

Risikobetrachtung für eine längerfristige Offenhaltung der Schachtanlage Asse II Variation der Parametersätze der radioökologischen Modellierung mit Hilfe der Monte-Carlo-Methode

Darmstadt, 08.08.2013

Im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU)

Vorhaben UM09A03205

Unterstützung des BMU bei der Aufsicht über Betrieb und Stilllegung der Asse

Öko-Institut e.V.

Geschäftsstelle Freiburg

Postfach 17 71

79017 Freiburg. Deutschland

Hausadresse

Merzhauser Straße 173 79100 Freiburg. Deutschland

Tel. +49 (0) 761 - 4 52 95-0

Fax +49 (0) 761 - 4 52 95-88

Büro Darmstadt

heinstraße 95

64295 Darmstadt. Deutschland

Tel. +49 (0) 6151 - 81 91-0

Fax +49 (0) 6151 - 81 91-33

Büro Berlin

Schicklerstraße 5-7

10179 Berlin. Deutschland

Tel. +49 (0) 30 - 40 50 85-0

Fax +49 (0) 30 - 40 50 85-388

Risikobetrachtung für eine längerfristige Offenhaltung der Schachtanlage Asse II

Variation der Parametersätze der radioökologischen Modellierung mit Hilfe der Monte-Carlo-Methode

Autoren:

Öko-Institut:

Dipl.-Phys. Christian Küppers
Dr.-Ing. Veronika Ustohalova

unter Mitwirkung von Dipl.-Ing. Manuel Claus

unter Mitarbeit des Instituts für Endlagerforschung, TU Clausthal:

Prof. Dr. Klaus-Jürgen Röhlig

Dipl.-Ing. Xiaoshuo Li Dr. Elmar Plischke

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muss nicht mit der Meinung des Auftraggebers (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) übereinstimmen.

Inhaltsverzeichnis

Zusa	mmenfassung	1
1	Einleitung und Zielsetzung	3
2	Beschreibung des radioökologischen Modells zum Transport im Deckgebirge und zur Ermittlung der Strahlenexposition	5
2.1	Radionuklidmigration im Deckgebirge	
	2.1.1 Transportgleichung	5
	2.1.2 Berechnung bei Schadstoffeinträgen über eine längere	7
	Zeitspanne	/
	Quellterm	7
	2.1.4 Transportrelevante Parameter beim Transport im	
	Deckgebirge,	
	2.1.4.1 Transportpfad	
	2.1.4.3 Druckverhältnisse und Auspressrate	
	2.1.4.4 Abstandsgeschwindigkeiten, Dispersionskoeffizienten und Dispersionslänge	۵
	2.1.4.5 Sorptionskoeffizienten und Retardationsfaktor	10
2.2	Berechnung der Strahlenexposition	
3	Parameter der radioökologischen Modellierung und ihre Variierbarkeit	12
3.1	Kurzbeschreibung der Parameter der radioökologischen	
	Modellierung	12
	3.1.1 Parameter im Modellteil Quellterm und Transport im	
	Deckgebirge	
3.2	3.1.2 Parameter im Modellteil Strahlenexposition	
3.2	Variierbare Parameter der radioökologischen Modellierung	13
	Grubengebäude und Quellterm an der Schnittstelle	
	Grubengebäude/Deckgebirge	13
	3.2.2 Variierbare Parameter der Freisetzung aus dem	4.4
	Grubengebäude - Auspressrate	14
3.3	Variierbare Parameter bei der Berechnung der	13
0.0	Strahlenexposition ausgehend von einer Kontamination des	
	genutzten Grundwassers	18
3.4	Übersicht der variierten Parameter	
4	Vorgehensweise bei der Monte-Carlo-Variation	22
5	Ergebnisse	
5.1	Gruppe "Kurzlebige Radionuklide"	
	1 1 " - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	

5.2	Grup	pe "Langlebige Radionuklide"	26
5.3	_	pe "Radionuklide in Zerfallsketten"	
5.4	Sent	sitivitätsanalyse - Korrelation zwischen Ergebnisgrößen und	
		elnen Eingangsparametern	30
	5.4.1	· · · · · · · · · · · · · · · ·	
	5.4.2 5.4.3	"	
Litera		erzeichnis	
		Parametersätze der einzelnen Realisierungen	
	•	_	
Anha	ng 2:	Bericht /INE 2012/	A2-1
Tabe	llenv	verzeichnis	
Tabelle		Porosität der Gesteinsformationen nach /Colenco 2006a/ in Abhängigkeit von der Teufe	8
Tabelle		Variierte gesteinsbezogene Parameter mit Wertebereich und Verteilung	21
Tabelle	e 3.2:	Variierte elementspezifische Sorptionskoeffizienten	21
Tabelle		Einteilung der Radionuklide in Gruppen für die Einstellung der Randbedingungen	24
Tabelle		Maximale Dosis mit der relevanten Parameterkombination für Ni-	25
Tabelle	e 5.2:	Maximale Dosen mit der relevanten Parameterkombination für "Kurzlebige Radionuklide"	27
Tabelle	e 5.3:	Maximale Dosen mit der relevanten Parameterkombinationen für Radionuklide in Zerfallsketten	29
Tabelle	e 5.4:	Korrelationskoeffizienten zwischen Ergebnisgrößen und Eingangsparametersätzen für Ni-63 der Gruppe "Kurzlebige Radionuklide"	31
Tabelle	e 5.5:	Korrelationskoeffizienten zwischen Ergebnisgrößen und Eingangsparametersätzen für die Gruppe "Langlebige Radionuklide"	33
Tabelle	e 5.6:	Korrelationskoeffizienten zwischen Ergebnisgrößen und Eingangsparametersätzen für die Gruppe "Radionuklide in	
		Zerfallsketten"	35

Abbildungsverzeichnis

Abbildung 2.1:	Überblick über die in /Öko 2012/ berücksichtigten Expositionspfade	10
Abbildung 3.1:	Abhängigkeit zwischen der Longitudinalen Dispersionslänge und der Wegstrecke	17
Abbildung 4.1:	Simulationsumgebung RESUS	22
Abbildung 4.2:	RESUS-Benutzeroberfläche mit den Parametern der probablistischen Analyse	23
Abbildung 5.1:	Ni-63: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 a)	
Abbildung 5.2:	Ni-63: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für Erwachsene	26
Abbildung 5.3:	Cl-36: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)	27
Abbildung 5.4:	Ni-59: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)	28
Abbildung 5.5:	Se-79: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)	28
Abbildung 5.6:	Tc-99: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)	29
Abbildung 5.7:	Pa-231: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)	30
Abbildung 5.8:	U-235: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)	30
Abbildung 5.9:	Ni-63: Darstellung von Parameterabhängigkeiten (Realisierungen sortiert nach aufsteigender Maximaldosis)	32
Abbildung 5.10:	Ni-59: Darstellung von Parameterabhängigkeiten (Realisierungen sortiert nach aufsteigender Maximaldosis)	33
Abbildung 5.11:	Ni-59: Beispielhafte Korrelationen zwischen den Ergebnisgrößen und den eingehenden Parametern	
Abbildung 5.12:	U-235: Darstellung von Parameterabhängigkeiten (Realisierungen sortiert nach aufsteigender Maximaldosis)	

Das Öko-Institut hat sich im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit in verschiedenen Untersuchungen mit Berechnungen zum Radionuklidtransport im Deckgebirge und zur sich daraus ergebenden potenziellen Strahlenexposition der Bevölkerung durch ein Auspressen von radioaktiv kontaminierter Lösung aus der Schachtanlage Asse II befasst. In der hier vorliegenden Studie wurde ein Verfahren entwickelt und erprobt, mit dem eine probabilistische radiologische Konsequenzenanalyse möglich ist. Dazu wurde unter Mitarbeit des Institut für Endlagerforschung der TU Clausthal eine Parametervariation mit Hilfe der Monte-Carlo-Methode durchgeführt.

Zunächst wurden die Parameter der radioökologischen Modellierung auf die sinnvolle Möglichkeit der Variation mit Hilfe der Monte-Carlo-Methode geprüft. Die entsprechenden Verteilungsfunktionen, Parameterabhängigkeiten und –korrelationen wurden identifiziert. Aus diesen wurden Parametersätze für 11 Radionuklide und jeweils 100 Realisierungen generiert ("Sampling"). Für jeden Parametersatz erfolgte zunächst die Modellberechnung des Transports durch das Deckgebirge. Anschließend konnte der Satz der Ergebnisgrößen der Radionuklidkonzentrationen als Parametersatz für die Berechnung der Strahlenexposition verwendet werden. Die Transportberechnungen wurden teils mit einem Ansatz des Öko-Instituts und parallel mit dem 1D-numerischen Modell RockFlow durchgeführt. Für die Darstellung der sich ergebenden Strahlenexpositionen wurde der am stärksten dosisrelevante Pfad, nämlich die Trinkwasseraufnahme, ausgewählt.

Die höchste Dosis von 4,55 mSv/a nach 12.300 Jahren wurde für die Altersgruppe Kleinkind (Alter ≤ 1 Jahr) für das Zerfallsprodukt U-235 der Pu-239-Reihe ermittelt. Das früheste Dosismaximum trat in den Berechnungen nach 1.190 Jahren auf und betrug 0,00283 mSv/a durch das Radionuklid Ni-63 mit einem niedrigen Wert des Sorptionskoeffizienten.

