:12</td>
<td></td>
</tr>
<tr>
<td>Sonntag 3_3</td>
<td>-</td>
<td>-</td>
<td>0 – 12 h</td>
<td>> 37,5</td>
<td>6</td>
<td>93</td>
<td>09:27</td>
<td>11:01 – 15:45</td>
<td>Freizeitort</td>
<td>17:36</td>
<td></td>
</tr>
</tbody>
</table>

a: Das Kürzel A entspricht Arbeitsstelle
Anhang C: Differenzstromerzeugung nach Brennstoffen, CO₂-Emissionen, CO₂-Emissionsfaktoren und Anteil erneuerbarer Energien

Tabelle (Anhang) 7: Brennstoffmix der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2020 (für Läufe nur mit Elektromobilität und mit Elektromobilität und zusätzlicher Stromerzeugung aus Wind onshore)

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>ohne LM 1</th>
<th>mit LM 1</th>
<th>ohne LM 2</th>
<th>mit LM 2</th>
<th>ohne LM 1 Wind</th>
<th>mit LM 1 Wind</th>
<th>ohne LM 2 Wind</th>
<th>mit LM 2 Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>212.864</td>
<td>383.156</td>
<td>289.266</td>
<td>477.261</td>
<td>-221.862</td>
<td>-52.853</td>
<td>-257.706</td>
<td>-76.068</td>
</tr>
<tr>
<td>Erdgas</td>
<td>78.451</td>
<td>11.233</td>
<td>90.461</td>
<td>18.599</td>
<td>65.882</td>
<td>718</td>
<td>73.745</td>
<td>5.304</td>
</tr>
<tr>
<td>Heizöl leicht</td>
<td>7.906</td>
<td>0</td>
<td>6.459</td>
<td>0</td>
<td>7.618</td>
<td>-103</td>
<td>6.142</td>
<td>-129</td>
</tr>
<tr>
<td>Heizöl schwer</td>
<td>8.744</td>
<td>-28</td>
<td>8.964</td>
<td>785</td>
<td>7.863</td>
<td>-436</td>
<td>8.129</td>
<td>242</td>
</tr>
<tr>
<td>Biogas</td>
<td>239</td>
<td>2.911</td>
<td>1.393</td>
<td>3.626</td>
<td>-2.828</td>
<td>-2.206</td>
<td>-2.382</td>
<td>-2.709</td>
</tr>
<tr>
<td>feste Biomasse</td>
<td>0</td>
<td>0</td>
<td>1.917</td>
<td>0</td>
<td>-4.608</td>
<td>-341</td>
<td>-4.504</td>
<td>-563</td>
</tr>
<tr>
<td>Pflanzenöl</td>
<td>258</td>
<td>2.018</td>
<td>1.459</td>
<td>2.018</td>
<td>-524</td>
<td>1.086</td>
<td>-455</td>
<td>1.058</td>
</tr>
<tr>
<td>Laufwasser</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>540</td>
<td>6.382</td>
<td>2.053</td>
<td>15.461</td>
<td>862.442</td>
<td>868.493</td>
<td>1.088.639</td>
<td>1.102.894</td>
</tr>
<tr>
<td>PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Import</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>910.622</td>
<td>827.998</td>
<td>1.135.249</td>
<td>1.040.538</td>
<td>915.332</td>
<td>832.693</td>
<td>1.141.264</td>
<td>1.044.883</td>
</tr>
<tr>
<td>Turbinenstrom</td>
<td>132.887</td>
<td>-104.587</td>
<td>127.380</td>
<td>-147.704</td>
<td>147.541</td>
<td>-89.976</td>
<td>146.099</td>
<td>-134.182</td>
</tr>
</tbody>
</table>
Tabelle (Anhang) 8: Emissionsfaktor und Anteil erneuerbarer Energien der Differenzstromerzeugung sowie nicht nutzbare fluktuierende erneuerbare Energien bezogen auf das maximal verfügbare Dargebot für 2020 (für Läufe nur mit Elektromobilität und mit Elektromobilität und zusätzlicher Stromerzeugung aus Wind onshore)

