

Ökobilanzieller Vergleich von **Dachziegel und Dachstein**

Endbericht im Auftrag der Monier Group GmbH

Freiburg, 07.02.2008

Autor:

Dipl.-Ing. Carl-Otto Gensch

Weitere Mitarbeit:

Dipl.-Ing. Ran Liu

Öko-Institut e.V.

Geschäftsstelle Freiburg

Postfach 500240 D-79028 Freiburg

Hausadresse

Merzhauser Str. 173 D-79100 Freiburg

Tel. +49 (0) 761 – 4 52 95-0 Fax +49 (0) 761 – 4 52 95-88

Büro Darmstadt

Rheinstraße 95 D-64295 Darmstadt

Tel. +49 (0) 6151 - 81 91-0 Fax +49 (0) 6151 - 81 91-33

Büro Berlin

Novalisstraße 10 D-10115 Berlin

Tel. +49 (0) 30 – 28 04 86-80 Fax +49 (0) 30 – 28 04 86-88

Inhaltsverzeichnis

1	Zusan	nmenfassung	1
2	Zielse	tzung und Untersuchungsrahmen	3
2.1	Zielset	zung und Anwendung, Zielgruppen	3
2.2	Nicht b	eabsichtigte Anwendungen der Studie	3
2.3	Kurzbe	eschreibung der untersuchten Systeme	4
2.4	Annah	men	5
2.5	Lebens	sweg und Systemgrenzen	5
2.6	Datene	erhebung und Datenqualität	7
2.7	Angew	andte Allokationsregeln	8
2.8		de der Wirkungsabschätzung, berücksichtigte Wirkungskategorien iswertung	9
2.9	Kritisch	ne Prüfung	10
3	Syste	mbeschreibung und Datengrundlagen	10
3.1	Dateng	grundlage	10
	3.1.1	Allgemeine Daten	10
	3.1.2	Spezifische Daten	15
3.2	Reche	nmethode und verwendete Software	15
4	Ergeb	nisse und Schlussfolgerungen	16
4.1	Überbl	ick	16
4.2	Beitrag	sanalysen ausgewählter Prozesse	19
	4.2.1	Rohstoffbereitstellung bei Dachsteinen	19
	4.2.2	Produktion Dachziegel	21
	4.2.3	Distributionsstruktur	22
4.3		vitätsanalyse: CO ₂ -Emissionen aus der Nutzung der	
		därbrennstoffe bei der Zementherstellung	22
4.4		erung und Ordnung der Wirkungsindikatorergebnisse	23
4.5	Schlus	sfolgerungen	26
5	Litera	tur und Quellen	26
6	Fytori	nes kritisches Gutachten	28

6.1	Herangezogene Normen und Prüfkriterien 2				
6.2	Ablauf	des kritischen Gutachtens	28		
6.3	Ergebr	nis der kritischen Prüfung	30		
	6.3.1	Allgemeiner Eindruck	30		
	6.3.2	Übereinstimmung mit der Norm	30		
	6.3.3	Wissenschaftliche Begründung der Methodik und Stand der Ökobilanztechnik	30		
	6.3.4	Validität und Zweckmäßigkeit der Daten	31		
	6.3.5	Berücksichtigung des Ziels der Studie und der Einschränkungen bei der Auswertung	32		
	6.3.6	Transparenz und Stimmigkeit des Berichts	32		
6.4	Fazit		33		
7	Anhai	ng	34		
7.1	Erläute	erung der einbezogenen Wirkungsindikatoren	34		
	7.1.1	Cumulated Energy Demand (CED)	34		
	7.1.2	Global warming potential (GWP)	35		
	7.1.3	Acidification potential (AP)	37		
	7.1.4	Eutrophication potential (EP)	38		
	7.1.5	Photochemical ozone creation potential (POCP)	41		
	7.1.6	Reference documents	46		
7.2	Dokum	nentation der Sachbilanzergebnisse	47		
7.3	Dokum	nentation der Ergebnisse der Wirkungsabschätzung	47		
7.4	Zur Modellierung durchgeführte Umrechnungen 47				

1 Zusammenfassung

Die hier vorliegende Studie wurde durchgeführt im Auftrag der Monier Group GmbH. In der Studie werden auf der methodischen Grundlage einer Ökobilanz Dachsteine aus Beton Dachziegeln aus Ton gegenüber gestellt. Bei beiden dieser Produkte gibt es eine Vielzahl von Modellen in unterschiedlichsten Ausführungen. Ferner gibt es für einzelne Produkte viele Varianten. Um die Gesamtheit beider Produkte im Rahmen dieser Studie angemessen abzubilden, wurden für beide Produktgruppen von Monier der jeweilige Produktionsmix im Jahresdurchschnitt 2006 in Deutschland an allen Formen und Varianten zugrunde gelegt.

Beide untersuchten Produktgruppen sind jeweils wichtiger, aber nicht alleiniger Bestandteil des Systems "Bedachung". Es wird in dieser Studie davon ausgegangen, dass die anderen Systembestandteile und dabei insbesondere die Unterbaukonstruktion identisch sind und daher in dieser Untersuchung nicht berücksichtigt werden müssen.

Als funktionelle Einheit (Bezugsgröße der Bilanzierung und des Vergleichs) wurde jeweils 160m² Dachfläche zugrunde gelegt. Dies entspricht der typischen Dachfläche eines Einfamilienhauses.

Im Rahmen dieser Studie wurden für beide Produktgruppen folgende Abschnitte im Lebensweg untersucht:

- (1) Bereitstellung der Rohstoffe
- (2) Herstellung der Dachziegel bzw. Dachsteine
- (3) Verpackung und Distribution

Das Verlegen der Dachpfannen auf der Baustelle, die Nutzungsphase sowie das Recycling bzw. die Entsorgung alter Dachsteine oder Dachziegel wurden hingegen nicht untersucht. Es ist davon auszugehen, dass in diesen Phasen keine signifikanten Unterschiede zwischen den Produktgruppen bestehen.

Die durchgeführten Bilanzierungen basieren sowohl auf allgemeinen Daten (etwa Energiebereitstellung und Transportprozesse sowie Herstellung wichtiger Vorprodukte wie beispielsweise Zement) als auch auf spezifischen Daten. Zur Durchführung dieser Studie konnten sehr differenzierte und für das Jahr 2006 repräsentative spezifische Daten seitens der Monier Group GmbH zur Verfügung gestellt werden. Die Qualität der zugrunde gelegten Daten wird insgesamt als angemessen im Hinblick auf die Fragestellung und Zielsetzung angesehen.

Im Ergebnis zeigen die in dieser Studie durchgeführten Bilanzierungen, dass Dachsteine aus Beton gegenüber Dachziegeln aus Ton bei fast allen hier als relevant eingeschätzten Wirkungsindikatoren signifikant besser abschneiden. So liegen die meisten Ergebniswerte bei Dachsteinen bei nur 45% im Vergleich zu den betreffenden Werten bei Tonziegeln.

Lediglich bei den atmosphärischen Quecksilberemissionen schneiden Dachsteine schlechter ab als Tonziegel. Dies ist auf Emissionen aus der Zementherstellung zurückzuführen.

Im Rahmen einer Sensitivitätsrechnung wurden zusätzlich Kohlendioxidemissionen aus der Nutzung von Sekundärbrennstoffen bei der Zementherstellung mit bilanziert. Auch bei dieser Berechnung schneidet der Dachstein aus Beton wesentlich besser ab als Dachziegel aus Ton ab.

Insgesamt kann aus Sicht des Öko-Instituts der Schluss gezogen werden, dass Dachsteine aus Beton Dachziegeln aus Ton aus Umweltsicht vorzuziehen sind.

2 Zielsetzung und Untersuchungsrahmen

2.1 Zielsetzung und Anwendung, Zielgruppen

Die Monier Group GmbH in Oberursel ist ein weltweit tätiges Unternehmen im Bereich Dachbaustoffe. Die zur Monier Group GmbH gehörende deutsche Tochtergesellschaft mit ihrer Marke Braas stellt u.a. verschiedene Typen von Dachpfannen her. Letztere sollen im Rahmen einer vergleichenden Ökobilanz untersucht werden: Im Zentrum steht dabei der Vergleich von Dachziegeln aus Ton mit Dachsteinen aus Beton. Die Ergebnisse der Untersuchung sind für die externe Kommunikation gedacht.

Konkret werden im Rahmen der vorliegenden Studie folgende Zielsetzungen verfolgt:

- Das zentrale Untersuchungsziel der hier vorliegenden Studie besteht darin, für die beiden von Monier hergestellten Dachpfannentypen (Tonziegel und Betondachsteine) die potenziellen Umweltauswirkungen zu ermitteln. Dies soll auf der methodischen Grundlage einer Ökobilanz erfolgen.
- Die Ökobilanz soll so durchgeführt werden, dass Unterschiede zwischen den beiden Dachpfannentypen dargestellt und entsprechende Optimierungspotenziale ausgewiesen werden können.

Entsprechend der genannten Ziele gibt es zwei Hauptanwendungen der durchgeführten Ökobilanz: Zum einen liegt sie beim Auftraggeber intern in der Optimierung von Produktionsprozessen und Produkt. Sie liegt aber vor allem in der externen Kommunikation der Ergebnisse an Kunden.

Neben internen Stellen sind wesentliche Zielgruppen der Studie diejenigen, die über Auswahl und Anwendung von Dachsystemen entscheiden, d.h. vor allem Architekten, Planer, Dachdecker und Endverbraucher.

2.2 Nicht beabsichtigte Anwendungen der Studie

Für die die vorliegende Studie wurden spezifische Annahmen getroffen und Rahmenbedingungen zugrunde gelegt, die der im vorangegangenen Abschnitt dargestellten Zielfestlegung entsprechen. Eine Übertragung der Studienergebnisse auf andere Anwendungsbereiche ist daher nicht ohne eingehende Prüfungen nicht möglich. Beispiele für solche anderen Anwendungsbereiche sind:

Die Übertragung der Ergebnisse auf andere geographische Bezugsräume als Deutschland: da in anderen Ländern die Produktionsbedingungen sowie insbesondere die Vorketten der Energiebereitstellung abweichen, gelten die Studienergebnisse nur für deutsche Verhältnisse. Die Unterbaukonstruktion liegt aus Vereinfachungsgründen außerhalb der Systemgrenzen (siehe Abschnitt 2.3 dieser Studie). Wenn die Studienergebnisse um andere Bedachungen erweitert werden sollten, müsste in diesem Punkt ggf. eine Anpassung erfolgen.

2.3 Kurzbeschreibung der untersuchten Systeme

In der vorliegenden Studie werden Dachziegel aus Ton mit Dachsteinen aus Beton verglichen. Beide Produktgruppen werden zur Bedeckung von Dächern eingesetzt. Für die Studie wurden ausschließlich entsprechende Produkte der Fa. Monier betrachtet. Nach Aussagen von Vertretern der Fa. Monier können allerdings die Produkte durchaus als markttypisch angesehen werden, d.h. eine Übertragung der Ergebnisse auf Wettbewerberprodukte ist grundsätzlich möglich.

Bei beiden untersuchten Systemen gibt es eine Vielzahl von Modellen in unterschiedlichsten Ausführungen, zum Beispiel bei den Dachsteinen

- flache Dachsteine mit tiefliegendem Längsfalz und gerundeten Sichtkanten (Tegalit),
- profilierte Dachsteine mit hochliegendem Längsfalz, mit symmetrischem (Frankfurter Pfanne), mit asymmetrischem (Doppel-S), mit segmentförmigem (Taunus Pfanne) und mit geschwungenem, symmetrischen (Harzer Pfanne) Mittelwulst und gerundeten Sichtkanten,
- großformatige, profilierte Dachsteine.

Ferner gibt es zu den jeweiligen Dachsteinen oder Tonziegeln viele Varianten, wie Firstanschlussziegel, Lüftersteine, Ortgänge etc. Ein weiteres Unterscheidungsmerkmal ist die Farbgebung, zum Beispiel bei Dachziegeln:

- Naturrot: Die Farbe der Ziegel hängt hierbei in erster Linie von den im Ton enthaltenen Mineralien ab. Ein hoher Eisengehalt führt zu ziegelrot bis dunkelroten Farbtönen, die sich aus der Oxidation des Eisens ergeben. Farbnuancen werden durch das Brennen (Temperatur und Sauerstoffzufuhr) bestimmt.
- Engobe: Dabei wird eine mit mineralischen Pigmenten versetzte Tonschlämme vor dem Brand auf den Ziegel aufgebracht. Die Tonschlämme gehen dabei eine homogene, haftfeste Verbindung mit dem Ziegel ein.
- Durchgefärbt: Farbpigmente werden dem Ton vor dem Brand beigemischt:
- Glasur. Gefärbte Glasfritten werden vor dem Brand auf den Ziegel aufgebracht.
 Dadurch sind auch ausgefallenere Farben (blau, gelb, grün) möglich.

Um die Gesamtheit beider Produktgruppen im Rahmen dieser Studie angemessen abzubilden, wurde jeweils der Produktionsmix des Jahres 2006 der deutschen Monier Gesellschaft zugrunde gelegt. Dies hat den Vorteil, dass der Vergleich im Hinblick auf die

jeweilige Produktgruppe als repräsentativ angesehen werden kann. Ein "Zurückrechnen" auf einen bestimmtes Dachpfannenmodell ist damit allerdings nicht möglich.