Welche Parameter in welcher Kombination den größten Einfluss auf das Systemverhalten und folglich auf die Erhöhung der Dosis haben, wurde mit Hilfe der Sensitivitätsanalyse bestimmt. Als Sensitivitätsmaß wurden die Korrelationskoeffizienten berechnet. Zusammenfassend kann aus den Korrelationsbeziehungen Folgendes festgestellt werden:

- Der Sorptionskoeffizient hat einen wesentlichen Einfluss auf das Transportverhalten:
 - Allgemein besteht eine Korrelation zwischen der Porosität und der steigender Dosis, wenn der K_d-Wert konstant gehalten wird. Die Schwankung des Wertes des Retardationsfaktors hängt von der Porosität ab, was im Ergebnis zu einer starken Korrelation zwischen der maximalen Dosis und Porosität führt.
 - Je größer der K_d-Wert ist, desto weniger Einfluss hat die Porosität auf den Transport. Die Korrelation zwischen der Dosisänderung und der Porosität aufgrund der dominierenden Sorption ist sehr klein.

- Der Einfluss der Geschwindigkeit sowie der Pfad- und Dispersionslänge ist durch die Sorption vermindert. Die Vernachlässigung des Sorption bei den Transportberechnungen allgemein bewirkt eine deutlich stärkere Abhängigkeit des Systemtransportverhaltens von der Geschwindigkeit, der Pfad- und der Dispersionslänge.
- Zerfallsprodukte zeigen nur eine geringe Abhängigkeit von der Pfad- und Dispersionslänge, weil sie während des Transports mit dem Mutterradionuklid entstehen.

1 Einleitung und Zielsetzung

Die vom Öko-Institut durchgeführten radioökologischen Berechnungen /Öko 2012/ zum Radionuklidtransport im Deckgebirge und zur sich daraus ergebenden potenziellen Strahlenexposition der Bevölkerung unter Zugrundelegung von Lebensgewohnheiten der Referenzpersonen analog der Allgemeinen Verwaltungsvorschrift (AVV) zu § 47 StrlSchV /AVV 2012/ und analog der Berechnungsgrundlagen zur Ermittlung der Strahlenexposition infolge bergbaubedingter Umweltradioaktivität /BglBb 2010/ wurde durch eine Parametervariation mit Hilfe der Monte-Carlo-Methode in eine probabilistische radiologische Konsequenzenanalyse überführt. Dies sollte eine bessere Beurteilung der radiologischen Risiken im Falle eines nicht mehr beherrschten Lösungszutritts ermöglichen. Insofern handelt es sich bei dieser Arbeit um einen weiteren Schritt auf dem Wege zu einer realistischeren Einschätzung potenzieller Strahlenexpositionen.

Die bisherige radioökologische Modellierung stellt einen deterministischen Ansatz dar und basiert auf einer vereinfachten Abbildung der Transportvorgänge im System Deckgebirge und den Berechnungen des Transfers der Radionuklide über die Expositionspfade zum Menschen in der Biosphäre mit Parameterwerten in Anlehnung an /AVV 2012/ bzw. /BglBb 2010/. In beiden Fällen wird jeweils nur ein einziger Parametersatz als Input eingeführt. Das Modell liefert als Ergebnis eine Dosis einer Referenzperson der Bevölkerung. Die Parameterunsicherheiten sind hier durch in der Summe sicherheitsgerichtete konservative Annahmen ersetzt.

Eine Beschreibung mit Hilfe der Monte-Carlo-Methode führt dagegen zu einem probabilistischen Ansatz. Als Input fließt eine auf vorgegebenen Verteilungsfunktionen basierende Schar an Parametersätzen ein und es wird eine Bandbreite und eine Verteilungsfunktion der Modellergebnisse gewonnen.

Im Vordergrund dieser Arbeit stand die Entwicklung und Prüfung der Methodik des Vorgehens. Die Möglichkeiten der Überführung in eine probabilistische radiologische Konsequenzenanalyse ausgehend aus der bereits durchgeführten deterministischen Modellierung wurden geprüft. Aus den Parametervariationen wurden die sich ergebenden möglichen Strahlenexpositionen berechnet. Die Arbeit stellt insofern einen Fortschritt dar, als jetzt im Rahmen der Modellannahmen Parameterunsicherheiten abgebildet werden können. Die Ergebnisse können aber auf dem gegenwärtigen Kenntnisstand noch nicht zur Ableitung von Aussagen zum tatsächlichen Risiko oder zum realen Systemverhalten dienen.

Im ersten Schritt wurden die Parameter der radioökologischen Modellierung auf die Möglichkeit der Variation der Monte-Carlo-Methode geprüft. Die entsprechenden Verteilungsfunktionen, Parameterabhängigkeiten und –korrelationen wurden identifiziert. Aus diesen wurden Parametersätze generiert ("Sampling"). Für jeden Parametersatz erfolgte zunächst die Modellberechnung des Transports durch das Deckgebirge. Anschließend konnte der Satz der Ergebnisgrößen der Radionuklidkonzentrationen als Parametersatz für die Berechnung der Strahlenexposition verwendet werden.

Für diese Arbeit wurde ein vereinfachter Quellterm aus den dosisbestimmenden Radionukliden generiert. Die Transportberechnungen wurden teils mit dem Ansatz des Öko-Instituts /Öko 2012/ und parallel mit dem 1D-numerischen Modell Rock-Flow /RockFlow 2009, Habbar 2001/ durchgeführt. Dabei wurden die in beiden Modellen relevanten Parameter verglichen und entsprechend der Definitionen und Einheiten die Eingabe und Auswertung der Berechnungen angepasst. Von weitergehenden Berechnungen mit dem Ansatz zur Transportberechnung nach /Öko 2012/ wurde abgesehen, weil das Modell im Rahmen weiterer Arbeiten fortentwickelt wird. Für die Darstellung der sich ergebenden Strahlenexpositionen wurde der am stärksten dosisrelevante Pfad, nämlich die Trinkwasseraufnahme, ausgewählt.

Die Auswertung der Ergebnisgrößen erfolgte anhand einer Sensitivitätsanalyse. Die Möglichkeiten einer Unsicherheitsanalyse sollen erst im Rahmen einer Weiterentwicklung der Modellierung geprüft werden.

- <u>Sensitivitätsanalyse:</u> Die Zusammenhänge zwischen den Ein- und Ausgangsparametern wurden mittels statistischer Auswertung ermittelt.
- Konsequenzenanalyse: Im Hinblick darauf, ob diese statistische Auswertung der Ergebnisgrößen eine Aussage hinsichtlich der Wahrscheinlichkeit von radiologischen Konsequenzen liefert, wurden qualitative Aussagen getroffen.

Die Berechnungen der Strahlenexpositionen unter Variation der eingehenden Parameterwerte haben gezeigt, dass sich eine Kontamination des genutzten Grundwassers eher im Langzeitmaßstab entwickeln wird. Es ist deswegen für die zukünftige Arbeiten notwendig zu beurteilen, welche Parameter einer zeitlichen Variation über welche Zeiträume unterliegen. Eine Grundlage dafür könnten die Ermittlungen auf dem Gebiet der Endlagerung sein. Für die weitergehende Bewertung möglicher radiologischer Langzeitfolgen nach einem Absaufen der Schachtanlage Asse II sollten diese Parameterwerte in plausiblen Grenzen variiert werden.

Das hier verwendete radioökologische Modell wird in seinen Grundzügen in Kapitel 2 beschrieben. Die Variierbarkeit der radioökologischen Parameter wird in Kapitel 3 diskutiert. In Kapitel 4 wird die Vorgehensweise bei der Monte-Carlo-Variation mit ihren einzelnen Arbeitsschritten vorgestellt. Die Ergebnisse der Monte-Carlo-Variation werden in Kapitel 5 dargestellt. In Anhang 1 sind Parametersätze der einzelnen Realisierungen bei der Variation aufgelistet. Anhang 2 enthält einen Bericht des Karlsruhe Institute of Technology (KIT), Institut für Nukleare Entsorgung (INE), auf dem die hier verwendeten Sorptionskoeffizienten basieren.

2 Beschreibung des radioökologischen Modells zum Transport im Deckgebirge und zur Ermittlung der Strahlenexposition

Im Folgenden werden die Grundzüge des radioökologischen Modells zur Berechnung des Radionuklidtransports im Deckgebirge und zur Abschätzung der möglichen Strahlenexposition entlang der relevanten Expositionspfade in der Biosphäre vorgestellt. Die hier aufgeführte Kurzbeschreibung basiert auf dem Bericht "Modellierung des Transports von Radionukliden durch Gesteinsschichten und der resultierenden Strahlenexposition von Referenzpersonen" vom 19.03.2012 /Öko 2012/. Es soll der erforderliche Überblick über die hier diskutierten Parameter und der Art und Weise, wie sie in die Modellberechnungen einfließen, gegeben werden.

Das radioökologische Modell besteht aus zwei Teilen:

- Modellteil der Radionuklidmigration im Deckgebirge. Dieser Teil hat die zeitliche Entwicklung der Konzentration von Radionukliden im oberflächennahen Grundwasser als Ergebnis (siehe Kapitel 2.1).
- Modellteil zur Beschreibung des durch eine Grundwassernutzung stattfindenden Transfers von Radionukliden und der möglichen Strahlenexposition von Personen (siehe Kapitel 2.2).

Diese zwei Modellteile sind in einem Berechnungsprogramm implementiert.