<table>
<thead>
<tr>
<th></th>
<th>ohne LM 1 Wind</th>
<th>mit LM 1 Wind</th>
<th>ohne LM 2 Wind</th>
<th>mit LM 2 Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-Emissionen (t)</td>
<td>811.792</td>
<td>738.687</td>
<td>1.014.765</td>
<td>923.863</td>
</tr>
<tr>
<td>CO₂-Emissionsfaktor (kg/kWhel)</td>
<td>0,891</td>
<td>0,892</td>
<td>0,894</td>
<td>0,888</td>
</tr>
<tr>
<td>Anteil erneuerbarer Energien</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Überschuss Wind und PV bez. auf Dargebot</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
</tbody>
</table>

Tabelle (Anhang) 9: Brennstoffmix der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2020 (für Läufe mit Elektromobilität und zusätzlicher Stromerzeugung aus PV bzw. Biogas)

<table>
<thead>
<tr>
<th></th>
<th>ohne LM 1 PV</th>
<th>mit LM 1 PV</th>
<th>ohne LM 2 PV</th>
<th>mit LM 2 PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>-93.611</td>
<td>84.719</td>
<td>-95.665</td>
<td>91.591</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>107.485</td>
<td>-120.359</td>
<td>109.495</td>
<td>-151.126</td>
</tr>
<tr>
<td>Erdgas</td>
<td>55.254</td>
<td>-11.116</td>
<td>58.455</td>
<td>-9.152</td>
</tr>
<tr>
<td>Kernenergie</td>
<td>-6.301</td>
<td>29.074</td>
<td>-6.677</td>
<td>25.243</td>
</tr>
<tr>
<td>Heizöl leicht</td>
<td>7.906</td>
<td>0</td>
<td>6.458</td>
<td>0</td>
</tr>
<tr>
<td>Heizöl schwer</td>
<td>7.542</td>
<td>-644</td>
<td>8.067</td>
<td>-141</td>
</tr>
<tr>
<td>Biogas</td>
<td>-660</td>
<td>1.918</td>
<td>261</td>
<td>2.374</td>
</tr>
<tr>
<td>feste Biomasse</td>
<td>-801</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Pflanzenöl</td>
<td>-285</td>
<td>2.016</td>
<td>-218</td>
<td>2.016</td>
</tr>
<tr>
<td>Laufwasser</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>-7.253</td>
<td>-1.081</td>
<td>-7.956</td>
<td>6.992</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>-4.964</td>
<td>131</td>
<td>-4.076</td>
<td>6.165</td>
</tr>
<tr>
<td>PV</td>
<td>867.919</td>
<td>867.919</td>
<td>1.094.315</td>
<td>1.094.315</td>
</tr>
<tr>
<td>Import</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>932.229</td>
<td>852.576</td>
<td>1.162.461</td>
<td>1.068.277</td>
</tr>
<tr>
<td>Turbinenstrom</td>
<td>200.124</td>
<td>-28.102</td>
<td>212.061</td>
<td>-61.385</td>
</tr>
</tbody>
</table>

115

<table>
<thead>
<tr>
<th>ohne LM 1 PV</th>
<th>mit LM 1 PV</th>
<th>ohne LM 2 PV</th>
<th>mit LM 2 PV</th>
<th>ohne LM 1 Biogas</th>
<th>mit LM 1 Biogas</th>
<th>ohne LM 2 Biogas</th>
<th>mit LM 2 Biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-Emissionen (t)</td>
<td>106.328</td>
<td>35.121</td>
<td>127.358</td>
<td>30.354</td>
<td>162.153</td>
<td>84.368</td>
<td>198.337</td>
</tr>
<tr>
<td>CO₂-Emissionsfaktor (kg/kWhₚᵥ)</td>
<td>0,114</td>
<td>0,041</td>
<td>0,110</td>
<td>0,028</td>
<td>0,179</td>
<td>0,102</td>
<td>0,175</td>
</tr>
<tr>
<td>Anteil erneuerbarer Energien</td>
<td>92%</td>
<td>102%</td>
<td>93%</td>
<td>104%</td>
<td>97%</td>
<td>109%</td>
<td>98%</td>
</tr>
<tr>
<td>Überschuss Wind und PV bez. auf Dargebot</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
</tbody>
</table>
Tabelle (Anhang) 11: Brennstoffmix der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basislauf für 2030 (für Läufe nur mit Elektromobilität und mit Elektromobilität und zusätzlicher Stromerzeugung aus Wind onshore)