Beide untersuchten Produktgruppen sind ein Teil des Systems "Bedachung". Nach Firmenangaben Monier kann jedoch davon ausgegangen werden, dass die anderen Systembestandteile und dabei insbesondere die Unterbaukonstruktion identisch sind. Vor diesem Hintergrund wurden diese weiteren Systembestandteile nicht in die Untersuchung mit einbezogen.

2.4 Annahmen

Funktion: Dachziegel oder –steine als Teil der Bedachung schützen das Gebäude vor Umwelteinflüssen wie Niederschlag, Sonneneinstrahlung, Wärmeverlusten im Winter, Überhitzung im Sommer, Staub und Lärm. Beide hier untersuchten Produktgruppen erfüllen die geforderte Funktion gleichwertig.

Lebensdauer: Auf der Grundlage von Angaben des Unternehmens kann davon ausgegangen werden, dass beide hier untersuchten Produktgruppen die gleiche Lebensdauer haben, da die gleiche Garantiezeit von 30 Jahren gewährt wird.

Als funktionelle Einheit (Bezugsgröße der Bilanzierung und des Vergleichs) wurde jeweils 160m² Dachfläche zugrunde gelegt. Dies entspricht der typischen Dachfläche eines Einfamilienhauses.

Mit der Festlegung der funktionellen Einheit sind folgende Referenzflüsse für die Systeme verbunden (jeweils bezogen auf den Endprodukte-Mix ohne Verpackung):

Dachziegel: 7.110 kgDachsteine: 7.300 kg

2.5 Lebensweg und Systemgrenzen

Grundsätzlich lässt sich der Lebensweg beider hier untersuchten Systeme grob in folgende Abschnitte einteilen:

- (1) Bereitstellung der Rohstoffe
- (2) Herstellung der Dachziegel bzw. -steine
- (3) Verpackung und Distribution
- (4) Verlegen
- (5) Nutzungsphase
- (6) Nachgebrauchsphase (Recycling bzw. Entsorgung alter Pfannen)

Im Rahmen dieser Studie wurden grundsätzlich nur die Stufen (1) bis einschließlich (3) untersucht und verglichen, da davon ausgegangen wird, dass in den weiteren Stufen keine

signifikanten Unterschiede zwischen den Produktgruppen bestehen, die Auswirkungen auf die Ergebnisse ausüben würden.

In der Nutzungsphase der Dachpfannen könnten mögliche ökologische Unterschiede zwischen den untersuchten Produktgruppen durch unterschiedliches Eluatverhalten bestehen. Nach Angaben der Fa. Monier liegen allerdings keine Daten vor, die einen bilanzierbaren ökologischen signifikanten Effekt belastbar abbilden könnten.

In der nachstehenden Abbildung wird der in der Bilanzierung berücksichtigte Lebensweg für die beiden untersuchten Produktgruppen dargestellt.

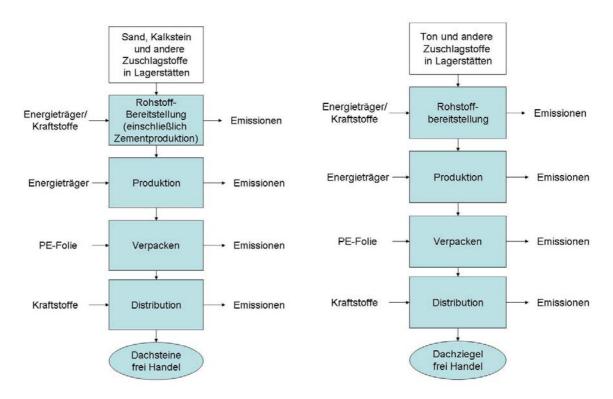


Abb. 1 Schematische Darstellung der berücksichtigten Lebenswege

Im Rahmen dieser Studie konnte ferner nicht für alle Inputströme eine Rückverfolgung einschließlich Vorketten bis zu den Rohstoffen in Lagerstätte erfolgen. In der nachstehenden Tabelle erfolgt eine zusammenfassende Darstellung dieser "Eingangsstoffe (Edukte) ohne Vorkette" bezogen auf die funktionelle Einheit.

Dachziegel			Dachsteine			
Summe Eingangsstoffe insgesamt	11.346,22	kg	Summe Eingangsstoffe insgesamt	8.719,86	kg	
davon berücksichtigte Eingangsstoffe	11.292,00	kg	davon berücksichtigte Eingangsstoffe	8.553,10	kg	
davon nicht berücksichtigte Eingangsstoffe	54,22	kg	davon nicht berücksichtigte Eingangsstoffe	166,76	kg	
(Anteil)	0,48	%	(Anteil)	1,91	%	
darunter			darunter			
Bariumcarbonat	5,02	kg	Sekundärbrennstoffe, unspez.	138,28	kg	
Engobe und Glasuren	34,49	kg	Körperpigmente Dachsteinherstellung	21,45	kg	
Gips	14,71	kg	Pallets Dachsteinherstellung	2,10	kg	
			Trennmittel	4,94	kg	

Tab. 1 Nicht bis zu den Rohstoffen verfolgte Eingangsstoffe

Die Summe aller Eingangsstoffe, die nicht bis zu den Rohstoffen bilanziert werden, ist bezogen auf die Summe der Eingangsstoffe insgesamt mit 0,48% beim Dachziegel und 1,91% beim Dachstein gering. Ferner ist nach eigener Einschätzung nicht davon auszugehen, dass mit den nicht verfolgten Vorketten Prozesse mit großer Energie- oder Umweltrelevanz verbunden sind. Das Vernachlässigen dieser Inputströme wird daher als gerechtfertigt angesehen.

Das so genannte "Capital Equipment", also beispielsweise Herstellung, Unterhalt und Entsorgung der Produktionsanlagen zur Herstellung der Dachsteine und –ziegel wurde nicht einbezogen, da diese Aufwendungen im Vergleich zu den durchlaufenden Stoff- und Energieströmen als vernachlässigbar angenommen wird.

2.6 Datenerhebung und Datenqualität

Für die vorliegende Studie wurden sowohl spezifische als auch allgemeine Daten verwendet. Zur Produktion sowie zur Bereitstellung mineralischer Rohstoffe konnten sehr differenzierte, repräsentative und aktuelle spezifische Daten von der Monier Group bereit gestellt werden.

Darüber hinaus wurden allgemeine Daten aus der Literatur und allgemein verfügbaren Datenbanken verwendet, vgl. hierzu im Detail Abschnitt 3.1 dieser Studie.

Mit den Anforderungen an Daten und Datenqualität werden in allgemeiner Form die Merkmale der Daten festgelegt, die für die Durchführung der Ökobilanz benötigt werden. Nachstehend werden die in dieser Studie zugrunde gelegten Anforderungen zusammenfassend dargestellt:

Zeitbezogener Erfassungsbereich. In dieser Studie sollten die einbezogenen Daten zu Vor- und Nachketten den aktuellen Stand der Technik sowie die derzeitigen energie- und abfallwirtschaftlichen Rahmenbedingungen abbilden. Bezüglich der spezifischen Daten wurden Daten des Jahres 2006 verwendet, die allgemeinen Daten (zum Beispiel Energievorketten und Transportdaten) spiegeln die Situation für ca. 2005 wieder.

Geografischer Erfassungsbereich. Für die Energiebereitstellung sowie Herstellungsprozesse wurden deutsche und mitteleuropäische Daten zugrunde gelegt. Die spezifischen Daten zu den Produktgruppen beziehen sich auf die deutschen Produktionsstandorte der Monier Group.

Technologischer Erfassungsbereich. Es wurden repräsentative Daten aktuellen Datums verwendet, die den vorhandenen technologischen Stand für die Tondachziegel- und Betonsteinproduktion bei der Monier Group abbilden.

Datenkategorien. Grundsätzlich wurden in dieser Studie

- der Verbrauch an energetischen Ressourcen und
- der Verbrauch an nicht-energetischen Ressourcen und Wasser,
- atmosphärische Emissionen,
- Abwasseremissionen und
- Abfälle und Reststoffe

berücksichtigt.

Diese Vorgehensweise entspricht dem derzeitigen Praxisstand bei der Durchführung von Ökobilanzen.

Insgesamt liegen aus Sicht der Ersteller der Studie Daten mit einer der Fragestellung und Zielsetzung angemessenen Qualität zugrunde.

2.7 Angewandte Allokationsregeln

Unter Allokation werden bei der Durchführung von Ökobilanzen Zuordnungsverfahren verstanden, die dann erforderlich sind, wenn bei den betrachteten Systemen mehrere verwertbare Produkte erzeugt werden bzw. wenn in betrachtete Teilprozesse Stoff- und Energieströme von anderen, nicht betrachteten Systemen einfließen. In der vorliegenden Studie wurde wie folgt vorgegangen:

- Allgemeine Daten bzw. Literaturdaten: Bei einigen der aus anderen Studien übernommenen Datensätze sind bereits Allokationen vorgenommen worden. Diese werden hier nicht explizit aufgeführt, sondern können den betreffenden Quellen entnommen werden.
- Spezifische Daten:
 - Bei der Herstellung von Betonsteinen sowie in der Zementproduktion werden Sekundärrohstoffe eingesetzt (zum Beispiel Flugasche, Sekundärbrennstoff). Für diese Studie wird davon ausgegangen, dass diese Sekundärrohstoffe "ökologisch gratis" sind, d.h. es werden keine Umweltbelastungen aus denjenigen Systemen mit eingerechnet, aus denen diese Sekundärrohstoffe stammen. Allerdings wurden Transportaufwendungen (z.B. Antransport von Flugasche zur Betonsteinherstellung) berücksichtigt.

- Zur Bestimmung der der CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe wurde ein Alternativszenario durchgeführt, welches in dem Abschnitt "Sensitivitätsanalyse: CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe bei der Zementherstellung" dargestellt wird.
- Sowohl bei Betonsteinen als auch bei Tonziegeln fällt Produktionsbruch an, der zum Teil wieder in die Produktion zurück geführt wird, aber größtenteils als Sekundärrohstoff weiter verwertet wird, beispielsweise als Materialien für den Wegebau oder Sand für Tennisplätze. Dadurch werden andere Rohstoffe ersetzt und die mit ihrer Bereitstellung verbundenen Umweltbelastungen. Gutschriften, die diesen Effekt berücksichtigen, wurden allerdings in dieser Studie nicht angesetzt. Zum einen ist hierfür die Daten- und Bewertungslage schwierig, zum anderen ist die Menge dieser Reststoffe bei beiden Systemen fast identisch (220 kg bei Dachsteinen und rund 260 kg bei Tonziegeln jeweils pro funktioneller Einheit).

2.8 Methode der Wirkungsabschätzung, berücksichtigte Wirkungskategorien und Auswertung

Allgemein wird in der Wirkungsabschätzung einer Ökobilanz mit Hilfe der Ergebnisse der Sachbilanz die Bedeutung der potenziellen Umweltauswirkungen dargestellt. Konkret werden dabei die Sachbilanzdaten zu Wirkungskategorien zugeordnet und charakterisiert (zum Beispiel Kohlendioxid und Methan (sowie ggf. weitere klimarelevante Emissionen) zur Wirkungskategorie Treibhauseffekt) und wirkungsbezogen zusammengefasst. Die entsprechenden Berechnungsgrundlagen sind im Technical Paper zu EcoGrade in Anhang 1 verfügbar.

Im Rahmen der Studie wurden die folgenden Wirkungskategorien berücksichtigt:

- Treibhauspotenzial
- Versauerungspotenzial
- Eutrophierungspotenzial
- Photooxidantienpotenzial
- Feinstaub-Risikopotenzial (Toxische Schädigung von Menschen durch Feinstaub)

Von der Berücksichtigung von Wirkungskategorien, die weiter gehend human- und ökotoxischen Auswirkungen abbilden, wurde abgesehen, da es hier zum einen in Fachkreisen noch keinen Konsens über eine geeignete Methodik gibt und zum anderen die Datenbasis in der Regel nicht ausreichend differenziert genug vorliegt.

Neben diesen Wirkungsindikatorergebnissen im engeren Sinn wurden zusätzlich folgende Ergebnisse der Sachbilanz in die Auswertung übernommen:

- Kumulierter Energieaufwand (KEA) gesamt
- Abbau mineralischer Rohstoffe

- Humantoxizitätspotenzial am Beispiel atmosphärische Quecksilberemissionen
- Reststoffe zur Verwertung

Um die Ergebnisse besser abzusichern und interpretieren zu können, wurden Beitragsanalysen und eine Sensitivitätsrechnung durchgeführt. Aufgrund der bisherigen Erfahrungen geht das Öko-Institut von der Annahme aus, dass im Falle des KEA und des Treibhauspotenzials Unterschiede zwischen den verglichenen Systemen größer 10 Prozent signifikant sind, im Fall der anderen Wirkungskategorien dagegen Abweichungen ab 20 Prozent.