2.1 Radionuklidmigration im Deckgebirge

2.1.1 Transportgleichung

Die Transportgleichung und die Ableitung ihrer analytischen Lösung wird im folgenden Abschnitt in ihren Grundzügen soweit beschrieben, dass die Variation relevanter Parameter nachvollzogen werden kann. Für die ausführliche Beschreibung verweisen wir auf /Öko 2012/.

Die Transportberechnung basiert auf der analytischen Lösung der 1D-Konvektions-Dispersions-Transportgleichung, die das Konvektions-Dispersions-Modell mit Zerfall erster Ordnung und Gleichgewichtssorption gemäß der linearen Henry-Isotherme beschreibt.

$$\left[1 + \frac{(1 - \varepsilon)}{\varepsilon} \cdot \rho_{B} \cdot K_{d}\right] \cdot \frac{\partial c}{\partial t} + u_{a} \cdot \frac{\partial c}{\partial x} = \left[\frac{\partial}{\partial x} D_{x} \cdot \frac{\partial c}{\partial x}\right] - \left[1 + \frac{(1 - \varepsilon)}{\varepsilon} \cdot \rho_{B} \cdot K_{d}\right] \cdot c \cdot \lambda \quad (2.1)$$

Die Parameter dieser partiellen differentialen Form wurden entsprechend den Parameterdefinitionen des Programms RockFlow /RockFlow 2009/ angeglichen.

Dabei bedeuten

- ε mittlere effektive Porosität (Porenvolumen) [-]
- $ho_{
 m B}$ Feststoffdichte des Gesteins bzw. der Schicht [kg/l]

- K_d mittlerer Sorptionskoeffizient (Verhältnis zwischen der Konzentration des Elements in der festen Phase und Konzentration des Elements in der flüssigen Phase) [ml/g]
- C Aktivitätskonzentration [Bq/m³]
- t Zeit [a]
- u_a Abstandsgeschwindigkeit (Geschwindigkeit, mit der das betrachtete Radionuklid ohne Dispersion und Diffusion transportiert würde), entspricht dem Quotienten von Filtergeschwindigkeit und Porosität [m/a]
- x longitudinale Wegstrecke [m]
- D_x longitudinaler Dispersionskoeffizient (in x-Richtung) als Summe aus den Dispersionskoeffizienten und molekularen Diffusionskoeffizienten (hier: molekulare Diffusion vernachlässigt) [m^2/a]
- λ Zerfallskonstante (für den radioaktiven Zerfall) [1/a]

Mit dem Retardationsfaktor

$$R = \left[1 + \frac{(1 - \varepsilon)}{\varepsilon} \cdot \rho_B \cdot K_d \right]$$
 (2.2)

ergibt sich

$$\frac{\partial c}{\partial t} + \frac{u_a}{R} \cdot \frac{\partial c}{\partial x} = \left[\frac{\partial}{\partial x} \frac{D_x}{R} \cdot \frac{\partial c}{\partial x} \right] - c \cdot \lambda. \tag{2.3}$$

Die Anfangsbedingung ist als eine sofortige Sorption einer Teilmenge des Stoffeintrags in die Gesteinsmatrix definiert (rechnerisch bewirkt durch die Division durch den Retardationsfaktor). Als Randbedingung werden verschwindende Konzentrationen am Rande des halbunendlich ausgedehnten Porenraums gegeben. Für die zeitabhängige Aktivitätskonzentration am Ort x ergibt sich dann:

$$c^{1D} = \frac{E_0}{2 \cdot R \cdot A \cdot n_t \cdot (\pi \cdot t \cdot D_x')^{\frac{1}{2}}} \cdot \exp \left[-\frac{\left(x - u_a' \cdot t\right)^2}{4D_x' \cdot t} - \lambda \cdot t \right]$$
 (2.4)

Darin bedeuten, soweit noch nicht bereits zu den vorangehenden Gleichungen genannt:

- c^{1D} Aktivitätskonzentration am Ort x zur Zeit t für 1D-Modellierung [Bq/m³]
- E_0 pulsförmiger Eintrag an der Quelle [Bq]
- A durchströmbare Fläche A [m²]
- *n_f* Durchflusswirksame Porosität der Fläche A [-]

Der Stoffeintrag in der betrachteten Region wird also verlangsamt oder reduziert durch:

- die scheinbare Reduktion der advektiven Geschwindigkeit (ausgedrückt durch Division durch R),
- · die Dispersion,
- die Sorption in der porösen Gesteinsmatrix, ausgedrückt durch den Term $E_0/(R \cdot n_f \cdot A)$.

Berechnungen mit der Gleichung (2.4) erfordern konstante Werte von Parametern wie Sorptionskoeffizienten, Dispersionskoeffizienten oder Abstandsgeschwindigkeit auf dem Transportpfad.

2.1.2 Berechnung bei Schadstoffeinträgen über eine längere Zeitspanne

Durch aufeinander folgende Berechnungen mit immer neuen Schadstoffeinträgen und der Addition der Beiträge an einem bestimmten Ort und in einem bestimmten Jahr wird die zeitliche Entwicklung der Kontamination in Gestein und Wasser ermittelt. Die Aufsummierung erfolgt vom ersten betrachteten bis zum letzten betrachteten Jahr.

2.1.3 Rührkesselmodell und die Retardationswirkung der Kammern, Quellterm

In den bisherigen Berechnungen /Öko 2010, Öko 2011, Öko 2012/ wurde analog /GRS 2009/ davon ausgegangen, dass die radioaktiven Stoffe homogen über ein Lösungsvolumen von 1,3·10⁶ m³ (Initialvolumen vor dem Zeitpunkt der Carnallititumlösung) oder von 2,2·10⁶ m³ (nach Auflösung des Carnallitits) vorliegen. Die entsprechenden Aktivitätskonzentrationen nach der Auflösung in 1,3·10⁶ m³ wurden in dieser Arbeit für die Quelltermbildung aus /Öko 2012/ übernommen. Es sei hier angemerkt, dass zwar von der Auflösung des Carnallitits auszugehen ist, die homogene Vermischung aber nicht zwingend ist. Die Gesamtaktivität wird auf ein Lösungsvolumen von 1,3·10⁶ m³ bezogen, um rechnerisch eine höhere Aktivitätskonzentration zu erhalten. Zur genaueren Untersuchung müssten zeitliche Abläufe und Inventare auf einzelne Einlagerungskammern einbezogen werden. In ausgepresster Lösung könnten dann auch höhere Konzentrationen auftreten als sie hier zugrunde liegen. Diese Betrachtung ist aber nicht Gegenstand dieser Arbeit.

2.1.4 Transportrelevante Parameter beim Transport im Deckgebirge,

2.1.4.1 Transportpfad

In Anlehnung an die in /Colenco 2006b/ untersuchten Rechenfälle, die den Transport der aus dem gefluteten Grubengebäude ausgepressten Lösung in den Aquifer des Deckgebirges in der Nachbetriebsphase beschreiben, wurden ursprünglich für den Austrag der Radionuklide aus dem Grubengebäude durch das Deckgebirge zwei Fließpfade unterschiedlicher Länge von 240 m und 420 m für den Radionuklidtransport ausgewählt. Die eher unrealistische Pfadlänge von 240 m wurde aus Konservativitätsgründen eingesetzt, unter anderem wurde eine ungünstigere Carnallititschichtung und eine Grundwasserförderung aus tieferen Grundwasserschichten unterstellt. Der Fließpfad einer Länge von 420 m bezieht sich auf eine bekannte Störung im Deckgebirge.

2.1.4.2 Porosität und Dichte

Die bei den kritischen Pfaden zu passierenden Gesteinsschichten wurden anhand deren Sorptions- und Transporteigenschaften bereits in /Öko 2012/ basierend auf den Arbeiten /INE 2010/ und /Colenco 2006a/ analysiert. Die Schicht mit den im Hinblick auf die Radionuklidkonzentration im genutzten Grundwasser ungünstigsten Eigenschaften wurde für die Berechnungen ausgewählt (im allgemeinen mittlerer Muschelkalk mm2).

Die für die Berechnungen in der Retardationsfaktoren (Gleichung (2.2)) erforderlichen Werte der Porosität in Abhängigkeit von der Teufe wurden in Anlehnung an /Colenco 2006a/ ermittelt (siehe Tabelle 2.1 und /Öko 2012/). Hierbei handelt es sich um die fluidzugänglichen bzw. transportwirksamen Porosität des für die Migration zu berücksichtigenden Porenraumes.

Tabelle 2.1: Porosität der Gesteinsformationen nach /Colenco 2006a/ in Abhängigkeit von der Teufe

	Gestein							
Teufe [m]	mo	Rmm (mm2)	mm	mu	mu 1-3	so		
0-200	0,06	0,075	0,05	0,06	0,06	0,1		
200 - 400	0,04	0,075	0,05	0,04	0,04	0,1		
400-600	0,04	0,075	0,05	0,04	0,04	0,075		
> 600	0,03	0,075	0,05	0,03	-	-		

mo: oberer Muschelkalk mm: oberer Muschelkalk mittlerer Muschelkalk

Rmm (mm2 in /INE 2012/): Residualgebirge - Mittlerer Muschelkalk

mu und mu1-3: unterer Muschelkalk - Wellenkalk, weitere Differenzierung des unteren

Muschelkalks (siehe /INE 2012/ in Anhang 2)

so: oberer Buntsandstein

2.1.4.3 Druckverhältnisse und Auspressrate

Nach dem Absaufen des Grubengebäudes erfolgt eine Auspressung der Lösung in Richtung der Erdoberfläche, die durch die Deformation des Grubengebäudes verursacht wird. Die Auspressarte und die Auspressfläche sind entsprechend dem Modellansatz für die Transportgeschwindigkeiten – im radioökologischen Modell werden die Abstandsgeschwindigkeiten eingesetzt - bestimmend.