<table>
<thead>
<tr>
<th>Differenzstromerzeugung nach Brennstoffen 2030 in MWh</th>
<th>ohne LM 1</th>
<th>mit LM 1</th>
<th>ohne LM 2</th>
<th>mit LM 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>1.681.462</td>
<td>3.382.049</td>
<td>2.324.255</td>
<td>4.279.193</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>3.539.785</td>
<td>2.857.136</td>
<td>4.885.265</td>
<td>3.573.746</td>
</tr>
<tr>
<td>Erdgas</td>
<td>1.996.894</td>
<td>514.999</td>
<td>2.188.381</td>
<td>546.169</td>
</tr>
<tr>
<td>Kernenergie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heizöl leicht</td>
<td>419.722</td>
<td>51.422</td>
<td>431.728</td>
<td>83.549</td>
</tr>
<tr>
<td>Heizöl schwer</td>
<td>298.910</td>
<td>60.396</td>
<td>323.671</td>
<td>78.107</td>
</tr>
<tr>
<td>Biogas</td>
<td>-2.256</td>
<td>-627</td>
<td>-817</td>
<td>-507</td>
</tr>
<tr>
<td>feste Biomasse</td>
<td>678</td>
<td>29.905</td>
<td>7.992</td>
<td>32.677</td>
</tr>
<tr>
<td>Pflanzenöl</td>
<td>641</td>
<td>3.722</td>
<td>1.530</td>
<td>4.232</td>
</tr>
<tr>
<td>Laufwasser</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>22.388</td>
<td>232.766</td>
<td>40.811</td>
<td>279.281</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>300.629</td>
<td>1.379.633</td>
<td>497.427</td>
<td>1.674.402</td>
</tr>
<tr>
<td>PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Import</td>
<td>931.267</td>
<td>65.125</td>
<td>876.216</td>
<td>103.503</td>
</tr>
<tr>
<td>Summe</td>
<td>9.190.120</td>
<td>8.576.527</td>
<td>11.576.458</td>
<td>10.654.352</td>
</tr>
<tr>
<td>Turbinenstrom</td>
<td>1.020.780</td>
<td>-683.265</td>
<td>1.494.291</td>
<td>-1.169.796</td>
</tr>
<tr>
<td>Quelle: PowerFlex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle (Anhang) 12: Emissionsfaktor und Anteil erneuerbarer Energien der Differenzstromerzeugung sowie nicht nutzbare fluktuierende erneuerbare Energien bezogen auf das maximal verfügbare Dargebot für 2030 (für Läufe nur mit Elektromobilität und mit Elektromobilität und zusätzlicher Stromerzeugung aus Wind onshore)

<table>
<thead>
<tr>
<th>CO₂-Emissionen (t)</th>
<th>ohne LM 1</th>
<th>mit LM 1</th>
<th>ohne LM 2</th>
<th>mit LM 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.276.080</td>
<td>6.404.909</td>
<td>8.249.818</td>
<td>8.012.349</td>
</tr>
<tr>
<td>CO₂-Emissionsfaktor (kg/kWhₑ)</td>
<td>0,683</td>
<td>0,747</td>
<td>0,713</td>
<td>0,752</td>
</tr>
<tr>
<td>Anteil erneuerbarer Energien</td>
<td>4%</td>
<td>19%</td>
<td>5%</td>
<td>19%</td>
</tr>
<tr>
<td>Überschuss Wind und PV bez. auf Dargebot</td>
<td>2,4%</td>
<td>1,8%</td>
<td>2,3%</td>
<td>1,6%</td>
</tr>
</tbody>
</table>

Quelle: PowerFlex
OPTUM: Marktpotenziale und CO₂-Bilanz von Elektromobilität

Tabelle (Anhang) 13: Brennstoffmix der Differenz der Stromerzeugung zwischen Läufen mit Elektromobilität und Basilauf für 2030 (für Läufe mit Elektromobilität und zusätzlicher Stromerzeugung aus PV bzw. Biogas)