2.9 Kritische Prüfung

Grundsätzlich soll die hier vorliegende Ökobilanz entsprechend den Anforderungen an den Stand von Wissenschaft und Technik nach DIN EN ISO 14040 und DIN EN ISO 14044 durchgeführt werden. Da eine Veröffentlichung der Ergebnisse dieser Ökobilanz prinzipiell geplant ist, wurde ein formales kritisches Prüfverfahren der Studie durch Herrn Florian Knappe vom ifeu - Institut für Energie- und Umweltforschung Heidelberg gemäß Punkt 7 der DIN EN ISO 14040 durchgeführt. Der Bericht zur Kritischen Prüfung ist in Kapitel 6 dieser Studie enthalten.

3 Systembeschreibung und Datengrundlagen

3.1 Datengrundlage

Grundsätzlich kann bei den Datengrundlagen einer Ökobilanz zwischen allgemeinen und spezifisch ermittelten Daten unterschieden werden: Unter allgemeinen Daten werden Mittelwerte zum Energie- und Rohstoffverbrauch und zu Emissionen verstanden, das heißt Zahlenwerte, die den mittleren Stand der Technik eines bestimmten Produktionsprozesses repräsentieren. Spezifisch ermittelte Daten beschreiben hingegen die Verhältnisse an einem bestimmten Produktionsstandort. Je nach dem realisierten Stand der Technik (Effizienz von Schadstoffabscheidung oder ähnliches) können spezifisch ermittelte Daten erheblich (nach oben und unten) von allgemeinen Daten abweichen.

Bei der hier durchgeführten Analyse wurden sowohl allgemeine als auch spezifisch ermittelte Daten zugrunde gelegt. Das konkrete Vorgehen wird in den folgenden Abschnitten näher beschrieben.

3.1.1 Allgemeine Daten

Für die Bereitstellung von Rohstoffen und die Herstellung von Grundstoffen, für die Bilanzierung der Energiebereitstellung und Transportprozesse wurden allgemeine Daten aus Verbandsveröffentlichungen, Literaturangaben oder Datenbanken herangezogen. Hier wäre

eine Erhebung spezifischer Daten, abgesehen vom damit verbundenen Aufwand, kaum sinnvoll, da diese Prozesse aufgrund der komplexen und verzweigten Produktionsstruktur nicht einzelnen Unternehmen zugeordnet werden können und die Abnehmer-/ Lieferantenbeziehungen auf diesen Stufen häufig wechseln.

Die verwendeten Datenquellen sind in nachfolgender Tabelle dargestellt.

Tab. 2 Überblick zu den in der Studie für allgemeine Daten verwendeten Datenquellen

Bereich	Modul/Teilbilanz	Quellen	Bemerkungen
Energiebereitstellung und Bereitstellung von Energieträgern	Stromnetz BRD 2005	Umberto 5.5 2007	Durchschnittsdaten zur Strombereitstellung in Deutschland
	Heizwerk Erdgas	Umberto 5.5 2007 (Basis: GEMIS 4.0.4.1 2001)	Bereitstellung von thermischer Energie in einem Erdgasheizkessel mit einer Leistung von 10 MW (th) inklusive der Vorketten aus Produktion und Transport der Energieträger und Hilfsstoffe.
	Heizöl, EL via Lkw	Umberto 5.5 2007 (Basis: GEMIS 4.0.4.1 2001)	Anlieferung von Heizöl EL inkl. aller Vorketten bis zum (Klein-)Verbraucher
	Motor, Diesel (1 MW)	Umberto 5.5 2007 (Basis: GEMIS 4.0.4.1 2001)	Dieselmotor ohne Emissionsminderung in Deutschland. Prozess steht stellvertretend für in der Produktion mit Verbrennungsmotoren betriebenen Prozesse (Abbau Rohstoffe, innerbetriebliche Transportprozesse u.ä.)
	Steinkohle-Mix Deutschland frei Kraftwerk / Industrie	Umberto 5.5 2007	Datensatz beschreibt Abbau, die Förderung und den Transport von in Deutschland verwendeter Steinkohle.
	Braunkohle-Mix Deutschland frei Kraftwerk / Industrie	Umberto 5.5 2007	Datensatz beschreibt Abbau, die Förderung und den Transport von in Deutschland verwendeter Braunkohle.
	Vorkette Koks	Umberto 5.5 2007	Datensatz beschreibt die Bereitstellung von Koks aus Steinkohle in der Kokerei eines Integrierten Hüttenwerkes in Deutschland einschließlich der Vorketten.
	Vorkette Heizöl S	Umberto 5.5 2007	Datensatz beschreibt den für die Förderung, den Transport, die Raffination und die Anlieferung für Industriebetriebe des in Deutschland verwendeten Heizöls S benötigten Energieverbrauch und die damit verbundenen Emissionen.
	Vorkette Erdgas, Importmix Deutschland	Umberto 5.5 2007	Datensatz beschreibt die Förderung, die Aufbereitung und den Transport von durchschnittlichem in D importiertem Erdgas.

Bereich	Modul/Teilbilanz	Quellen	Bemerkungen
	Sekundärbrenn- stoffe für Zement- produktion	VDZ 2007	Datensatz beschreibt Einsatz und durchschnittliche Heizwerte von Sekundärbrennstoffen zur Zementher- stellung in Deutschland im Jahr 2006
Transportprozesse	Lkw-Transport hin und zurück mit Vor- kette	Umberto 5.5 2007	Datensatz beschreibt den Lkw-Transport von Gütern für 5 verschiedenen Lkw-Größenklassen Durch einen veränderbaren Auslastungsgrad der Rückfahrt können damit sowohl Werksverkehr (Auslastung Rückfahrt = 0 %) oder Speditionsverkehr (Auslastung Rückfahrt > 0 %) modelliert werden.
	Transport mit Binnenschiff	Umberto 5.5 2007	Datensatz beschreibt den Emissionen und Kraftstoffverbrauch bei Transport mittels Binnenschiff.
Herstellung ver- schiedener Edukte	PE-Folie	Umberto 5.5 2007 (nach APME)	Datensatz beschreibt die Produktion von Folie aus LDPE ab der Entnahme der Rohstoffe aus der natürlichen Lagerstätte inkl. der damit verbundenen Prozesse. Eingeschlossen sind dabei die Herstellung des Polymers, der Transport zum Konverter, der Konvertierungsprozess sowie die Verpackung der Folie zum Versand.
	Zementherstellung	Eigene Ableitung aus VDZ 2007	Datensatz beschreibt die durchschnitt- liche Herstellung von Zement in Deutschland im Jahr 2006; zu Details siehe unten
	PMMA (Polymethylmethylmethacrylat)	Umberto 5.5 2007 (nach APME)	Datensatz beschreibt die Produktion von Polymethylmethacrylat (PMMA) Granulat ab der Entnahme der Rohstoffe aus der natürlichen Lagerstätte inkl. der damit verbundenen Prozesse. Datensatz wird verwendet, um Bestandteil der für die Betonsteine eingesetzten Farbe zu modellieren.

Für die Modellierung der Zementherstellung auf der Grundlage der vom Verein Deutscher Zementwerke veröffentlichten Umweltdaten der deutschen Zementindustrie mussten verschiedene Annahmen und Umrechnungen getroffen werden. Da diese für die Dachsteine aus Beton ergebnisrelevant sind, erfolgt nachfolgend eine Beschreibung der wichtigsten Aspekte.

Bei den Einsatzstoffen wurden lediglich die mengenrelevanten Rohstoffe mit ihren jeweiligen Vorketten modelliert (vgl. die farblich markierten Positionen in der folgenden Tabelle), und bei einigen Einsatzstoffen erfolgten Pauschalierungen. Das konkrete Vorgehen ist in der nachstehenden Tabelle zusammengefasst. Insgesamt wurden damit 97,4% der Einsatzstoffe

berücksichtigt. Es kann auf der Grundlage von Art und Herkunft der vernachlässigten Einsatzstoffe davon ausgegangen werden, dass die mit ihrer Bereitstellung verbundenen Umweltbelastungen vernachlässigbar sind.

Tab. 3 Gewählter Modellierungsansatz bei den Einsatzstoffen zur Zementproduktion (eigene Zusammenstellung auf der Grundlage von VDZ 2007)

Gruppe	Rohstoffe	Wert	Einheit	Anmerkungen zur Modellierung
Ca	Kalkstein / Mergel / Kreide	38.606	1000t	Vorkette modelliert
Ca	Sonstige Ca-Rohstoffe	95	1000t	wg. Geringfügigkeit vernachlässigt
Si	Sand	1.179	1000t	Vorkette modelliert
Si	Gießereialtsand	149	1000t	als Sand gerechnet
Si-Al	Ton	1.301	1000t	Vorkette modelliert
Si-Al	Bentonit / Kaolinit, Rückst	46	1000t	wg. Geringfügigkeit vernachlässigt
Fe	Eisenerz	156	1000t	wg. Geringfügigkeit vernachlässigt
	sonstige Einsatzstoffe aus Eisen-			
Fe		137	1000t	wg. Geringfügigkeit vernachlässigt
Si-Al-				
Ca	Hüttensand	6.400	1000t	als Sand gerechnet
Si-Al-	Element	200	40004	
Ca	Flugasche	392	1000t	wg. Geringfügigkeit vernachlässigt
Si-Al- Ca	Ölschiefer	313	1000t	wg. Geringfügigkeit vernachlässigt
Si-Al-		0.0	10001	ng. Comigragignen vernaemaeeige
Ca	Trass	32	1000t	wg. Geringfügigkeit vernachlässigt
Si-Al-				
Ca	Sonstige, wie Papierreststoffe	107	1000t	wg. Geringfügigkeit vernachlässigt
S	Natürlicher Gips	589	1000t	siehe unten
S	Natürlicher Anhydrit	771	1000t	als Gips gerechnet
S	Gips aus Rauchgasentschw.	415	1000t	als Gips gerechnet
	Einsatzstoffe aus der Metall-			
Al	industrie	57	1000t	wg. Geringfügigkeit vernachlässigt
	Summe	50.745	1000t	

In den Umweltdaten des VDZ werden keine Kohlendioxidemissionen aus den genutzten Sekundärbrennstoffen ausgewiesen, da "sie fossile Brennstoffe ersetzen und somit zu einer CO₂-Minderung an anderer Stelle führen." (VDZ 2007, S. 17). Allerdings stehen die in der Zementindustrie genutzten Sekundärbrennstoffe keinen anderen Einsatzzwecken zur Verfügung, so dass bei Annahme knapper Sekundärbrennstoffmärkte in diesen Bereichen dann primäre Energieträger eingesetzt werden müssten. Vor diesem Hintergrund erfolgte im Rahmen dieser Studie auch eine szenarische Berechnung der CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe. Ausgangspunkt zur Abschätzung dieser Emissionen waren die Angaben des VDZ zu Art und Beschaffenheit dieser Brennstoffe, siehe folgende Tabelle.

Tab. 4 Gewählter Modellierungsansatz zur Ermittlung von Kohlendioxidemissionen aus der Nutzung von Sekundärbrennstoffen (eigene Zusammenstellung auf der Grundlage von VDZ 2007)

Sekundärbrennstoff	Wert	Einheit	spez. Heizwert [MJ / kg]	Heizwertfracht [MJ]
Reifen	265	1000t	27	7,16E+09
Altöl	69	1000t	27	1,86E+09
Fraktionen a. Industrie-/Gewerbeabfällen				
- Zellstoff etc.	244	1000t	5	1,22E+09
- Kunststoff	363	1000t	23	8,35E+09
- Abfälle aus Textilindustrie	9	1000t	18	1,62E+08
- Sonstige	754	1000t	20	1,51E+10
Tiermehle und -fette	317	1000t	17	5,39E+09
Aufbereitete Fraktionen a. Siedlungsabfällen	212	1000t	14	2,97E+09
Altholz	14	1000t	14	1,96E+08
Lösungsmittel	93	1000t	24	2,23E+09
Bleicherde	4	1000t	8	3,20E+07
Klärschlamm	238	1000t	4	9,52E+08
Sonstige	32	1000t	16	5,12E+08
Summe	2614	1000t	17,64	4,61E+10

Aus den Angaben des Verbandes wurden zunächst die spezifischen Heizwertfrachten berechnet und aufsummiert (siehe rechte Spalte in obiger Tabelle). Dann wurde angenommen, dass diese Heizwertfracht durch Heizöl ersetzt werden müsste. Aus einer einfachen Verbrennungsrechnung lässt sich damit eine fiktive Kohlendioxidemission ermitteln (hier: 3,53E+09 kg CO₂).

Bei den weiteren klassischen Luftschadstoffen gibt der VDZ keine mengengewichteten Mittelwerte zur Gesamtproduktion an, sondern nur Streubereiche von Einzelwerten als Konzentration im Reingas bzw. Jahresfrachten. Um die mit der Gesamtproduktion verbundenen Jahresfrachten abzuschätzen, wurde im Rahmen dieser Studie aus den VDZ-Daten jeweils ein mittlerer Wert zur Reingaskonzentration abgeschätzt und gemäß dem "Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries December 2001" eine durchschnittliche Rauchgasmenge von 2.000 m³ pro Tonne Zement angesetzt. Die Annahmen und die Vorgehensweise sind in der nachstehenden Tabelle zusammen gefasst.