2.1.4.4 Abstandsgeschwindigkeiten, Dispersionskoeffizienten und Dispersionslänge

In die Berechnung der zeitlichen Konzentrationsentwicklung entlang des Pfades fließt entsprechend den Gleichungen (2.1) und (2.2) der Wert der Abstandsgeschwindigkeit u_a in Haupttransportrichtung ein. Die Haupttransportrichtung ist durch den angenommenen Pfad gegeben.

Ausgehend von den Ermittlungen der gebirgsmechanischen Modellierung /IFAD 2011/ zur Deformation des Grubengebäudes und den Auspressraten von in Höhe von 200 m³/a bis 1.000 m³/a leiten sich die entsprechenden Werte der Abstandsgeschwindigkeiten ab.

Der Dispersionskoeffizient ist das Produkt aus Dispersionslänge und Abstandsgeschwindigkeit:

$$D_{x} = a_{x} \cdot u_{a} \tag{2.5}$$

Für die Dispersionslänge kann folgende Beziehung geschrieben werden /FUGRO 2010/:

$$a_{x} = 0.03 \cdot X^{0.3 + X^{-0.075}} \tag{2.6}$$

Die Dispersionslänge und der Dispersionskoeffizient sind skalenabhängige Größen. Größere Dispersionskoeffizienten bewirken im Ergebnis ein früheres Eintreten des Konzentrationsmaximums bei einer stärkeren Verschmierung der Front, was niedrigere Maxima der Konzentrationen und ein früheres Eintreten in das oberflächennahe Grundwasser zur Folge hat. Bei kleineren Dispersionskoeffizienten wird das Maximum der Konzentrationen bei ausreichend langer Halbwertszeit höher, tritt aber mit einer deutlichen zeitlichen Verzögerung ein /Öko 2012/.

Der gegenwärtige Ansatz des radiologischen Modelles mit der analytischen Lösung der Transportgleichung (Gleichung (2.4)) erlaubt keine Variation der Gesteinseigenschaften entlang des Transportweges. Für eine konservative Betrachtungsweise ist es daher sinnvoll, die ungünstigsten Gesteinseigenschaften im Hinblick auf die ermittelte Dosis zugrunde zu legen. Die Berechnungen in /Öko 2012/ haben gezeigt, dass sich bei den Gesteinen des unteren und mittleren Muschelkalks (mu1-3 und mm2 nach /INE 2010/) die höchsten Strahlenexpositionen ergeben.

2.1.4.5 Sorptionskoeffizienten und Retardationsfaktor

Das Sorptionsverhalten einzelner Radionuklide beeinflusst maßgeblich deren Transportverhalten. Dies wird mit Hilfe des Sorptionskoeffizienten K_d beschrieben. Diese Eigenschaft fließt in die hier zugrunde gelegten Gleichungen in der Form des Retardationsfaktors ein. Bereits im Rahmen der Studie /Öko 2012/ wurde die Sorption mitberücksichtigt. Dazu hat KIT-INE /INE 2010/ experimentelle Daten zu den Sorptionskoeffizienten einiger dosisrelevanter Elemente in den Asse-Gesteinen ausgewertet.

2.2 Berechnung der Strahlenexposition

Bezüglich einer ausführlichen Beschreibung des Modellteils zur Berechnung der Strahlenexposition wird auf /Öko 2012/ verwiesen. Abbildung 2.1 zeigt die dort berücksichtigten Expositionspfade im Überblick.

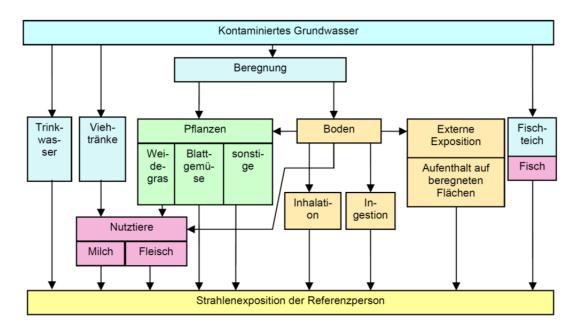


Abbildung 2.1: Überblick über die in /Öko 2012/ berücksichtigten Expositionspfade

Für die Berechnung der Strahlenexposition von Einzelpersonen der Bevölkerung werden in /Öko 2012/ folgende für die innere Strahlenexposition relevanten Expositionspfade berücksichtigt:

- Trinkwasser,
- Wasser Fisch,
- Viehtränke Kuh Milch.
- Viehtränke Tier Fleisch,
- Beregnung Pflanze,
- Beregnung Futterpflanze Tier Milch,

- Beregnung Futterpflanze Tier Fleisch,
- Inhalation resuspendierter Bodenpartikel,
- Muttermilch infolge der Aufnahme radioaktiver Stoffe durch die Mutter über alle o. g. Ingestionspfade sowie über die Inhalation resuspendierter Bodenpartikel.

Außerdem wird die externe Exposition durch Aufenthalt auf mit kontaminiertem Grundwasser beregneten Flächen berücksichtigt.

Der Expositionspfad Trinkwasser hat einen direkten Zusammenhang mit der Strahlenexposition der Referenzpersonen. Außerdem trägt dieser Expositionspfade wesentlich zur Gesamtdosis bei. Dies ist insbesondere bei der Altersgruppe Kleinkinder (Alter ≤1 Jahr) der Fall, wenn statt einem Muttermilchverzehr zusätzlich zum direkten Trinkwasser der Verzehr von mit kontaminiertem Wasser angesetzter Säuglingsnahrung angenommen wird. Als Trinkwasserkonsum werden für das Kleinkind (Alter ≤1 Jahr) entsprechend /AVV 2012/ 430 Liter im Jahr angesetzt, für den Erwachsenen 700 Liter im Jahr.

Die Dosis durch Trinkwasserkonsum wird wie folgt berechnet:

$$H_{Tw,T,R,r}(t) = C_{Tw,r}(t) \cdot U_{Tw,R} \cdot g_{T,R,r}$$
(2.7)

Dabei bedeuten

 $H_{Tw,T,R,r}(t)$ Dosis durch Trinkwasserkonsum des Organs T der Referenzperson R durch das Nuklid r zur Zeit t [Sv/a]

 $C_{Tw,r}(t)$ Aktivitätskonzentration des Nuklids r im Trinkwasser zur Zeit t [Bq/I]

 U_{TwR} Trinkwasserkonsum pro Jahr für die Referenzperson R [I/a]

 $g_{T,R,r}$ Dosiskoeffizient für Ingestion für das Organ T, die Referenzperson R und das Nuklid r [Sv/Bq]

3 Parameter der radioökologischen Modellierung und ihre Variierbarkeit

In Kapitel 3.1 werden die Parameter der radioökologischen Modellierung zunächst kurz beschrieben. In Kapitel 3.2 wird die Variierbarkeit der Parameter im Modellteil Quellterm und Transport im Deckgebirge diskutiert, in Kapitel 3.3 die Variierbarkeit der Parameter im Modellteil der Berechnung der Strahlenexposition.

3.1 Kurzbeschreibung der Parameter der radioökologischen Modellierung

3.1.1 Parameter im Modellteil Quellterm und Transport im Deckgebirge

Freisetzung im Grubengebäude – Quellterm

Folgende Parameter sind hier generell von Bedeutung: Lösungsvolumen, Löslich-keitsgrenzen einzelner Radionuklide bzw. Elemente, geochemische Reaktionen und deren Kinetik, Auswirkungen der Maßnahmen, die die Lösung vermindern oder verzögern und dem Transport entgegenwirken sollen.

Freisetzung aus dem Grubengebäude

Der wichtigste Parameter ist die zeitliche Entwicklung des Quellterms an der Schnittstelle Grubengebäude/Deckgebirge, weitere maßgebliche Parameter sind die Auspressraten und die Auspressdauer. Aus diesen Parametern ergibt sich das pro Zeiteinheit in das Deckgebirge mit der Lösung ausgepresste radioaktive Inventar.

Migration im Deckgebirge

Die Randbedingung für die Migration ist die zeitliche Entwicklung des in das Deckgebirge ausgepressten radioaktiven Inventars. Maßgeblich für den Transport sind die Längen von Transportwegen im Deckgebirge bis zum genutzten Grundwasser sowie die Transportgeschwindigkeiten (Abstandsgeschwindigkeiten) und die Porosität der durchströmten Schichten. Die Rückhalteeffekte werden in Form von Sorptionskoeffizienten ausgedrückt.

3.1.2 Parameter im Modellteil Strahlenexposition

Randbedingung für die Strahlenexposition der Referenzperson ist die zeitliche Entwicklung der Aktivitätskonzentration im Grundwasser. Die Strahlenexposition der Referenzpersonen wird in dem Modellteil gemäß den Expositionspfaden und Nutzungsszenarien in Anlehnung an die AVV zu § 47 StrlSchV /AVV 2012/ oder die Berechnungsgrundlagen Bergbau /BglBb 2010/ bestimmt. Parameter, die in diese Berechnungen einfließen, sind insbesondere:

- die Verzehrraten der Referenzpersonen,
- die flächenbezogene Ertragsrate angebauter Pflanzen,
- die Transferfaktoren Boden-Pflanze und Wasser-Fisch,

- die Beregnungsrate,
- die Anzahl der Jahre, über die eine Fläche beregnet wird,
- der Anteil der auf der Pflanze bei Beregnung abgelagerten Aktivität,
- die Verweildauer auf Pflanzenoberflächen,
- das Abklingen von Radionukliden zwischen Ernte und Verzehr,
- die Migration aus dem Wurzelbereich von Pflanzen hinaus.