<table>
<thead>
<tr>
<th>Brennstoffe</th>
<th>ohne LM 1 PV</th>
<th>mit LM 1 PV</th>
<th>ohne LM 2 PV</th>
<th>mit LM 2 PV</th>
<th>ohne LM 1 Biogas</th>
<th>mit LM 1 Biogas</th>
<th>ohne LM 2 Biogas</th>
<th>mit LM 2 Biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunkohle</td>
<td>-1.488.525</td>
<td>103.213</td>
<td>-1.605.839</td>
<td>210.314</td>
<td>-1.573.137</td>
<td>147.493</td>
<td>-1.666.431</td>
<td>222.770</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>-122.412</td>
<td>-905.986</td>
<td>349.048</td>
<td>-1.183.355</td>
<td>-478.408</td>
<td>-1.321.309</td>
<td>-114.049</td>
<td>-1.621.381</td>
</tr>
<tr>
<td>Kernenergie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heizöl leicht</td>
<td>329.711</td>
<td>-10.986</td>
<td>316.999</td>
<td>-14.275</td>
<td>248.678</td>
<td>-76.570</td>
<td>216.044</td>
<td>-98.079</td>
</tr>
<tr>
<td>Heizöl schwer</td>
<td>245.796</td>
<td>4.438</td>
<td>246.697</td>
<td>10.030</td>
<td>206.266</td>
<td>-34.169</td>
<td>193.399</td>
<td>-37.934</td>
</tr>
<tr>
<td>feste Biomasse</td>
<td>-42.384</td>
<td>8.341</td>
<td>-41.218</td>
<td>4.084</td>
<td>-278.069</td>
<td>-206.299</td>
<td>-362.244</td>
<td>-270.624</td>
</tr>
<tr>
<td>Laufwasser</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>-249.854</td>
<td>39.888</td>
<td>-302.166</td>
<td>84.192</td>
<td>20.109</td>
<td>231.516</td>
<td>38.855</td>
<td>279.281</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>-643.815</td>
<td>546.774</td>
<td>-695.163</td>
<td>710.279</td>
<td>281.232</td>
<td>1.366.478</td>
<td>1.656.964</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>8.862.090</td>
<td>8.862.090</td>
<td>11.095.420</td>
<td>11.096.263</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Import</td>
<td>835.220</td>
<td>4.626</td>
<td>748.105</td>
<td>16.622</td>
<td>689.692</td>
<td>-96.097</td>
<td>573.728</td>
<td>-97.223</td>
</tr>
<tr>
<td>Turbinenstrom</td>
<td>1.487.793</td>
<td>21.220</td>
<td>2.017.759</td>
<td>-339.580</td>
<td>932.331</td>
<td>-734.730</td>
<td>1.415.796</td>
<td>-1.231.762</td>
</tr>
</tbody>
</table>

Quelle: PowerFlex

Tabelle (Anhang) 14: Emissionsfaktor und Anteil erneuerbarer Energien der Differenzstromerzeugung sowie nicht nutzbare fluktuierende erneuerbare Energien bezogen auf das maximal verfügbare Dargebot für 2030 (für Läufe mit Elektromobilität und zusätzlicher Stromerzeugung aus PV bzw. Biogas)

<table>
<thead>
<tr>
<th>Brennstoffe</th>
<th>CO₂-Emissionen (t)</th>
<th>CO₂-Emissionsfaktor (kg/kWhel)</th>
<th>Anteil erneuerbarer Energien</th>
<th>Überschuss Wind und PV bez. auf Dargebot</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne LM 1 PV</td>
<td>-45.224</td>
<td>-0.005</td>
<td>85%</td>
<td>2.8%</td>
</tr>
<tr>
<td>mit LM 1 PV</td>
<td>490.544</td>
<td>0.042</td>
<td>107%</td>
<td>2.2%</td>
</tr>
<tr>
<td>ohne LM 2 PV</td>
<td>-130.205</td>
<td>-0.012</td>
<td>86%</td>
<td>2.8%</td>
</tr>
<tr>
<td>mit LM 2 PV</td>
<td>361.510</td>
<td>0.039</td>
<td>109%</td>
<td>2.1%</td>
</tr>
<tr>
<td>ohne LM 1 Biogas</td>
<td>389.227</td>
<td>0.045</td>
<td>96%</td>
<td>2.4%</td>
</tr>
<tr>
<td>mit LM 1 Biogas</td>
<td>925.249</td>
<td>0.080</td>
<td>119%</td>
<td>1.8%</td>
</tr>
<tr>
<td>ohne LM 2 Biogas</td>
<td>483.959</td>
<td>0.046</td>
<td>97%</td>
<td>2.3%</td>
</tr>
<tr>
<td>mit LM 2 Biogas</td>
<td></td>
<td></td>
<td>120%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>