Tab. 5 Getroffene Abschätzungen zu Reingaskonzentrationen von Luftschadstoffen aus der Zementindustrie (eigene Zusammenstellung auf der Grundlage von VDZ 2007)

Emission	Wert	Einheit
Staub	20	mg/m³
Stickstoffoxide	0,4	g/m³
Schwefeldioxid	0,2	g/m³
Kohlenmonoxid	2000	mg/m³
Organischer		
Gesamtkohlenstoff	50	mg/m³
HCI	10	mg/m³
HF	0,25	mg/m³
Hg	0,02	mg/m³

3.1.2 Spezifische Daten

Neben den dargestellten allgemeinen Daten wurde auch eine Reihe von spezifischen Daten herangezogen, die alle von der Monier GmbH zusammen gestellt wurden. Die übermittelten Daten bezogen sich auf folgende Bereiche:

- Produktionsmengen
- Verbräuche an Rohstoffen und Energieträgern
- Anfall an Reststoffen aus der Produktion
- Verpackungsmaterialien
- Transportdaten (Entfernung und Art der Tramsportmittel) für die mengenmäßig relevanten Rohstoffe sowie zur Distribution der Fertigwaren bis zum Handel.

Die für die Modellierung durchgeführten Umrechnungen sind im Anhang 4 zu dieser Studie dargestellt.

3.2 Rechenmethode und verwendete Software

Für die Erstellung der Ökobilanz wurde die Ökobilanzsoftware Umberto in der Version 5.5 verwendet. Zur Berechnung der Sachbilanz werden die in den vorangegangenen Abschnitten dargestellten Module und Teilbilanzen entsprechend den jeweiligen Produktlinien zu Bilanznetzen verknüpft und anschließend unter Berücksichtigung der festgelegten funktionellen Einheit berechnet. In diesen Bilanznetzen (siehe nachfolgende Abbildung) sind die Module bzw. Teilbilanzen als quadratische Zeichenelemente und die Verknüpfungen zwischen diesen Modulen als gelb umrandete Kreise dargestellt. Entnahmen (etwa von Rohstoffen) aus der Umwelt werden in den Netzen als grün gekennzeichnete Kreise, Abgaben an die Umwelt (in der Regel Emissionen) als rot gekennzeichnete Kreise abgebildet.

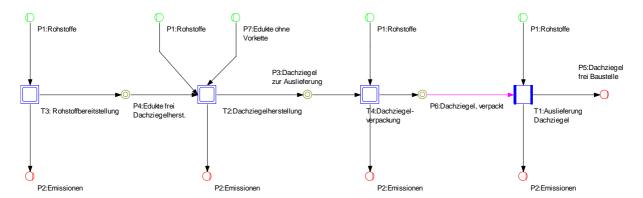


Abb. 2 Schematische Darstellung der berücksichtigten Lebenswege am Beispiel des Dachziegels

Dieses Bilanzierungsmodell ermöglicht Ergebnisdarstellungen der Sachbilanzen, die über globale Input/Output-Tabellen hinausgehen: so können die Ergebnisse auch nach Modulen bzw. Teilbilanzen, aber auch nach "Sammelstellen" (z.B. alle Rohstoffe) aufgesplittet werden. Im Rahmen der vorliegenden Studie wurden diese tiefer gehenden Auswertungen und Darstellungen der Ergebnisse für diejenigen Teilprozesse bzw. Subnetze vorgenommen, die einen hohen Beitrag zu den jeweiligen Ergebnissen aufwiesen, siehe Abschnitt 5.2 dieser Studie.

4 Ergebnisse und Schlussfolgerungen

4.1 Überblick

In den nachfolgenden Tabellen erfolgt eine Darstellung der Ergebnisse nach den in Abschnitt 2.8 definierten Ergebniskategorien. Im Sinne einer ersten Beitragsanalyse wird dabei jeweils eine Aufsplittung der Ergebnisse nach den Hauptstationen entlang des Lebenswegs, also nach

- Rohstoffbereitstellung
- Produktion
- Verpackung
- Distribution

vorgenommen. Alle nachfolgenden Ergebniswerte beziehen sich jeweils auf die definierte funktionelle Einheit (160m² eingedeckte Dachfläche).

Beim Kumulierten Energieaufwand (siehe nachstehende Tabelle) schneiden Dachsteine aus Beton gegenüber Tonziegeln wesentlich besser ab; in der Summe liegt der gesamte Energieaufwand bei Dachsteinen nur bei rund 30% im Vergleich zu Tonziegeln. Während bei den Dachsteinen der dominierende Prozess die Rohstoffbereitstellung ist, wird der gesamte Energiebedarf bei Tonziegeln mit annähernd 90% durch die Produktion bestimmt.

Tab. 6 Vergleich der Systeme bezogen auf den Kumulierten Energieaufwand

	Dachzie	egel	Dachsteine	
Rohstoffbereitstellung	2.494 MJ	4,5%	10.813 MJ	67,2%
Produktion	49.354 MJ	88,2%	3.578 MJ	22,2%
Verpackung	240 MJ	0,4%	658 MJ	4,1%
Distribution	3.876 MJ	6,9%	1.041 MJ	6,5%
Gesamt	55.964 MJ	100,0%	16.090 MJ	100,0%

Ähnliche Verhältnisse liegen auch für die anderen bilanzierten Indikatorergebnisse vor, wie nachstehend für die Treibhausgasemissionen, das Versauerungspotenzial, das Eutrophierungspotenzial, das Photooxidantienpotenzial und das Feinstaubpotenzial jeweils tabellarisch dargestellt wird. In der Regel liegen hier die Ergebniswerte für den Dachstein jeweils nur bei ca. 45% im Vergleich zu den betreffenden Werten beim Dachziegel. Lediglich beim Photooxidantienpotenzial erreicht der betreffende Wert mit rund 85% annähernd das Ergebnis des Dachziegels.

Tab. 7 Vergleich der Systeme bezogen auf Treibhausgasemissionen (CO₂-Äquivalente)

	Dachz	iegel	Dachsteine	
Rohstoffbereitstellung	191 kg	5,6%	1.227 kg	79,6%
Produktion	2.907 kg	85,4%	214 kg	13,9%
Verpackung	7 kg	0,2%	20 kg	1,3%
Distribution	299 kg	8,8%	80 kg	5,2%
Gesamt	3.404 kg	100,0%	1.542 kg	100,0%

Tab. 8 Vergleich der Systeme bezogen auf das Versauerungspotenzial (SO₂-Äquivalente)

	Dachziegel		Dachziegel Dachziegel Dachziegel		Da	chsteine
Rohstoffbereitstellung	1,4 kg	14,5%	3,6 kg	80,8%		
Produktion	6,3 kg	66,8%	0,2 kg	5,5%		
Verpackung	0,1 kg	0,6%	0,2 kg	3,7%		
Distribution	1,7 kg	18,0%	0,4 kg	10,0%		
Gesamt	9,4 kg	100,0%	4,5 kg	100,0%		

Tab. 9 Vergleich der Systeme bezogen auf das Eutrophierungspotenzial (PO₄-Äquivalente)

	Dach	ziegel	Dachsteine		
Rohstoffbereitstellung	0,28 kg 24,9%		0,35 kg	70,8%	
Produktion	0,48 kg	42,6%	0,04 kg	7,4%	
Verpackung	0,00 kg	0,4%	0,01 kg	2,5%	
Distribution	0,36 kg	32,1%	0,10 kg	19,3%	
Gesamt	1,13 kg	100,0%	0,49 kg	100,0%	

Tab. 11 Vergleich der Systeme bezogen auf das Photooxidantienpotenzial (Ethen-Äquivalente)

	Dach	ziegel	Dachsteine		
Rohstoffbereitstellung	0,25 kg 18,4%		0,96 kg	84,0%	
Produktion	0,65 kg	47,5%	0,03 kg	2,6%	
Verpackung	0,02 kg	1,6%	0,06 kg	5,3%	
Distribution	0,44 kg	32,5%	0,09 kg	8,1%	
Gesamt	1,36 kg	100,0%	1,15 kg	100,0%	

Tab. 12 Vergleich der Systeme bezogen auf das Feinstaubpotenzial (PM10-Äquivalente)

	Dach	ziegel	Dachsteine		
Rohstoffbereitstellung	2,04 kg 20,5%		3,38 kg	75,2%	
Produktion	5,28 kg	53,0%	0,30 kg	6,6%	
Verpackung	0,05 kg	0,5%	0,13 kg	3,0%	
Distribution	2,60 kg	26,1%	0,68 kg	15,2%	
Gesamt	9,97 kg	100,0%	4,49 kg	100,0%	

Beim Feinstaubpotenzial muss einschränkend darauf hingewiesen werden, dass hier keine belastbaren zum Abbau der mineralischen Rohstoffe vorlagen. Betrachtet man die Gesamtmengen an abgebauten mineralischen Rohstoffen so fällt auf, dass auch hier von den abgebauten Rohstoffmengen der Dachstein mit rund 8,5 t besser abschneidet als der Dachziegel (11,25 t).

Tab. 13 Vergleich der Systeme bezogen auf den Abbau mineralischer Rohstoffe

	Dachziegel	Dachsteine
Kalkstein	21,2 kg	2,04 t
Ton	11,25 t	68,6 kg
Gips		93,9 kg
Sand		6,48 t

Aufgrund von Datenunsicherheiten können die beiden Produktgruppen bezogen auf das Humantoxizitätspotenzial nicht durchgängig verglichen werden. Greift man beispielhaft als typische Beitragssubstanz die atmosphärischen Quecksilberemissionen heraus, so fällt auf, dass hier die Dachsteine etwa um den Faktor 4 schlechter abschneiden als Dachziegel. Maßgebend hierfür sind die Emissionen aus der Zementherstellung, die aus Verunreinigungen in den Brennstoffen bzw. Bestandteilen der Rohstoffe stammen. Allerdings streuen die Werte von Anlage zu Anlage stark, so dass die dargestellten Unterschiede nicht überinterpretiert werden dürfen.

Tab. 14 Vergleich der Systeme am Beispiel atmosphärischer Quecksilberemissionen

	Dachz	iegel	Dachsteine	
Rohstoffbereitstellung	0,0 mg	0,0%	57,2 mg	91,9%
Produktion	15,5 mg	94,2%	2,4 mg	3,9%
Verpackung	1,0 mg	5,8%	2,6 mg	4,2%
Distribution	0,0 mg	0,0%	0,0 mg	0,0%
Gesamt	16,5 mg	100,0%	62,3 mg	100,0%

4.2 Beitragsanalysen ausgewählter Prozesse

4.2.1 Rohstoffbereitstellung bei Dachsteinen

Im vorangegangenen Abschnitt wurde deutlich, dass die Umweltbelastungen des Dachsteins wesentlich durch die Rohstoffbereitstellung bestimmt wird; vor diesem Hintergrund wurde bei diesem System dieser Teilprozess weiter differenziert. Die Ergebnisse sind in der nachstehenden Tabelle für ausgewählte Ergebnisindikatoren zusammen gefasst.

Auffällig ist beim Dachstein, dass neben dem erwarteten hohen Beitrag der Zementherstellung auch die Herstellung der Oberflächenfarbe relevant ist. Für den Dispersionsanteil dieser Farbe wurde mangels genauer Daten angenommen, dass dieser zu 100% aus Polymethacrylat besteht. Dies bedeutet, dass die Umweltbelastungen aus der Herstellung der Oberflächenfarbe eindeutig überschätzt werden.

Tab. 15 Beitragsanalyse für die Rohstoffbereitstellung bei Dachsteinen aus Beton

(1) Kumulierter Energieaufwand Rohstoffbereitstellung Dachsteine)	
Abbau mineral. Rohstoffe mit Vorkette	177 MJ	1,64%
Zementherstellung mit Vorkette	5866 MJ	54,25%
Transport Flugasche	139 MJ	1,28%
Herstellung Oberflächenfarbe mit Vorkette	4632 MJ	42,83%
Gesamt	10813 MJ	100,00%
(2) Treibhausgasemissionen (CO ₂ -Äquivalente) Rohstoffbereitstell		
Abbau mineral. Rohstoffe mit Vorkette	13 kg	1,09%
Zementherstellung mit Vorkette	901 kg	73,44%
Transport Flugasche	11 kg	0,87%
Herstellung Oberflächenfarbe mit Vorkette	302 kg	24,59%
Gesamt	1227 kg	100,00%
(2) Verseur genetential (SO Äguiyelente) Behateffharsitatellun	a Dechataine	
(3) Versauerungspotential (SO ₂ -Äquivalente) Rohstoffbereitstellun Abbau mineral. Rohstoffe mit Vorkette	1	2.000/
	0,10 kg	2,89%
Zementherstellung mit Vorkette	1,66 kg	46,20%
Transport Flugasche	0,06 kg	1,65%
Herstellung Oberflächenfarbe mit Vorkette	1,77 kg	49,26%
Gesamt	3,60 kg	100,00%
(4) Feinstaubpotenzial (PM10-Äquivalente) Rohstoffbereitstellung	Dachsteine	
Abbau mineral. Rohstoffe mit Vorkette	0,15 kg	4,47%
Zementherstellung mit Vorkette	1,90 kg	56,33%
Transport Flugasche	0,09 kg	2,67%
Herstellung Oberflächenfarbe mit Vorkette	1,24 kg	36,54%
Gesamt	3,38 kg	100,00%
(5) Humantoxpotenzial am Beispiel atmosphärische Quecksilbere stellung Dachsteine	emissionen Rohsto	ffbereit-
Abbau mineral. Rohstoffe mit Vorkette	0 mg	0,00%
Zementherstellung mit Vorkette	56 mg	98,71%
Transport Flugasche	0 mg	0,00%
Herstellung Oberflächenfarbe mit Vorkette	1 mg	1,29%
Gesamt	57 mg	100,00%

4.2.2 Produktion Dachziegel

Während die Umweltbelastungen des Dachsteins wesentlich durch die Rohstoffbereitstellung bestimmt sind, trifft dies beim Dachziegel für die Produktion zu. Daher wird in diesem Abschnitt dieser Teilprozess weiter differenziert. Die Ergebnisse sind in der nachstehenden Tabelle für ausgewählte Ergebnisindikatoren zusammen gefasst.