Die Berechnungsgrundlagen /AVV 2012/ und /BglBb 2010/ unterscheiden sich unter anderem in einzelnen Annahmen (z. B. der ungünstigsten Einwirkungsstellen) und in den Parameterwerten (z. B. Dauer des Aufenthalts an der ungünstigsten Einwirkungsstelle, Verzehrsraten, Anteile nicht lokal erzeugter Lebensmittel).

3.2 Variierbare Parameter der radioökologischen Modellierung

3.2.1 Retardationswirkung der Kammern, Freisetzung im Grubengebäude und Quellterm an der Schnittstelle Grubengebäude/Deckgebirge

Die bislang durchgeführten Berechnungen der radioökologischen Modellierung zur Bestimmung des aus dem Grubengebäude austretenden Quellterms haben zur Beschreibung der Umlösungsvorgänge im Grubengebäude das "Rührkesselmodell" angewendet (/GRS 2009/ und /Öko 2012/). Dieses Modell geht davon aus, dass die radioaktiven Stoffe homogen im gesamten Flüssigkeitsvolumen der Asse verteilt vorliegen (ein Zustand, wie er im Labor mit Hilfe eines sogenannten Rührkessels erreicht würde, in dem durch ständiges Rühren die Homogenisierung erreicht und aufrechterhalten wird).

Der Ansatz eines Rührkesselmodells ist mit einigen Nachteilen verbunden, die aber nur durch weitergehende Untersuchungen – die zukünftigen Arbeiten vorbehalten sind – vermieden werden können. Das gesamte Inventar radioaktiver Stoffe soll unmittelbar nach Lösungszutritt ohne zeitliche Verzögerung mobilisiert werden und geht in die zugetretene Lösung über. Es erfolgt eine homogene Verteilung der Radionuklide innerhalb des Lösungsvolumens. Dabei ist das Ergebnis nicht in jedem Fall konservativ, da durchaus Prozesse und Fließwege vorstellbar sind, bei denen kleinere Lösungsvolumina größere Mengen an Radionukliden aufnehmen und diese mit im Vergleich zur homogenen Verteilung höheren Schadstoffkonzentrationen belasteten Lösungen ausgepresst werden.

Die Ausbreitung der Radionuklide im Grubengebäude hängt in erster Linie von den Quelltermen einzelner Einlagerungskammern ab, die wiederum von dem veränderlichen geochemischen Milieu auch unter der Mitbetrachtung der Flutungsbedingungen abhängen. Zur hinreichenden Beschreibung der Milieuentwicklung mit Hilfe der thermodynamischen/geochemischen Modellierung unter in diesem Fall sehr vielfältigen Bedingungen sind noch weitere Arbeiten erforderlich. Es wurden zwar z. B. vom KIT-INE im Jahr 2008 Untersuchungen und Berechnungen zur Entwicklung der

Quellterme unter Annahme bestimmter Notfallmaßnahmen in LAW-Einlagerungskammern durchgeführt¹, diese können allerdings nur als eine Expertenschätzung übernommen werden und decken nur einen Teil möglicher Auswirkungen der Notfallmaßnahmen ab.

Weiterhin sind für den Transport der Radionuklide die hydraulischen Vorgänge im Grubengebäude bestimmend, die einer komplexen Untersuchung des Grubengebäudesystems bedürften und bislang nicht systematisch untersucht wurden.

Demnach ist eine über das Rührkesselmodell hinausgehende Variation des Quellterms nur bedingt möglich und beruht nur auf einer qualitativen Beschreibung. Eine Parametervariierung mit Hilfe der Monte-Carlo-Methode ist daher beim gegenwärtigen Stand des Wissens bzw. der Arbeiten zu diesem Thema nicht sinnvoll. Die Aktivitätskonzentrationen der ausgepressten Lösung wurden hier daher entsprechend den in /Öko 2012/ verwendeten Daten angesetzt, basieren also auf einer vollständigen Lösung des Radionuklidinventars und dem Rührkesselmodell. Sie wurden nicht variiert, sondern unterliegen nur einer Abnahme durch radioaktiven Zerfall bzw. einem Aufbau von Tochternukliden durch Zerfall der entsprechenden Mutternuklide.

Für die Prüfung der Methodik der Überführung in eine probabilistische radiologische Konsequenzenanalyse wurde ein vereinfachter Quellterm mit insgesamt 11 Radionukliden von 10 verschiedenen Elementen generiert. Die Auswahl orientiert sich daran, dass diese Radionuklide aufgrund deren radiotoxischen und transportrelevanten Eigenschaften gemäß bisherigen Berechnungen zur Dosis deutlich beitragen können.

3.2.2 Variierbare Parameter der Freisetzung aus dem Grubengebäude - Auspressrate

Einer der wesentlichen Parameter bei der Freisetzung aus dem Grubengebäude ist die Auspressrate. Sie wirkt sich auf die Dauer aus, über die ein Eintrag ins Deckgebirge erfolgt, sowie auf die Abstandsgeschwindigkeiten an der Schnittstelle Grubengebäude/Deckgebirge und im Grundwasser. Zu einer realistischen Bestimmung der Auspressrate sind Angaben über die Konvergenz des Grubengebäudes, das Lösungsvolumen und die Austrittsfläche erforderlich oder es muss eine realistische Variation des Wertes der Auspressrate erfolgen.

Die in /GRS 2009/ beschriebenen Überlegungen zur Freisetzung aus dem Grubengebäude stützen sich auf von /IFG 2009/ durchgeführten Schätzungen der anfänglichen Auspressrate, die sich auf 10.000 m³/a beläuft. Daraus ergibt sich ein Zeitraum von 130 Jahren bei einer konstanten Auspressrate, über den eine Auspressung des initialen Lösungsvolumens (ca. 1,3 Mio m³) bzw. von 220 Jahren, über den eine Auspressung des Volumens nach Carnallitit-Umlösung (ca. 2,2 Mio m³) erfolgen kann. Anschließend ist das Grubengebäude frei von Lösung. Die Annahme einer so hohen und konstanten Auspressrate ist allerdings nicht realistisch und wurde in

Diese Untersuchungen sind bisher nicht in Arbeiten zum Langzeitsicherheitsnachweis für die Schachtanlage Asse II eingegangen (siehe Anmerkung in /GRS 2010/)

Fachdiskussionen (z. B. in Entsorgungskommission und Strahlenschutzkommission) kritisch bewertet. Eine weitergehende Ermittlung der Auspressraten in der Nachbetriebsphase der Schachtanlage Asse II wurde von Colenco Power Engineering AG in /ALSA 2006a/ und /ALSA 2006b/ durchgeführt. Hierbei wurde eine Zeitreihe ermittelt, bei der die Auspressrate von anfänglich ca. 1.200 m³/a über einen Zeitraum von etwa 10.000 Jahren sukzessive zurückgeht. Die Ergebnisse wurden dann in /Colenco 2006b/ bei der Modellierung der Grundwasserbewegung im Deckgebirge der Asse II eingesetzt.

Die weiterführenden Berechnungen im Rahmen der gebirgsmechanischen Modellierung /IFAD 2011/ zur Deformation des Grubengebäudes haben einen realistischen Wertebereich der Auspressrate von 200 m³/a bis 1000 m³/a ergeben. Dieser Wertebereich wurde in die Monte-Carlo-Variation eingesetzt.

Mit der Variation des Parameters Auspressrate kann die Bandbreite der Auswirkungen der in das Deckgebirge ausgepressten Lösung auf die Strahlenexposition identifiziert werden. Die Auspressrate ist für die Größenordnung, in welcher sich die Werte der Abstandsgeschwindigkeiten bewegen, bestimmend.

3.2.3 Variierbare Parameter der Migration durch das Deckgebirge

Im radioökologischen Modell wurde die Migration der Radionuklide durch das Deckgebirge mit Hilfe der analytischen Lösung der 1D-Konvektions-Dispersions-Transportgleichung berechnet. Eine parallel durchgeführte Berechnung des Transportes erfolgte mit dem numerischen 1D-Modell RockFlow /RockFlow 2009, Habbar 2001/. In diese Berechnungen fließen mehrere Parameter ein, die sowohl für die 1D partielle differentiale Konvektions-Dispersions-Transportgleichung als auch für die analytische Lösung dieser Gleichung abgeleitet unter gegebenen Randbedingungen identisch sind (siehe Gleichungen (2.1) und (2.2)).

Dichte und Porosität

Die hydrogeologischen Eigenschaften der durchströmten Gesteinsschichten werden über Dichte und Porosität charakterisiert. Deren Wertebandbreite ist von der jeweiligen geologischen Formation abhängig.

Eine Variation der Parameter Dichte und Porosität ist unter Berücksichtigung der tatsächlichen geologischen Gegebenheiten möglich und sinnvoll.

Daten aus /Colenco 2006a/ (siehe Tabelle 2.1) werden als Grundlage zur Festlegung des Variationsintervalls der Porosität im Bereich von 0,03 bis 0,15 herangezogen. Der gegenwärtige Kenntnisstand erlaubt keine Zuordnung variabler Wahrscheinlichkeiten und der Werte der Porosität. Es wurde daher eine uniforme Verteilung (Gleichverteilung) angenommen.