Hier zeigt sich, dass fast alle bilanzierten Umweltbelastungen aus der Erdgasfeuerung der Öfen (und den entsprechenden Vorketten aus der Erdgasbereitstellung) herrühren. Klare Ausnahme hiervon sind die Emissionen an Quecksilber; diese stammen ausschließlich aus der Strombereitstellung zur Produktion.

Tab. 16 Beitragsanalyse für die Produktion bei Dachziegeln aus Ton

(1) Kumulierter Energieaufwand Produktion Dachziegel				
Erdgasfeuerung Tunnelöfen mit Vorkette	37995 MJ	76,98%		
Strombezug	11359 MJ	23,02%		
Verbrennung Heizöl / Diesel mit Vorkette	0 MJ	0,00%		
Gesamt	49354 MJ	100,00%		
(2) Treibhausgasmemssionen (CO ₂ -Äquivalente) Pro	duktion Dacl	hziegel		
Erdgasfeuerung Tunnelöfen mit Vorkette	2205 kg	75,83%		
Strombezug	703 kg	24,17%		
Verbrennung Heizöl / Diesel mit Vorkette	0 kg	0,00%		
Gesamt	2907 kg	100,00%		
(3) Versauerungspotential (SO ₂ -Äquivalente) Produk	tion Dachzie	gel		
Erdgasfeuerung Tunnelöfen mit Vorkette	5 kg	82,36%		
Strombezug	1 kg	17,64%		
Verbrennung Heizöl / Diesel mit Vorkette	0 kg	0,00%		
Gesamt	6 kg	100,00%		
(4) Feinstaubpotenzial (PM10-Äquivalente) Produktion Dachziegel				
Erdgasfeuerung Tunnelöfen mit Vorkette	4 kg	78,23%		
Strombezug	1 kg	21,76%		
Verbrennung Heizöl / Diesel mit Vorkette	0 kg	0,01%		
Gesamt	5 kg	100,00%		
(5) Humantoxpotenzial am Beispiel atmosphärisch	е			
Quecksilberemissionen	I	I		
Erdgasfeuerung Tunnelöfen mit Vorkette		0,00%		
Strombezug	16 mg	100,00%		
Verbrennung Heizöl / Diesel mit Vorkette		0,00%		
Gesamt	16 mg	100,00%		

4.2.3 Distributionsstruktur

Bei der Distribution der Dachpfannen von den Werken zu den Verkaufsstellen schnitten die Dachsteine aus Beton im Vergleich zu den Dachziegeln aus Ton jeweils um annähernd Faktor 3 besser ab. Dieses Ergebnis kann darauf zurück geführt werden, dass die hier zugrunde gelegte, mengengewichtete mittlere Transportentfernung bei Tonziegeln mit 320 km gegenüber 116 km bei Dachsteinen wesentlich höher liegt. Dies liegt daran, dass die Dichte an Tonziegelwerken im Vergleich zu Dachsteinwerken wesentlich geringer ist, was darauf zurückzuführen ist, dass Dachziegelwerke auf Tongruben und –vorkommen angewiesen sind, die regional sehr konzentriert sind. Da Kalkvorkommen demgegenüber gleichmäßiger in Deutschland verteilt sind, gibt es dieses Problem beim Dachstein nicht.

4.3 Sensitivitätsanalyse: CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe bei der Zementherstellung

In Abschnitt 3.1.1 wurde bereits ausgeführt, dass in den Umweltdaten des VDZ keine Kohlendioxidemissionen aus den genutzten Sekundärbrennstoffen ausgewiesen sind. Diese Festlegung führt grundsätzlich zu einer "Besserstellung" des Dachsteins im Vergleich Dachziegel. Im Rahmen dieser Sensitivitätsanalyse wird deshalb der Frage nachgegangen, ob bei Anrechnung der CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe die Vorteile der Dachsteine Bestand haben. Die Ergebnisse sind in der nachfolgenden Tabelle zusammen gefasst.

Tab. 17 Sensitivitätsanalyse bezogen auf CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe bei der Zementherstellung für Dachsteine

	Dachziegel	Dachsteine, Basis	Dachsteine, Szenario- Rechnung
Rohstoffbereitstellung	191 kg	1227 kg	1411 kg
Produktion	2907 kg	214 kg	214 kg
Verpackung	7 kg	20 kg	20 kg
Distribution	299 kg	80 kg	80 kg
Gesamt	3404 kg	1542 kg	1726 kg

Bei Berücksichtigung der CO₂-Emissionen aus der Nutzung der Sekundärbrennstoffe nehmen zwar die CO₂-Emissionen beim Dachstein um ca. 12% gegenüber dem Basisszenario zu, dennoch bleibt die Richtungssicherheit im Vergleich zum Dachziegel aus Ton davon unberührt.

4.4 Normierung und Ordnung der Wirkungsindikatorergebnisse

Zur besseren Einschätzung der Bedeutung der Wirkungsindikatorergebnisse erfolgen in diesem Abschnitt der Studie zwei weitere, optionale methodische Schritte innerhalb der Wirkungsabschätzung. Unter Normierung wird dabei die Berechnung der Größenordnung der Indikatorergebnisse im Verhältnis zu einem Referenzwert verstanden. Unter Ordnung wird eine Rangbildung der Ergebnisse im Hinblick auf die Priorität der Wirkungsindikatorergebnisse vorgenommen. Konkret wird in dieser Studie wie folgt verfahren:

- Zur Normierung werden die Wirkungsindikatorergebnisse auf die jeweilige Gesamtbelastungssituation in Deutschland bezogen, also beispielsweise die bilanzierten Treibhausgasemissionen des untersuchten Systems Dachsteine aus Beton in Bezug gesetzt zu den gesamten Treibhausgasemissionen in Deutschland. Um hier zu anschaulichen Größenordnungen der Ergebniswerte zu gelangen, werden diese für beide Systeme auf die Gesamtproduktion der Monier Group GmbH an Dachsteinen und Dachziegeln hochgerechnet¹ und als so genannte Einwohnerdurchschnittswerte dargestellt.
- Zur Ordnung der Ergebnisse erfolgt eine Rangbildung aufgrund der Kriterien "Ökologische Gefährdung" sowie "Distance-to-Target" analog des vom Umweltbundesamt vorgeschlagenen Vorgehens (UBA 1999), das heißt die Wirkungskategorien werden in fünf Klassen von A (höchste Priorität) bis E (niedrigste Priorität) eingeordnet.
- Für die beiden humantoxisch relevanten Ergebniskategorien (Feinstaubpotenzial und atmosphärische Quecksilberemissionen) gibt es nach dem Vorgehen des Umweltbundesamtes kein methodisches Konzept der zur Charakterisierung und Hierarchisierung. Ersatzweise (und was die Quecksilberemissionen angeht im Sinne einer konservativen Bewertung zuungunsten des Dachsteins aus Beton) werden diese beiden Kategorien auch in die höchste Priorität gestellt.

Das Ergebnis dieser Transformation der Wirkungsindikatorergebnisse ist nachstehend dargestellt. Grundlegend zeigt sich, dass die so gebildeten Einwohnerdurchschnittswerte in einem Bereich zwischen knapp 6.000 (Quecksilberemissionen beim Dachziegel aus Ton) und knapp 460.000 (Feinstaubpotenzial beim Dachziegel aus Ton) liegen.

Bei der einzigen Kategorie, bei der Dachsteine aus Beton im Vergleich zu Dachziegel aus Ton schlechter abschneiden – den atmosphärischen Quecksilberemissionen – liegt der spezifische Beitrag im Vergleich zu der anderen humantoxikologischen Ergebniskategorie – dem Feinstaubpotenzial – um Faktor 10 und mehr geringer. Angesichts dieser Konstellation

^{1 16,9} Mio. m² Dachsteine aus Beton und 4,2 Mio. m² Dachziegel aus Ton, d.h. zusammen 21,1 Mio. m².

kommt das Öko-Institut zum Schluss, dass in einer Gesamtbewertung aus Umweltsicht Dachsteine aus Beton Dachziegeln aus Ton vorzuziehen sind.

Tab. 18 Normierte und geordnete Wirkungsindikatorergebnisse

	Gesamtbelastung				
	pro Einw.	Dachziegel	Dachsteine	Priorität	Begründung
					Mittlere ökologische Gefährdung und
					großer Abstand zum angestrebten
Kumulierter Energieaufwand - KEA	155.124 MJ	47.505 EDW	13.658 EDW	B - C	Zustand
					Sehr große ökologische Gefährdung und
					sehr großer Abstand zum angestrebten
Treibhausgasemissionen (CO ₂ -Äquivalente)	13.167 kg	34.042 EDW	15.417 EDW	Α	Zustand
					Große ökologische Gefährdung und
					großer Abstand zum angestrebten
Versauerungspotential (SO ₂ -Äquivalente)	56,0 kg	22.162 EDW	10.471 EDW	В	Zustand
					Große ökologische Gefährdung und
					großer Abstand zum angestrebten
Eutrophierungspotenzial (PO ₄ -Äquivalente)	5,70 kg	26.173 EDW	11.430 EDW	В	Zustand
					Geringe ökologische Gefährdung und
Photooxidantienpotenzial (Ethen-Äqui-					großer Abstand zum angestrebten
valente)	9,00 kg	19.874 EDW	16.809 EDW	С	Zustand
Feinstaubpotenzial (PM10-Äquivalente)	2,85 kg	459.831 EDW	207.333 EDW	Α	siehe Text
Atmosphärische Quecksilberemissionen	378,0 mg	5.750 EDW	21.694 EDW	Α	siehe Text

4.5 Schlussfolgerungen

Die in dieser Studie durchgeführten Bilanzierungen haben gezeigt, dass Dachsteine aus Beton gegenüber Dachziegeln aus Ton bei fast allen hier als relevant eingeschätzten Wirkungsindikatorergebnisse sowie bezogen auf relevante ausgewählte Sachbilanzergebnisse signifikant besser abschneiden. So liegen die meisten Ergebniswerte bei Dachsteinen bei nur 45% im Vergleich zu den betreffenden Werten bei Tonziegeln. Lediglich bei den atmosphärischen Quecksilberemissionen, die beispielhaft für humantoxikologisch relevante Luftschadstoffe bilanziert wurden, schneiden Dachsteine etwa um den Faktor 4 schlechter ab als Tonziegel. Wesentliche Quelle für diese Emission ist bei den Dachsteinen aus Beton die Zementherstellung, wobei hier die Werte von Anlage zu Anlage stark schwanken und im Rahmen dieser Studie von Annahmen ausgegangen wurden, die den Dachstein aus Beton gegenüber den Dachziegel aus Ton tendenziell schlechter stellt.

Die durchgeführten Beitragsanalysen bestätigen die Richtungssicherheit der Ergebnisse insofern, als die Beiträge zu den jeweiligen Gesamtergebnissen in erwarteten Bereichen liegen.

Im Rahmen einer Sensitivitätsrechnung wurden zusätzlich Kohlendioxidemissionen aus der Nutzung von Sekundärbrennstoffen bei der Zementherstellung mit bilanziert. Auch unter dieser Berechnung schneiden Dachsteine aus Beton wesentlich besser ab als Dachziegel aus Ton.

Insgesamt und unter Betrachtung der normierten und geordneten Wirkungsindikatorergebnisse kann aus Sicht des Öko-Instituts der Schluss gezogen werden, dass Dachsteine aus Beton Dachziegeln aus Ton aus Umweltsicht vorzuziehen sind.

5 Literatur und Quellen

CML 2004 Van Oers, L.; CML-IA - database containing characterization factors

for life cycle impact assessment, Centre of Environmental Science

(CML) Leiden, 2004

(http://www.leidenuniv.nl/interfac/cml/ssp/index.html)

CML 2001 Guinée, J. B. et al.; An operational guide to the ISO-standards, Final

report - Part 3, Centre of Environmental Science (CML) Leiden

DIN EN ISO 14040, 2006 Umweltmanagement –Ökobilanz –Grundsätze und

Rahmenbedingungen (ISO 14040:2006); Deutsche und Englische

Fassung EN ISO 14040:2006

DIN EN ISO 14044, 2006 Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen

(ISO 14044:2006); Deutsche und Englische Fassung EN ISO

14044:2006

Fritsche, U. R. et al. 1999a Fritsche, U. R. Jenseit, W. Hochfeld, C.; Methodikfragen bei der

Berechnung des Kumulierten Energieaufwands (KEA). Arbeitspapier im Rahmen des UBA-F&E-Vorhabens Nr. 104 01 123, Darmstadt

1999

Fritsche U. R. et al. 1999b Fritsche, U. R.; KEA: mehr als eine Zahl - Basisdaten und Methoden

zum Kumulierten Energieaufwand (KEA). Broschüre im Rahmen des UBA-F&E-Vorhabens Erarbeitung von Basisdaten zum Energieaufwand und der Umweltbelastung von energieintensiven Produkten und Dienstleistungen für Ökobilanzen und Öko-Audits,

Berlin 1999

Möller et al. 2005 Möller, M.; Bunke, D.; Gensch, C.-O.; Quack, D.; Vogt, P.; EcoGrade 2.0.

Methodology Description, Freiburg, 2005.

Umberto 5.5 2007 Modulbibliothek zur Ökobilanzsoftware "Umberto", Version 5.5, Stand

2007

VDZ 2007 Verein Deutscher Zementwerke e.V. (Hrsg.); Umweltdaten der

deutschen Zementindustrie 2006. Düsseldorf 2007

6 Externes kritisches Gutachten

Die zu prüfende Ökobilanz "Ökobilanzielle Analyse von Dachziegeln aus Ton im Vergleich zu Dachsteinen aus Beton" wurde vom Ökoinstitut in Freiburg ("Ersteller") im Auftrag der Monier Group GmbH ("Auftraggeber") erarbeitet.

Weil die vorliegende Ökobilanz

- den Anspruch erhebt, mit den internationalen Normen ISO EN 14040 und 14044 überein zustimmen,
- vergleichende Aussagen zum Umweltverhalten der untersuchten Systeme enthält und
- der Öffentlichkeit zugänglich gemacht werden soll,

ist eine "kritische Prüfung" erforderlich. Die kritische Prüfung wurde parallel zum Verlauf der Ökobilanz durchgeführt und startete mit deren Scoping-Phase.

6.1 Herangezogene Normen und Prüfkriterien

Der Prüfung werden die internationalen Normen ISO EN DIN 14040 (2006) und ISO EN DIN 14044 (2006) zu Grunde gelegt.

Geprüft wird nach den in der LCA-Rahmennorm 14040 vorgegebenen Kriterien, ob

- die bei der Durchführung der Ökobilanz angewendeten Methoden mit dieser Internationalen Norm übereinstimmen;
- die bei der Durchführung der Ökobilanz angewendeten Methoden wissenschaftlich begründet sind und dem Stand der Ökobilanz-Technik entsprechen;
- die verwendeten Daten in Bezug auf das Ziel der Studie hinreichend und zweckmäßig sind;
- die Auswertungen die erkannten Einschränkungen und das Ziel der Ökobilanz berücksichtigen;
- der Bericht transparent und in sich stimmig ist.

6.2 Ablauf des kritischen Gutachtens

Das kritische Gutachten startete mit einer Besprechung am 07.11.2007 bei Fa. Monier GmbH in Heusenstamm zusammen mit dem Scoping für die Ökobilanz. Im Rahmen dieser

Besprechung wurden durch den Auftraggeber die Systeme und Produktionsprozesse vorgestellt und entsprechende Unterlagen übergeben. Es wurden unter allen Beteiligten grundsätzliche Festlegungen getroffen, das Vorgehen, die Systemgrenzen und hier insbesondere zur Sicherstellung der Nutzengleichheit, die Datenlage und die heranzuziehenden Wirkungskategorien betreffend. Es wurde zudem festgelegt, zu welchen Prozessen der Produktion, der Bereitstellung von Rohstoffen sowie der Distribution der Produkte durch den Auftraggeber welche Daten bereit gestellt werden. Außerdem erfolgte die Terminplanung für den Projektablauf. Es konnte zudem eine Besichtigung der Dachsteinproduktion am Standort durchgeführt werden, gestützt durch Erläuterung durch Fachpersonal.

Am 14.12.2007 wurden vom Ersteller der Ökobilanz die Ergebnisse der Sachbilanz, Input-/ Outputanalysen sowie die Bewertungsergebnisse für die einzelnen Wirkungskategorien vorgelegt. Ebenfalls dargelegt wurde die Übernahme und Ableitung von Daten und Informationen aus den vom Auftraggeber bereit gestellten Unterlagen. Zudem wurde das in umberto 5.5 erstellte Projekt zur Verfügung gestellt. Auf dieser Basis erfolgte am selben Tag eine ausführliche Telefonkonferenz, in dem durch den Ersteller der Ökobilanz umfassend Vorgehen und Ergebnisse erläutert wurden. Die wichtigsten Diskussionspunkte waren die Art und Weise der Einbeziehung möglicher Gesundheitsauswirkungen durch Quecksilber sowie Feinstaub (PM10) inklusive der entsprechenden Vorläufersubstanzen (Äquivalenz-Faktoren) sowie die Ableitung typischer Emissionswerte und Klimabeiträge aus der Zementproduktion angesichts der Heterogenität der deutschen Zementproduktion.

Zum 21.12.2007 wurden die Bilanzierungsergebnisse in Form von Tabellenwerken, mit 07.01.2008 der Bericht im Entwurf vorgelegt. Die über eine stichpunktartige Prüfung der Berechnungsergebnisse sowie der Interpretation der Ergebnisse gewonnen Anmerkungen und Anregungen wurden an den Ersteller der Ökobilanz rückgemeldet und aufgegriffen. Im Wesentlichen handelte es sich um Hinweise auf die Berechnung der SO₂-Äquivalente, die Bedeutung der unterschiedlichen Distributionsstrukturen von Dachsteinen und Dachziegel für das Gesamtergebnis sowie angesichts der teilweise gegenläufigen Ergebnisse die Notwendigkeit der Normierung und Ordnung der Wirkungsindikatorergebnisse.

Der Ersteller zeigte sich jederzeit offen für die Möglichkeit, gegebenenfalls die Anmerkungen und Kritikpunkte der Gutachter in der Bearbeitung und der Erstellung des Berichts zu berücksichtigen.

6.3 Ergebnis der kritischen Prüfung

6.3.1 Allgemeiner Eindruck

Die Studie macht einen guten allgemeinen Eindruck. Der zentrale Gegenstand der Studie ist nachvollziehbar herausgearbeitet und allgemein verständlich dargestellt.

Der Bericht macht auch den auf fachlich hohem Niveau befindlichen Umgang des Erstellers sowohl mit der Methode der Ökobilanzierung als auch mit dem Thema der Untersuchung deutlich.

6.3.2 Übereinstimmung mit der Norm

Die Studie erhebt den Anspruch, dass die Erstellung nach den internationalen Normen ISO EN 14040 und 14044 erfolgte. Dieser Anspruch wurde unserer Einschätzung nach erfüllt.

Den in den genannten Normen festgelegten hohen Anforderungen für vergleichende Ökobilanzen, deren Ergebnisse der Öffentlichkeit zugänglich gemacht werden, wurde - soweit für die Gutachter anhand des Berichts und der zusätzlich bereit gestellten vertraulichen Information erkennbar - Rechnung getragen.

6.3.3 Wissenschaftliche Begründung der Methodik und Stand der Ökobilanztechnik

Als Bezugsgröße wurde eine typische Dachfläche eines Einfamilienhauses (160m²) gewählt, was gerade für die externe Kommunikation eine wichtige Größe darstellt. Für beide Produkte die analog Qualität und Funktionalität anzusetzen, erscheint plausibel. Es gibt eine Vielzahl von Produkten sowohl bei Dachziegeln als auch bei Dachsteinen. Es wurde deshalb ein Produktionsmix für das Jahr 2006 als Basis übernommen.

Die Untersuchung konzentriert sich auf die Bereitstellung der Rohstoffe, die eigentlichen Produktionsprozesse sowie die Verpackung der Produkte und deren Distribution. Angesichts der sehr ähnlichen Abmaßungen, der ähnlichen Gewichte und der aus der für beide Systeme gleichen Garantiezeit abgeleiteten Funktionsdauer, ist diese Systemgrenze plausibel. In eine Umweltbilanzierung einbezogen werden müssen auch die Vorketten, d.h. die Umweltlasten, die mit der Herstellung und Bereitstellung von Rohstoffen und Energieträgern verbunden sind. Bei sehr kleinen Massenströmen und aus Umweltsicht unkritischen Prozessen kann dies aus Praktikabilitätsgründen unterbleiben. Mit dem vom Ersteller gewählten Vorgehen werden bei Dachziegeln 0,5%, bei Dachsteinen 1,9% der Inputströme nicht bis zu den Rohstoffen rückverfolgt. Dies ist plausibel.

In der Wirkungsabschätzung werden von der Norm nur allgemeine Vorschriften zum methodischen Vorgehen gemacht, nicht jedoch bestimmte Wirkungskategorien oder Indikatoren vorgegeben.

Die für die Ökobilanz vom Ersteller ausgewählten Wirkungskategorien entsprechen durchaus der auch in der internationalen Ökobilanzpraxis gängigen Vorgehensweise. Hervorzuheben ist die Einbeziehung des Humantox-Kriteriums Hg, da damit auf eine typische Schwachstelle in einer Vorkette der Dachsteinproduktion (Zementherstellung) eingegangen werden kann. Hervorzuheben ist zudem die Verwendung des Humantox-Kriteriums potentielle Gesundheitsbelastung durch Feinstaub (PM10), das dieser Aspekt heute im Immissionsschutz einen hohen Stellenwert hat. Die Berechnung des PM10-Risikopotentials ist mit Unsicherheiten verbunden, die Äquivalenzfaktoren sind bspw. noch nicht abschließend gesichert.

Zusammenfassend kann bestätigt werden, dass die im Rahmen dieser Studie angewendeten Methoden wissenschaftlich begründet und technisch zutreffend sind.

6.3.4 Validität und Zweckmäßigkeit der Daten

Wie in jeder Ökobilanz mussten auch in der Arbeit des Erstellers Annahmen getroffen werden und Daten aus verschiedenen Quellen, z.B. eigene Datenerhebungen, Literatur usw. verwendet werden.

Die wichtigsten Module sind bei Dachsteinproduktion die Zementherstellung und die Herstellung der Oberflächenfarbe. Die in Deutschland von der Zementherstellung ausgehenden Umweltauswirkungen sind deutlich unterschiedlich, die spezifischen Emissionen können sich um eine Größenordnung unterscheiden. Abgeleitet aus der Veröffentlichung des VDZ wurden der Berechnung konservativ Werte zugrunde gelegt, d.h. Werte, die eher zuungunsten des Systems Dachstein zubuche schlagen. Die klimawirksamen Emissionen resultieren hauptsächlich aus dem verwendeten Brennstoff und seinem fossilen Kohlenstoffanteil. Zugrunde gelegt wurde ein für die Zementindustrie typischer Brennstoffmix und als Sensitivität unterstellt, dass auch der Anteil Sekundärbrennstoff ausschließlich fossiler Natur ist. Auch dies ist eine konservative Herangehensweise zur Schließung von Datenlücken und benachteiligt das System Dachstein.

Die wichtigsten Module sind bei der Dachziegelproduktion das Brennen und die Distribution der Ziegel. Die mittleren Distributionsentfernungen sind bei Dachziegeln deutlich höher als bei Dachsteinen. Die hier zugrunde gelegten Annahmen sind jedoch – wie die Sensitivitätsbetrachtung zeigt – nicht so sensitiv, dass sie mit Ausnahme des Photooxidantienpotentials ergebnisrelevant wären. Die Umweltwirkungen bei der Dachziegelproduktion resultieren aus dem Energiebedarf und der Erdgasfeuerung selbst. Die der Bilanzierung zugrunde gelegten Daten wurden aus Betriebsdaten an Standorten erhoben, die typische Produktionsbedingungen abbilden

Die Daten zur Modellierung der wesentlichen technischen Prozesse werden im Bericht nur sehr allgemein beschrieben und die Angaben zu den Datensätzen beschränken sich im Wesentlichen auf die Angabe der Quellverweise. Die meisten der verwendeten Datenquellen sind den Gutachtern bekannt und öffentlich zugänglich. Es kann davon ausgegangen

werden, dass die vom Ersteller verwendeten Datensätze eine angemessene Auswahl für die Umsetzung der betrachteten Produktlebenswege darstellen.

Insgesamt kann davon ausgegangen werden, dass "die verwendeten Daten in Bezug auf das Ziel der Studie hinreichend und zweckmäßig sind".

6.3.5 Berücksichtigung des Ziels der Studie und der Einschränkungen bei der Auswertung

Es gelang sehr gut, die grundlegenden Einflussfaktoren für die ökobilanziellen Festlegungen sowie die Ergebnisse in verständlicher Form darzustellen und damit den Anforderungen der Norm nachzukommen. Es kann gesagt werden, dass der Bogen von der Zielsetzung über die Sachbilanz und die Wirkungsabschätzung bis hin zur Auswertung gut und konsistent gespannt wurde.

6.3.6 Transparenz und Stimmigkeit des Berichts

Der Endbericht ist gut lesbar und in sich stimmig. Das Ökoinstitut hat die gewählte Modellierung transparent erklärt und begründet und geht auch auf Einschränkungen und Grenzen ein. Die Datengrundlage, deren Qualität sowie die getroffenen Annahmen sind ausreichend dokumentiert und die Berechnungen nachvollziehbar.