Bei den Berechnungen fließen die Gesteinsdichte und die Porosität in den Retardationsfaktor R ein. Die Matrix- bzw. Korndichte ist von der Definition her porositätsunabhängig. Ein plausibler konstanter Wert von 2.700 kg/m³ wird hier angesetzt.

Pfadlänge

Der Transport im Deckgebirge erfolgt über Pfade einer vordefinierten Länge. Diese kann je nach vermuteter Austrittstelle aus dem Grubengebäude und insbesondere dem Verlauf von relevanten Störungen im Deckgebirge unterschiedlich sein. In /Öko 2012/ wurden für den Austrag der Radionuklide aus dem Grubengebäude durch das Deckgebirge zwei kritische Fließpfade unterschiedlicher Länge von 240 m (als eher unrealistisch aber niedrigem Wert) und 420 m ausgewählt.

Für die Monte-Carlo-Variation die Gleichverteilung mit einem möglichen Intervall der Streuung der Werte zwischen 300 m und 420 m gewählt.

Abstandsgeschwindigkeit, Dispersionskoeffizient/Dispersionslänge und Sorptionskoeffizient

Maßgeblich für den Transport bzw. die Ergebnisse der Berechnung mit der Transportgleichung sind die Abstandsgeschwindigkeit und die Dispersionskoeffizienten.

Die Werte der Abstandsgeschwindigkeiten wurden ausgehend aus der in /Colenco 2006b/ durchgeführten Modellierung der Grundwasserbewegung im Deckgebirge generiert. Dabei wurden die jeweils ungünstigsten (höchsten) Werte übernommen. Entsprechende Werte der Auspressraten wurden dann ermittelt und wiederum mit den in /Colenco 2006b/ ermittelten Werten verglichen und auf ihre Plausibilität geprüft.

Die Berechnungen in /Öko 2012/ haben gezeigt, dass sich bei den Gesteinen des unteren und mittleren Muschelkalks (mu1-3 und mm2 nach /INE 2010/) den höchsten Strahlenexpositionen ergeben. Daher wurden die für die mm2-Schicht typischen Transporteigenschaften bei der Monte-Carlo-Variation eigesetzt.

Die Parameter der Dispersion – der Dispersionskoeffizient bzw. die Dispersionslänge (siehe Beschreibung der Gleichung (2.1)) - sind skalenabhängig und vom Porenraum des Gesteines und der Abstandsgeschwindigkeit abhängige Größen. Bei den Berechnungen in /Öko 2012/ wurden jeweils eher höhere Werte der Dispersionskoeffizienten eingesetzt; dabei wird das Maximum der Konzentrationen niedriger, tritt aber früher ein. Beide Parameter, der Dispersionskoeffizient sowie die Abstandsgeschwindigkeit, fließen auch in die Berechnung der Migrationslänge ein.

Die Werte der Dispersionslänge wurden ausgehend aus der Gleichung (2.6) errechnet und anschließend mit einem Faktor ϵ multipliziert, der in einem Intervall zwischen 0,5 und 3,1 variiert wurde. Das Intervall für den Faktor ϵ wurde so gewählt, dass der Verlauf der Abhängigkeit der Dispersionslänge zur Wegstrecke nach der Multiplikation den von verschiedenen Autoren ermittelten Bereich des Werteverlaufs abdeckt (Abbildung 3.1).

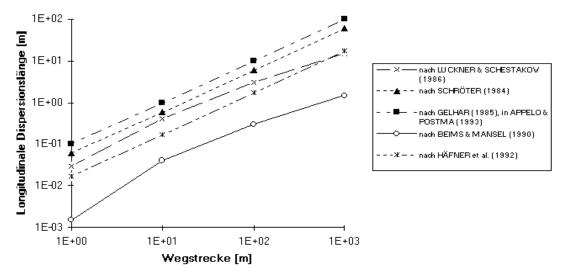


Abbildung 3.1: Abhängigkeit zwischen der Longitudinalen Dispersionslänge und der Wegstrecke

Mit dem Sorptionskoeffizienten K_d (Verhältnis zwischen der Konzentration in der festen Phase und der Konzentration in der flüssigen Phase) wird die Rückhaltung der Radionuklide im Gestein charakterisiert. Der Sorptionskoeffizient ist abhängig vom jeweiligen Radionuklid und dessen Speziation sowie der Elementzusammensetzung der Oberfläche und der spezifischen Oberfläche der Festphase. Die real ablaufenden Vorgänge der Sorption und Desorption sind hochkomplex. Die Schwierigkeit der Erfassung verschiedener wechselseitiger auf molekularer Ebene ablaufender Vorgänge rechtfertigt die starke Vereinfachung zu einem linearen Verteilungskoeffizienten. Diese Beschränkung auf eine makroskopische Sichtweise durch Aufskalierung mikroskopischer Effekte zu repräsentativen Größen ist eine grundsätzliche Vorgehensweise der Modellbildung, welche in der Regel im Rahmen des Modellkonzepts zu nachvollziehbaren und verlässlichen Ergebnissen führt. Die Untersuchungen zu Löslichkeitsgrenzen und Sorptionskoeffizienten wurden in /INE 2010/ zusammengefasst.

Der K_d -Wert fließt über den Retardationsfaktor (siehe Gleichung (2.2)) in die Transportgleichung ein. Auf diese Weise kommen die Rückhalteeffekte durch Sorption zum Ausdruck. Das Ergebnis der Modellierung wird vom Wert des Sorptionskoeffizienten sehr stark beeinflusst.

Im Rahmen der Monte-Carlo-Variation hat sich schon am Anfang des Entscheidungsprozesses zur Variation der Parameter gezeigt, dass die Variation der Sorptionskoeffizienten eine zentrale Rolle spielt und auch für die weiterführenden Arbeiten von Bedeutung sein wird. Außer in /Öko 2012/ wurden in den bislang durchgeführten Modellberechnungen zum Transport im Deckgebirge der Asse die Sorptionseffekte aus eher unrealistischen Konservativitätsgründen nicht mitberücksichtigt.

Das Sorptionsverhalten an sich kann je nach dem chemischen Milieu und der Kontaktoberfläche stark schwanken. Für die Monte-Carlo-Variation wurden von KIT-INE ausgewählte dosisbestimmende Elemente des Quellterms einer weitergehenden

Untersuchung unterzogen und Variationsbereiche bzw. die Erwartungswerte der Sorptionskoeffizienten abgeleitet (siehe /INE 2012/. Grundlage hierfür waren experimentelle Untersuchungen, die allerdings nur für einige Elemente in Gesteinsschichten des Deckgebirges der Asse durchgeführt wurden. Deswegen wurde im Rahmen der Studie /INE 2012/ geprüft, inwiefern die Sorptionskoeffizienten für weitere Elemente aus experimentellen Sorptionsdaten mittels Extrapolationsmethoden abgeleitet werden können und entsprechende Variationsbereiche – falls die Extrapolation möglich war – abgeleitet.

Experimentell wurden die Sorptionskoeffizienten für die Gesteinsschichten mittels der Bohrungen R5 und R6 (siehe /Öko 2012/) untersucht. In den Gesteinsschichten variiert die Porosität zwischen 0,25 und 0,003. In den Schichten, die eine hohe Porosität aufweisen (wie Bereiche des Rötaquitards) wurde schon in /INE 2010/ allerdings auch bei den meisten Radionukliden ein hoher Sorptionskoeffizient festgestellt, so dass trotz einer höheren Porosität auch die nach der Gleichung (2.2) berechnete Retardation eher größer ist.

Die Variationsbereiche (in /INE 2012/ Streubereiche genannt) sowie die Erwartungswerte der Sorptionskoeffizienten gemäß /INE 2012/ können dem Anhang 2, Tabelle 9 auf Seite 31-33, entnommen werden. Dort wird unterschieden zwischen Sorptionskoeffizienten,

- die im Rahmen von Messungen bestimmt wurden (schwarz),
- die anhand der linearen freien Energiebeziehungen abgeschätzt wurden (rot),
- die anhand der chemischen Ähnlichkeit abgeschätzt wurden (grün), und
- für die keine Aussage möglich ist, da keine Messungen bzw. keine sinnvolle Extrapolationsmethode existiert (blau).

Die hier für die Monte-Carlo-Variation verwendeten Wertebereiche sind weiter unten in Tabelle 3.2 zusammengefasst.

3.3 Variierbare Parameter bei der Berechnung der Strahlenexposition ausgehend von einer Kontamination des genutzten Grundwassers

Aus dem gesamten umfangreichen Satz der Parameter zur Berechnung der Strahlenexposition werden im Folgenden diejenigen aufgeführt, bei denen die Parametervariierung einen wesentlichen Einfluss auf das Ergebnis der Expositionsberechnung hat. Eine ausführliche Beschreibung der Ansätze zur Berechnung der Strahlenexposition und aller Parameter ist Gegenstand des Berichtes /Öko 2012/, auf den hier für die weiterführende Information verwiesen wird.

Verzehrsraten

Die Verzehrsraten der betrachteten Referenzpersonen haben - im Unterschied zu den Aufenthaltszeiten auf durch Beregnung kontaminierten Flächen – einen großen

Einfluss auf die Gesamtdosis. Die Verzehrsraten der /AVV 2012/ sind in Deutschland erhobene Mittelwerte und es gibt einen Faktor zur Berücksichtigung des 95. Perzentils der Verteilung. Die Referenzpersonen versorgen sich nach /AVV 2012/ ausschließlich mit Produkten der lokalen Erzeugung; gemäß /BglBb 2010/ kommen Anteile aus anderen Quellen hinzu.