Die Transparenz in Bezug auf die Originaldaten ist durch den gedruckten Bericht allein nicht gegeben. Hier wurde offensichtlich zugunsten des Projekt- und Berichtsumfangs eine Begrenzung der Dokumentation vorgenommen. Da die Quellenangaben jedoch umfassend dargestellt sind, ist dies hinnehmbar. Dem Gutachter waren allerdings alle auch vertrauliche Daten zugänglich und wurden punktuell hinterfragt.

Die tabellarische Darstellung der Ergebnisse erlaubt eine Zuordnung der berechneten Umweltwirkungen zu den Lebenswegstufen, aus denen die Effekte vorwiegend zu erwarten sind. Damit wird gleichzeitig auch eine empfohlene Dominanzanalyse durchgeführt.

Die Darstellung der Ergebnisse mit Hilfe der Einwohner-Äquivalente erlaubt eine Ermittlung der relativen Bedeutung der Ergebnisse, was insbesondere zusammen mit der Information über die relative Bedeutung der einzelnen Wirkungskategorien (abgeleitet aus ökologischer Gefährdung und distance to target) für die Abwägung gegenläufiger Ergebnistendenzen wichtig ist.

Die Darstellung der Ergebnisse erfolgte in verständlicher Form und bereitete bei der Begutachtung keine Schwierigkeiten. Insgesamt kann die Transparenz und Stimmigkeit der Studie positiv beurteilt werden.

6.4 Fazit

Die Studie wird von den Gutachtern in allen Teilen als normgerecht beurteilt. Sie liefert wertvolle Hinweise für Ansatzpunkte zur Reduktion von Umweltbelastungen in Verbindung mit der Bedachung von Häusern. Das System Dachstein weist gegenüber dem System Dachziegel unter den gewählten Randbedingungen ökologische Vorteile auf.

Das System Dachstein wird wesentlich durch die verwendete Oberflächenfarbe und ihrer Herstellung sowie der Zementproduktion beeinflusst. Sollte sich der spezifische Beitrag der Farbherstellung bestätigen, möchte der Gutachter den Auftraggeber der Studie dazu anregen, in diesem Bereich weitere Optimierungspotenziale zu identifizieren und umzusetzen. Zu überprüfen wären auch Möglichkeiten der Beeinflussung durch die Auswahl der Bezugsquelle für den Zement.

7 Anhang

7.1 Erläuterung der einbezogenen Wirkungsindikatoren

7.1.1 Cumulated Energy Demand (CED)

Scope description: Assessment of the demand of energy resources by calculation of the

Cumulated Energy Demand (CED)

EcoGrade terminology: A_1 Cumulated Energy Demand

Impact indicators: CED, total; CED, non-renewable; CED, renewable; CED, others

Underlying methodology:

The Cumulative Energy Demand (CED), in German known as "Kumulierter Energie-Aufwand (KEA)", is a measure for the total demand of energy resources necessary for the supply of a product or a service. Within the CED also the amount of energy is accounted for that is still available within the product itself (e.g. in a wooden component). The CED specifies all non-renewable (i.e. fossil and nuclear energy) and renewable energy sources as primary energy values. It is calculated on the basis of the net calorific value² (in the case of combustibles) respectively - in the case of electricity from nuclear power plants bases on the degree of thermal utilization of the nuclear power plant (no other losses are taken into consideration). It is expressed in kilojoules (kJ). Primary energy demand that cannot clearly be specified as non-renewable or renewable is subsumed in the class "CED, others". Finally, the different CED classes are aggregated to the total CED. No undertaken. For characterization step is being more details see http://www.oeko.de/service/kea/.

-

² The use of the net calorific value is a historical convention.

CED, total [kJ]

	4
Flow no.	Umberto terminology
Inp1001	CED, fossil total
Inp1002	CED, nuclear
Inp1003	CED, hydro
Inp1004	CED, renewable
Inp1005	CED, renewable others
Inp1006	CED, unspec.
Inp1007	CED, others

CED, renewable [kJ]

Flow no.	Umberto terminology
Inp1003	CED, hydro
Inp1004	CED, renewable
Inp1005	CED, renewable others

CED, others [kJ]

Flow no.	Umberto terminology
Inp1006	CED, unspec.
Inp1007	CED, others

CED, non-renewable [kJ]

Flow no.	o. Umberto terminology	
Inp1001	CED, fossil total	
Inp1002	CED, nuclear	

Reference documents:

Fritsche [1999a]

Fritsche [1999b]

7.1.2 Global warming potential (GWP)

Scope description: Assessment of global warming potential based on a time horizon of 100 years

EcoGrade terminology: A_2 Global warming potential

Impact indicator unit: kg CO₂ equivalents

Underlying methodology:

The global warming potential represents the contribution of anthropogenic emissions to the radiative forcing or heat radiation absorption in the atmosphere and therefore a measure to express the so-called "greenhouse-effect" (CML [2001]). Pollutants, which contribute to the global warming phenomenon are inventoried and aggregated taking into account their Global Warming Potential (GWP). The GWP denotes the pollutant impact of the different substances in relation to carbon dioxide (CO_2). As an indicator for the emission of

greenhouse gases the global warming potential is expressed in terms of CO_2 equivalents. 100 years are set as the inventory period for calculating values.

Characterization factors according to CML [2004]

Flow no.	Umberto terminology	CF no.	CF value
			[kg CO ₂ eq./kg]
Out2001	1,1,1-trichloroethane (a)	Coe2001	1.40E+02
Out2002	carbon dioxide, fossil (a)	Coe2002	1.00E+00
Out2002a	carbon dioxide, unspec, (a)	Coe2002	1.00E+00
Out2003	R 11 (a)	Coe2003	4.60E+03
Out2004	R 113 (a)	Coe2004	6.00E+03
Out2005	R 114 (a)	Coe2005	9.80E+03
Out2006	R 115 (a)	Coe2006	7.20E+03
Out2007	R 12 (a)	Coe2007	1.06E+04
Out2008	R 13 (a)	Coe2008	1.40E+04
Out2009	dichloromethane (a)	Coe2009	1.00E+01
Out2010	dinitrogen monoxide (a)	Coe2010	2.96E+02
Out2011	halon 1301 (a)	Coe2011	6.90E+03
Out2012	R 123 (a)	Coe2012	1.20E+02
Out2013	R 124 (a)	Coe2013	6.20E+02
Out2014	R 141b (a)	Coe2014	7.00E+02
Out2015	R 142b (a)	Coe2015	2.40E+03
Out2016	R 22 (a)	Coe2016	1.70E+03
Out2017	R 225ca (a)	Coe2017	1.80E+02
Out2018	R 225cb (a)	Coe2018	6.20E+02
Out2019	R 125 (a)	Coe2019	3.40E+03
Out2020	R 134 (a)	Coe2020	1.10E+03
Out2021	R 134a (a)	Coe2021	1.30E+03
Out2022	R-143	Coe2022	3.30E+02
Out2023	R 143a (a)	Coe2023	4.30E+03
Out2024	R 152a (a)	Coe2024	1.20E+02
Out2025	R 227ea (a)	Coe2025	3.50E+03

Flow no.	Umberto terminology	CF no.	CF value
			[kg CO₂ eq./kg]
Out2026	R 23 (a)	Coe2026	1.20E+04
Out2027	R 236fa (a)	Coe2027	9.40E+03
Out2028	R 245ca (a)	Coe2028	6.40E+02
Out2029	R 32 (a)	Coe2029	5.50E+02
Out2030	R 41 (a)	Coe2030	9.70E+01
Out2031	R 43-10mee (a)	Coe2031	1.50E+03
Out2032	methane (a)	Coe2032	2.30E+01
Out2032a	methane, fossil (a)	Coe2032	2.30E+01
Out2032b	methane, renewable (a)	Coe2032	2.30E+01
Out2033	perfluorobutane (a)	Coe2033	8.60E+03
Out2034	perfluorocyclobutane (a)	Coe2034	1.00E+04
Out2035	perfluoroethane (a)	Coe2035	1.19E+04
Out2036	perfluorohexane (a)	Coe2036	9.00E+03
Out2037	perfluoromethane (a)	Coe2037	5.70E+03
Out2038	perfluoropentane (a)	Coe2038	8.90E+03
Out2039	perfluoropropane (a)	Coe2039	8.60E+03
Out2040	sulfur hexafluoride (a)	Coe2040	2.22E+04
Out2041	tetrachloromethane (a)	Coe2041	1.80E+03
Out2042	trichloromethane (a)	Coe2042	3.00E+01

Reference documents:

CML [2001]

CML [2004]

7.1.3 Acidification potential (AP)

Scope description: Assessment of acidification potential

EcoGrade terminology: A_3 Acidification potential

Impact indicator unit: kg SO₂ equivalents

Underlying methodology:

Pollutants which are acids or cause acidification processes in air, water and soil will be inventoried and aggregated taking into account their Acidification Potential (AP). The problem of acid rain has gradually abated, however the long term effects on soil, vegetation and edaphone (the sum of all soil organisms) is still problematic. Concerning the correlation between acids in air, water and soil, a single measure was chosen to assess acidification (CML [2001]). AP denotes the pollutant effect of a substance as an acidifier defined as the number of H+-ions produced relative to sulfur dioxide (SO₂). As an indicator for pollution, the acidification potential is expressed in terms of SO₂ equivalents. Regarding the quantitative contribution the major acids or acidifiers are ammonia, nitrogen oxides and sulfur dioxide.

Characterization factors according to CML [2004]

Flow no.	Umberto terminology	CF no.	CF value
			[kg SO ₂ eq./kg]
Out3001	ammonia (a)	Coe3001	1.6
Out3002	nitrogen dioxide (a)	Coe3002	0.5
Out3002a	NOx (a)	Coe3002	0.5
Out3003	sulfur dioxide (a)	Coe3003	1.2
Out3003a	SO2	Coe3003	1.2

Reference documents:

CML [2001]

CML [2004]

7.1.4 Eutrophication potential (EP)

Scope description: Assessment of eutrophication potential

EcoGrade terminology: A_4 Eutrophication potential

Impact indicator unit: kg PO₄³⁻ equivalents

Underlying methodology:

Nutrient enrichment in water and soil can cause a shift in species composition and an increasing biomass production in aquatic and terrestrial ecosystems (CML [2001]). In aquatic

ecosystems added biomass can lead to a consumption of oxygen (CML [2001]). The Eutrophication Potential (EP) for the relevant emissions is assessed with respect to that of phosphate in order to enable phosphate as a reference. In addition, the chemical oxygen demand is used as a measure for the entry of organic carbon. As a simplification it is assumed that all emissions of nutrients (N and P) into the air, water and soil and of organic matter to water can be aggregated into a single measure, because this method allows both terrestrial and aquatic eutrophication to be assessed (CML [2001]). Eutrophication potential is expressed in terms of PO_4^{3-} equivalents.

Characterization factors according to CML [2004]

Flow no.	Umberto terminology	CF no.	CF value
			[kg PO4 eq./kg]
Out3001	ammonia (a)	Coe4001	0.35
Out4001	ammonia (w)	Coe4001	0.35
Out4001a	ammonia (fw)	Coe4001	0.35
Out4001b	ammonia (sw)	Coe4001	0.35
Out4001c	ammonia (agr. s.)	Coe4001	0.35
Out4001d	ammonia (ind. s.)	Coe4001	0.35
Out4001e	ammonia	Coe4001	0.35
Out4002	ammonium (a)	Coe4002	0.33
Out4002a	ammonium (w)	Coe4002	0.33
Out4002b	ammonium (fw)	Coe4002	0.33
Out4002c	ammonium (sw)	Coe4002	0.33
Out4002d	ammonium (agr. s.)	Coe4002	0.33
Out4002e	ammonium (ind. s.)	Coe4002	0.33
Out4002f	ammonium as N (w)	Coe4002	0.33
Out4003	nitrate (a)	Coe4003	0.1
Out4003a	nitrate (w)	Coe4003	0.1
Out4003b	nitrate (fw)	Coe4003	0.1
Out4003c	nitrate (sw)	Coe4003	0.1
Out4003d	nitrate (agr. s.)	Coe4003	0.1
Out4003e	nitrate (ind. s.)	Coe4003	0.1
Out4003f	nitrate (ground water) (w)	Coe4003	0.1

Flow no.	Umberto terminology	CF no.	CF value
			[kg PO4 eq./kg]
Out4003g	nitrate as N (w)	Coe4003	0.1
Out4004	nitric acid (a)	Coe4004	0.1
Out4004a	nitric acid (w)	Coe4004	0.1
Out4004b	nitric acid (fw)	Coe4004	0.1
Out4004c	nitric acid (sw)	Coe4004	0.1
Out4004d	nitric acid (agr. s.)	Coe4004	0.1
Out4005	nitrogen (a)	Coe4005	0.42
Out4005a	nitrogen (fw)	Coe4005	0.42
Out4005b	nitrogen (sw)	Coe4005	0.42
Out4005c	nitrogen (agr. s.)	Coe4005	0.42
Out4005d	nitrogen (ind. s.)	Coe4005	0.42
Out4005e	nitrogen	Coe4005	0.42
Out4005f	nitrogen compounds as N (w)	Coe4005	0.42
Out4005g	nitrogen compounds, unspec. (w)	Coe4005	0.42
Out3002	nitrogen dioxide (a)	Coe4006	0.13
Out4006	nitrogen dioxide	Coe4006	0.13
Out4007	NO (a)	Coe4007	0.2
Out4007a	NO	Coe4007	0.2
Out3002a	NOx (a)	Coe4008	0.13
Out4009	phosphate (a)	Coe4009	1
Out4009a	phosphate (w)	Coe4009	1
Out4009b	phosphate (fw)	Coe4009	1
Out4009c	phosphate (sw)	Coe4009	1
Out4009d	phosphate (agr. s.)	Coe4009	1
Out4009e	phosphate (ind. s.)	Coe4009	1
Out4009f	Phosphate f	Coe4009	1
Out4009g	Phosphate s	Coe4009	1
Out4010	phosphoric acid (a)	Coe4010	0.97
Out4010a	phosphoric acid (fw)	Coe4010	0.97

Flow no.	Umberto terminology	CF no.	CF value
			[kg PO4 eq./kg]
Out4010b	phosphoric acid (sw)	Coe4010	0.97
Out4010c	phosphoric acid (agr. s.)	Coe4010	0.97
Out4010d	phosphoric acid (ind. s.)	Coe4010	0.97
Out4010e	phosphoric acid	Coe4010	0.97
Out4011	phosphorus (a)	Coe4011	3.06
Out4011a	phosphorus (w)	Coe4011	3.06
Out4011b	phosphorus (fw)	Coe4011	3.06
Out4011c	phosphorus (sw)	Coe4011	3.06
Out4011d	phosphorus (agr. s.)	Coe4011	3.06
Out4011e	phosphorus (ind. s.)	Coe4011	3.06
Out4011f	phosphorus (P) (r)	Coe4011	3.06
Out4012	phosphate (as P2O5)	Coe4012	1.34
Out4012a	phosphates (as P2O5) (w)	Coe4012	1.34
Out4013	COD (w)	Coe4013	0.022
Out4013a	chemical oxygen demand (COD) (fw)	Coe4013	0.022
Out4013b	chemical oxygen demand (COD) (sw)	Coe4013	0.022

Reference documents:

CML [2001]

CML [2004]

7.1.5 Photochemical ozone creation potential (POCP)

Scope description: Assessment of photochemical ozone creation potential

EcoGrade terminology: A_4: Photochemical ozone creation potential

Impact indicator unit: kg H₂C=CH₂ (ethylene) equivalents

Underlying methodology:

Pollutants which contribute to tropospheric ozone formation are aggregated within the Photochemical Ozone Creation Potential (POCP). The formation of reactive chemical

compounds such as ozone under the influence of sunlight through photochemical oxidation of Volatile Organic Compounds (VOC) and carbon monoxide under the presence of nitrogen oxides (NO_x) (CML [2001]) is often referred as photochemical smog or summer smog. Ozone causes harmful effects on the human respiratory systems and affects plants. The POCP is expressed in ethylene equivalents.

Characterization factors according to CML [2004]

Flow no.	Umberto terminology	CF no.	CF value
			[kg Eth eq./kg]
Out2001	1,1,1-trichloroethane (a)	Coe5001	0.009
Out5002	1,2,3-trimethyl benzene (a)	Coe5002	1.267
Out5003	1,2,4-trimethyl benzene (a)	Coe5003	1.278
Out5004	1,3,5-trimethyl benzene (a)	Coe5004	1.381
Out5005	1,3-butadiene (a)	Coe5005	0.851
Out5006	butanol (a)	Coe5006	0.62
Out5007	1-butene (a)	Coe5007	1.079
Out5008	1-butoxy propanol (a)	Coe5008	0.463
Out5009	n-butyl acetate (a)	Coe5009	0.269
Out5010	1-hexene (a)	Coe5010	0.874
Out5011	1-methoxy 2-propanol (a)	Coe5011	0.355
Out5012	1-pentene (a)	Coe5012	0.977
Out5013	1-propanol	Coe5013	0.561
Out5014	1-propyl benzene (a)	Coe5014	0.636
Out5015	1-propylacetate	Coe5015	0.282
Out5016	undecane (a)	Coe5016	0.384
Out5017	2,2-dimethyl butane (a)	Coe5017	0.241
Out5018	2,3-dimethyl butane (a)	Coe5018	0.541
Out5019	2-butanone	Coe5019	0.373
Out5020	2-butoxy ethanol (a)	Coe5020	0.483
Out5021	2-ethoxy ethanol (a)	Coe5021	0.386
Out5022	2-methoxy ethanol (a)	Coe5022	0.307
Out5023	2-methyl-1-butene (a)	Coe5023	0.771

Flow no.	Umberto terminology	CF no.	CF value
			[kg Eth eq./kg]
Out5024	2-methyl-2-butene (a)	Coe5024	0.842
Out5025	2-methyl-1-butanol (a)	Coe5025	0.489
Out5026	2-methyl-2-butanol (a)	Coe5026	0.228
Out5027	2-methyl hexane (a)	Coe5027	0.411
Out5028	2-methylpentane	Coe5028	0.42
Out5029	3,5-diethyl toluene (a)	Coe5029	1.295
Out5030	3,5-dimethyl ethyl benzene (a)	Coe5030	1.32
Out5031	3-methyl-1-butene (a)	Coe5031	0.671
Out5032	3-methyl-1-butanol (a)	Coe5032	0.433
Out5033	3-methyl-2-butanol (a)	Coe5033	0.406
Out5034	3-methyl hexane (a)	Coe5034	0.364
Out5035	3-methyl pentane (a)	Coe5035	0.479
Out5036	3-pentanol (a)	Coe5036	0.595
Out5037	acetaldehyde (a)	Coe5037	0.641
Out5038	acetic acid (a)	Coe5038	0.097
Out5039	acetone (a)	Coe5039	0.094
Out5040	acetylene	Coe5040	0.085
Out5041	benzaldehyde (a)	Coe5041	-0.092
Out5042	benzene (a)	Coe5042	0.218
Out5043	butane (a)	Coe5043	0.352
Out5044	butyraldehyde	Coe5044	0.795
Out5045	carbon monoxide (a)	Coe5045	0.027
Out5046	cis-2-butene (a)	Coe5046	1.146
Out5047	cis-2-hexene (a)	Coe5047	1.069
Out5048	cis-2-pentene (a)	Coe5048	1.121
Out5049	cis 1,2-dichloroethene (a)	Coe5049	0.447
Out5050	cyclohexane (a)	Coe5050	0.29
Out5051	cyclohexanol (a)	Coe5051	0.518
Out5052	cyclohexanone (a)	Coe5052	0.299

Flow no.	Umberto terminology	CF no.	CF value
			[kg Eth eq./kg]
Out5053	decane (a)	Coe5053	0.384
Out5054	diacetone alcohol (a)	Coe5054	0.307
Out2009	dichloromethane (a)	Coe5055	0.068
Out5056	diethyl ether (a)	Coe5056	0.445
Out5057	diethylketone	Coe5057	0.414
Out5058	diisopropyl ether (a)	Coe5058	0.398
Out5059	dimethoxy methane (a)	Coe5059	0.164
Out5060	dimethyl carbonate (a)	Coe5060	0.025
Out5061	dimethyl ether (a)	Coe5061	0.189
Out5062	dodecane (a)	Coe5062	0.357
Out5063	ethane (a)	Coe5063	0.123
Out5064	ethanol	Coe5064	0.399
Out5065	ethyl acetate (a)	Coe5065	0.209
Out5066	ethyl tert-butyl ether (a)	Coe5066	0.244
Out5067	ethylbenzene (ind. s.)	Coe5067	0.73
Out5068	ethylene (ind. s.)	Coe5068	1
Out5068a	ethylene (agr. s.)	Coe5068	1
Out5069	ethylene glycol (a)	Coe5069	0.373
Out5070	formaldehyde	Coe5070	0.519
Out5071	formic acid (a)	Coe5071	0.032
Out5072	heptane (a)	Coe5072	0.494
Out5073	2-hexanone (a)	Coe5073	0.572
Out5074	3-hexanone (a)	Coe5074	0.599
Out5075	hexane (a)	Coe5075	0.482
Out5076	isobutane (a)	Coe5076	0.307
Out5077	isobutanol (a)	Coe5077	0.36
Out5078	isobutene	Coe5078	0.627
Out5079	isobutyraldehyde (a)	Coe5079	0.514
Out5080	isopentane (a)	Coe5080	0.405

Flow no.	Umberto terminology	CF no.	CF value
			[kg Eth eq./kg]
Out5081	isoprene (a)	Coe5081	1.092
Out5082	isopropanol (a)	Coe5082	0.188
Out5083	isopropyl acetate (a)	Coe5083	0.211
Out5084	isopropyl benzene (a)	Coe5084	0.5
Out5085	Meta-ethyltoluene	Coe5085	1.019
Out5086	xylene (a)	Coe5086	1.108
Out2032	methane (a)	Coe5087	0.006
Out5088	methanol (a)	Coe5088	0.14
Out5089	methyl acetate (a)	Coe5089	0.059
Out5090	methyl chloride (a)	Coe5090	0.005
Out5091	methyl formate (a)	Coe5091	0.027
Out5092	methyl isobutyl ketone (a)	Coe5092	0.49
Out5093	Methyl propyl ketone	Coe5093	0.548
Out5094	methyl tert-butyl ether (a)	Coe5094	0.175
Out5095	methyl tert-butyl ketone (a)	Coe5095	0.323
Out5096	Methyl-isopropylketone	Coe5096	0.364
Out5097	neopentane (a)	Coe5097	0.173
Out4006	nitrogen dioxide	Coe5098	0.028
Out4007	NO (a)	Coe5099	-0.427
Out5100	nonane (a)	Coe5100	0.414
Out5101	octane (a)	Coe5101	0.453
Out5102	Ortho-ethyltoluene	Coe5102	0.898
Out5103	ortho-xylene	Coe5103	1.053
Out5104	para-ethyltoluene	Coe5104	0.906
Out5105	para- xylene	Coe5105	1.01
Out5106	pentanal (a)	Coe5106	0.765
Out5107	pentane (a)	Coe5107	0.395
Out5108	propane (a)	Coe5108	0.176
Out5109	propanoic acid (a)	Coe5109	0.15

Flow no.	Umberto terminology	CF no.	CF value
			[kg Eth eq./kg]
Out5110	propionaldehyde	Coe5110	0.798
Out5112	Propylene glycol	Coe5112	0.457
Out5113	sec-butanol (a)	Coe5113	0.4
Out5114	sec-butyl acetate (a)	Coe5114	0.275
Out5115	styrene (a)	Coe5115	0.142
Out3003	sulfur dioxide (a)	Coe5116	0.048
Out5117	tert-butanol (a)	Coe5117	0.106
Out5118	tert-butyl acetate (a)	Coe5118	0.053
Out5119	tetrachloroethylene (PER) (agr. s.)	Coe5119	0.029
Out5120	toluene (a)	Coe5120	0.637
Out5121	trans-2-butene (a)	Coe5121	1.132
Out5122	trans-2-hexene (a)	Coe5122	1.073
Out5123	trans-2-pentene (a)	Coe5123	1.117
Out5124	trans 1,2-dichloroethene (a)	Coe5124	0.392
Out5125	trichloroethene (a)	Coe5125	0.325
Out2042	trichloromethane (a)	Coe5126	0.023
Out5128	NMVOC, unspec. (a)	Coe5128	1 ³

Reference documents:

CML [2001]

CML [2004]

7.1.6 Reference documents

CML 2004 Van Oers, L.; CML-IA - database containing characterization factors

for life cycle impact assessment, Centre of Environmental Science

(CML) Leiden, 2004

(http://www.leidenuniv.nl/interfac/cml/ssp/index.html)

This characterization factor is based on the constraint that the substance could not be further specified. According to this conservative assumption, a rather high value was chosen. Thus, this value should not be mixed up with characterization factor of NMVOC.

CML 2001 Guinée, J. B. et al.; An operational guide to the ISO-standards, Final report – Part 3, Centre of Environmental Science (CML) Leiden

Fritsche, U. R. et al. 1999a Fritsche, U. R. Jenseit, W. Hochfeld, C.; Methodikfragen bei der

Berechnung des Kumulierten Energieaufwands (KEA). Arbeitspapier im Rahmen des UBA-F&E-Vorhabens Nr. 104 01 123, Darmstadt

1999

Fritsche U. R. et al. 1999b Fritsche, U. R.; KEA: mehr als eine Zahl - Basisdaten und Methoden

zum Kumulierten Energieaufwand (KEA). Broschüre im Rahmen des UBA-F&E-Vorhabens Erarbeitung von Basisdaten zum Energieaufwand und der Umweltbelastung von energieintensiven Produkten und Dienstleistungen für Ökobilanzen und Öko-Audits,

Berlin 1999

- 7.2 Dokumentation der Sachbilanzergebnisse (nur elektronisch)
- 7.3 Dokumentation der Ergebnisse der Wirkungsabschätzung (nur elektronisch)
- 7.4 Zur Modellierung durchgeführte Umrechnungen (nur elektronisch)