Ertrag und Transferfaktoren

Weitere variierbare Parameter wären der Ertrag angebauter Pflanzen und die Transferfaktoren, die den Übergang z. B. vom Boden in Pflanzen und von Futter in Fleisch/Milch beschreiben. Der Ertrag geht linear in die Dosis ein. Die Transferfaktoren spielen dagegen nur in solchen Fällen eine Rolle, wo Pfade mit Transfer relevant sind. Bei der Beregnung über kürzere Zeitspannen rührt die Dosis hauptsächlich von der unmittelbaren Kontamination der Pflanzen durch die Wassergabe her, kaum aber vom Transfer über den Boden und die Wurzelaufnahme. Eine über lange Zeitspannen erfolgte Beregnung hat dagegen eine Anreicherung der Radionuklide zu Folge, die der Dosis über Wurzelaufnahme deutlich beitragen kann. Weitere Expositionspfade, bei denen Transferfaktoren relevant sind, sind der Fischverzehr (Transferpfad Wasser-Fisch) sowie der Muttermilchpfad (Transfer der Aktivitätsaufnahme der Mutter in die Säuglingsmilch).

Beregnungsrate und Beregnungsdauer

Weitere Parameter, die variiert werden könnten, sind insbesondere die Beregnungsrate sowie die Anzahl der Jahre, über die eine Fläche beregnet wird, der Anteil der auf der Pflanzenoberfläche bei Beregnung abgelagerten Aktivität oder die Berücksichtigung eines Effekts der Dekontamination bei Zubereitung der Lebensmittel. Die Migration in tiefere Bodenschichten nach einer Beregnung spielt in dem Zusammenhang mit der Anreicherung im Boden eine Rolle. Faktoren wie die Berücksichtigung des Zerfalls zwischen Ernte und Konsum sind dagegen bei den langlebigen Radionukliden von geringer Bedeutung.

Die Werte für die oben genannten Parameter sind in /AVV 2012/ und /BglBb 2010/ - mit Ausnahme der Dauer der Beregnung einer gleichbleibenden Bodenflächen - deterministisch festgelegt. Die mit diesen Parameterwerten ermittelte Dosis soll abdeckend sein. Eine Variation dieser Parameterwerte kann zur Untersuchung der Sensitivität durchgeführt werden, was aber nicht Ziel der hier durchgeführten Arbeiten war. Die wesentlichen Unsicherheiten bestehen zur Zeit in Zusammenhang mit der Lösung von Radionukliden, dem Auspressen der Lösung aus dem Grubengebäude sowie dem Transport im Deckgebirge. Die hier durchgeführte Monte-Carlo-Variation beschränkt sich daher auf Parameter, die den Nuklidtransport bis in das genutzte Grundwasser umfassen.

In der vorliegenden Untersuchung soll der mit relativ großen Unsicherheiten behaftete Transport durch das Deckgebirge einer Monte-Carlo-Variation unterzogen wer-

den. Die Dosis wird dann für den Trinkwasserkonsum ermittelt, wobei die Dosis dann in direktem Zusammenhang mit der Kontamination des genutzten Grundwassers steht.

Auf diese Weise kann die Bandbreite der Auswirkungen der Vorgänge im Deckgebirge auf die Strahlenexposition identifizieren werden. Eine Variation der Parameter der radiologischer Modellierung würde hingegen eine Aussage hinsichtlich der Unsicherheiten der radiologischen Modellvorstellungen an sich liefern.

Die hier durchgeführte Berechnung der sich aus der radiologischen Belastung des Grundwassers ergebenden Strahlenexposition bezieht sich auf den Trinkwasserkonsum in Anlehnung an die AVV zu § 47 StrlSchV /AVV 2012/, wobei zwischen einem Kleinkind (Alter ≤1Jahr) und Erwachsenen unterschieden wird. Die Bandbreite der möglichen Dosis und der direkte Zusammenhang mit Variation der Deckgebirgsparameter wird auf diese Weise deutlich nachvollziehbar.

3.4 Übersicht der variierten Parameter

Die Tabellen 3.1 und 3.2 geben eine Übersicht über die einzelnen variierten Parameter mit den jeweiligen Variationsbereichen und Verteilungen. Für einige der untersuchten Parameter wurden Abhängigkeiten von anderen Parametern identifiziert, weil je nach dem funktionalen Zusammenhang der Abhängigkeiten die Parameter eventuell nicht unabhängig variiert werden können (beispielsweise Gesteinsdichte/Porosität/Abstandsgeschwindigkeit).

Ausgehend von der Parameterdefinition und der Kenntnis über deren räumliches und/oder zeitliches Skalenverhalten wurden die möglichen Verteilungsfunktionen ausgewählt. Die Eignung der jeweiligen Verteilungsfunktion hängt unter anderem von der Qualität der Informationen über die Parameter ab. Beispielweise wurde im Fall unzureichender Kenntnisse aufgrund des Maximum-Entropie-Prinzips (d. h. wenn keine Gründe dafür bekannt sind, um eines von verschiedenen möglichen Ereignissen oder Größen zu begünstigen, dann sind diese als gleich wahrscheinlich anzusehen) oft Gleichverteilung oder (bei Variation um mehrere Größenordnungen) logarithmische Gleichverteilung angenommen. In Fällen, in denen zusätzlich ein Wert innerhalb des Streubereichs bekannt ist, wurde die Dreiecksverteilung gewählt.

Tabelle 3.1: Variierte gesteinsbezogene Parameter mit Wertebereich und Verteilung

	Variierter	W		_		
Parameter nach Gl. 2.1	Parameter (ggf. abhän- giger Parame- ter)	Minimaler Wert	Maximaler Wert	Erwar- tungswert	Einheit	Form der Verteilung
Porosität	Porosität	0,03	0,15	-	[-]	uniform
Matrixdichte	Matrixdichte	-	-	2.700	kg/m ³	deterministisch
Pfadlänge	Pfadlänge	300	420	-	m	uniform
Dispersions- koeffizient	Produkt von Dispersions- länge und Epsilon	0,5	3,1	2	[-]	uniform, Epsilon variiert
Abstands- geschwindigkeit	Abstandsge- schwindigkeit abgeleitet aus der Auspress- rate	0,2	1	0,5	m³/s	Dreieck

Tabelle 3.2: Variierte elementspezifische Sorptionskoeffizienten

	Wert	Form			
Nuklid	Minimaler Wert	Maximaler Wert	Erwartungs- wert	Einheit	der Verteilung
CI-36	-	-	0	ml/g	deterministisch
Co-60	0,05	0,5	0,5	ml/g	Dreieck
Ni-59	0,05	0,5	0,5	ml/g	Dreieck
Ni-63	0,05	0,5	0,5	ml/g	Dreieck
Se-79	0,02	1	0,3	ml/g	Dreieck
Sr-90	0,5	3,3	1,3	ml/g	Dreieck
Tc-99	0,07	1	0,5	ml/g	Dreieck
Cs-137	0,02	0,7	0,28	ml/g	Dreieck
Pu-239	193	4.500	2.000	ml/g	Dreieck
U-235	0,5	0,5	0,5	ml/g	konstant
Pa-231	1.300	7.400	4.000	ml/g	Dreieck

4 Vorgehensweise bei der Monte-Carlo-Variation

Die entsprechend dem Kapitel 3.4 ausgewählten Parameter des radioökologischen Modells mit den relevanten Verteilungsfunktionen wurden der Monte-Carlo-Variation unterzogen.

Zum Einsatz gelangt die Software RockFlow bzw. deren Weiterentwicklung OpenGeoSys (OGS) /OGS 2013, RockFlow 2009/ zur eindimesionalen numerischen Modellierung der Strömungs-, Stofftransports- und Zerfallsprozesse. RockFlow ist in die Simulationsumgebung RESUS /RESUS 2013/ eingebettet, die von IELF der TU Clausthal zur Behandlung von Unsicherheiten entwickelt wird. In SimTool RESUS werden aus vorgegebenen Verteilungen Eingangsparametersätze generiert, die jeweils von einer Instanz von OGS bearbeitet werden, d. h. das Programm OGS mit seinen Transportberechnungen wird in einer Schleife gefahren, wobei die unterschiedlichen Input- und Outputdateien durch SimTool RESUS kontrolliert werden. Es wurden insgesamt 100 Realisierungen der zeitlichen Entwicklungen der Aktivitätskonzentrationen je Radionuklid durchgeführt und daraus die zeitlichen Verläufe der Strahlenexpositionen berechnet. Der Ablauf ist in Abbildung 4.1 als Flussdiagramm dargestellt.

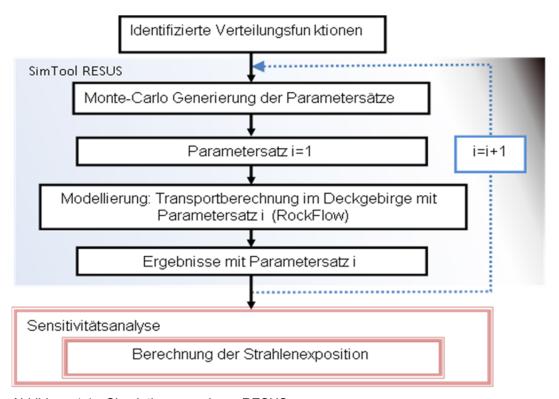


Abbildung 4.1: Simulationsumgebung RESUS

RESUS ist eine Simulationsumgebung, die eine graphische Benutzeroberfläche bietet, um die Monte-Carlo-Variation zu automatisieren. Die probabilistischen Parameter (Variationsintervall, Typ der Verteilungsfunktion) wurden entsprechend den gemäß Kapitel 3.4 festgelegten Verteilungsfunktionen jedem Transportparameter

sowie radionuklidbezogenem Parameter zugeordnet (siehe Reiter des Menüs aus dem SimTool RESUS in der Abbildung 4.2).

Diese Daten sind in den Zufallsgenerator eingeflossen, wo zufällige Samples zu jedem Parameter (insgesamt 100 für die Monte-Carlo-Variation in dieser Studie) erzeugt wurden. Für das Sampling der Eingangsparameter wurde ein einfaches Monte-Carlo-Verfahren (simple random sampling) eingesetzt.

Die Daten des Samplings wurden in die Eingabedateien des FEM-Codes OGS (Transportberechnung) geschrieben und der Code entsprechend der Anzahl der Samples aufgerufen. Die errechneten Daten wurden in einer Ergebnismatrix festgehalten. Die numerischen Ergebnisse und Werte wichtiger Parameter der einzelnen Realisierungen sind in Anhang 1 aufgeführt.

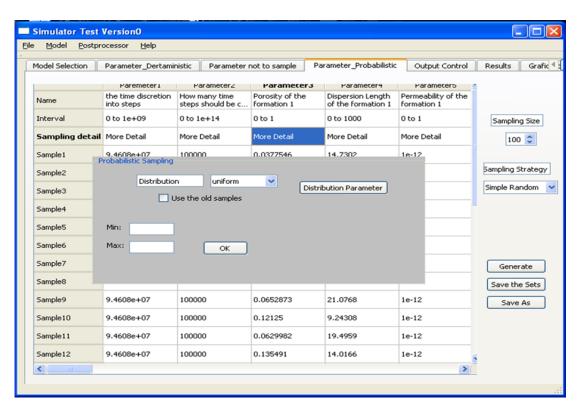


Abbildung 4.2: RESUS-Benutzeroberfläche mit den Parametern der probablistischen Analyse

Weil die unterschiedlichen Halbwertszeiten der ausgewählten Radionuklide eine gesonderte Einstellung der Randbedingungen in RockFlow erforderten (Anpassung der Zeitschritte und entsprechende "Dosierung" der freigesetzten Lösung), wurden die einzelnen Radionuklide in drei Gruppen entsprechend ihrer Halbwertszeit eingeteilt:

- "kurzlebige Radionuklide",
- "langlebige Radionuklide",
- "Radionuklide in Zerfallsketten"

und für jede Gruppe gesondert die Eingangsparametersätze generiert. Die Einteilung in die Gruppen ist der Tabelle 4.1 zu entnehmen.

Tabelle 4.1: Einteilung der Radionuklide in Gruppen für die Einstellung der Randbedingungen

Gruppe	Radionuklide
Kurzlebige Radionuklide	Ni-63, Sr-90, Cs-137, Co-60
Langlebige Radionuklide	Cl-36, Ni-59, Se-79, Tc-99
Radionuklide in Zerfallsketten	U-235, Pa-231

5 Ergebnisse

Im folgenden Kapitel werden die Ergebnisse der Berechnungen der effektiven Dosen durch Trinkwasserkonsum in Anlehnung an die AVV zu § 47 StrlSchV /AVV 2012/ für einzelne Radionuklide dargestellt. Die Beschreibung erfolgt entsprechend der im vorherigen Kapitel vorgenommenen Teilung in die drei Gruppen von Radionukliden, für die jeweils 100 Eingangsparametersätze generiert wurden.

Auf eine Darstellung von Ergebnissen bezogen auf Berechnungen in Anlehnung an die Berechnungsgrundlagen Bergbau /BglBb 2010/ wird hier im Detail verzichtet, da sich diese immer nur um einen Faktor 0,5 unterscheiden. Aussagen zu Zeitpunkten maximaler Dosen, Korrelationen und Sensitivitäten wären daher identisch mit den im Folgenden dargestellten Ergebnissen in Anlehnung an die AVV zu § 47 StrlSchV /AVV 2012/.

5.1 Gruppe "Kurzlebige Radionuklide"

Die kurzen Halbwertszeiten von Sr-90 (28,5 Jahre), Cs-137 (30,2 Jahre) und Co-60 (5,3 Jahre) bewirken in Verbindung mit der Mitberücksichtigung der Sorption, dass die Aktivitätskonzentration im oberflächennahen Grundwasser gleich Null ist. Lediglich bei Ni-63 mit der in dieser Gruppe längsten Halbwertszeit von 100 Jahren ergaben sich Aktivitätskonzentrationen von bis zu 4.040 Bq/m³ nach 1.155 Jahren im oberflächennahen Grundwasser. Dies entspricht einer maximalen Dosis von 0,00283 mSv/a nach 1.190 Jahren. Eine grafische Darstellung der 100 Realisierungen von zeitlichen Verläufen der effektiven Dosen durch Trinkwasserkonsum für die beiden Referenzpersonen Kleinkind (Alter ≤ 1 Jahr) und Erwachsene nach AVV zu § 47 StrlSchV /AVV 2012/ ist den Abbildungen 5.1 und 5.2 zu entnehmen.

Die Maxima der Dosen treten innerhalb einer Zeitspanne von ca. 1.200 Jahren bis 2.150 Jahren auf, die höchste Dosis tritt nach 1.190 Jahren auf. Die höchste Dosis ergab sich bei der in Tabelle 5.1 aufgeführten Parameterkombination.

Tabelle 5.1: Maximale Dosis mit der relevanten Parameterkombination für Ni-63

Nuk- lid	Maxima- le Dosis [mSv/a]	Zeit- punkt [a]	u _a [m/a]	Porosität [-]	K _d [ml/g]	Pfadlän- ge [m]	Disper- sions- länge [m]
Ni-63	2,83E-03	1,19E+03	8,60E-01	0,135	0,338	309,9	15,5

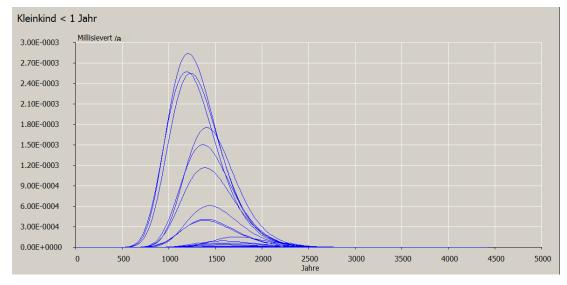


Abbildung 5.1: Ni-63: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 a)

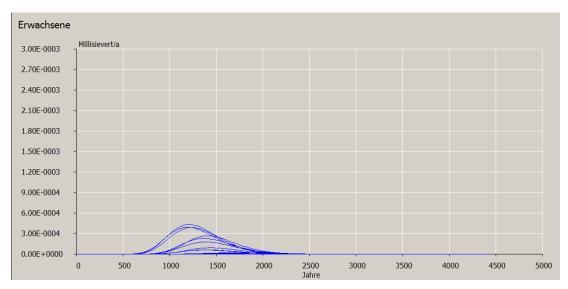


Abbildung 5.2: Ni-63: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für Erwachsene

5.2 Gruppe "Langlebige Radionuklide"

Die langen Halbwertszeiten von Cl-36 (300.000 Jahre), Ni-59 (75.000 Jahre), Se-79 und Tc-99 (210.000 Jahre) führen in Verbindung mit der Länge des Transportpfades von 300 m bis 420 m und der Abstandsgeschwindigkeit von 0,2 m/a bis 1 m/a zu radiologischen Belastungen im oberflächennahen Grundwasser in allen gerechneten Realisierungen. Eine Ausnahme stellt das Plutonium dar, für welches sich bei allen Realisierungen keine von Null verschiedene Dosis ergeben hat. Die Ursache liegt in der hohen Sorption des Plutoniums; der K_d -Wert liegt im Bereich von 193 ml/g bis 4.500 ml/g.

Die zeitlichen Verläufe der effektiven Dosen durch Trinkwasserkonsum für das Kleinkind (Alter ≤ 1 Jahr) zeigen die Abbildungen 5.3 bis 5.6. Die Dosen für den Erwachsenen sind aufgrund niedrigerer Dosiskoeffizienten geringer.

27

Die konstanten, nur zeitlich verschobenen Maxima beim Cl-36 (siehe Abbildung 5.3), veranschaulichen generell den Einfluss des Sorptionskoeffizienten, der beim Chlor als Null angenommen wurde. Die Retardation wirkt sich dann nicht aus, da der Retardationsfaktor in diesem Fall den konstanten Wert von 1 (siehe Gleichung 2.2) erhält. Die gesteinsbezogenen Transportparameter bewirken dann ausschließlich eine zeitliche Verzögerung.

Die maximalen Dosen mit den Zeiten des Eintretens und den relevanten Parameterkombinationen sind der Tabelle 5.2 zu entnehmen. In allen Fällen treten die höchsten Maxima vorwiegend in den ersten 10.000 Jahren auf.

Tabelle 5.2: Maximale Dosen mit der relevanten Parameterkombination für "Kurzlebige Radionuklide"

Nuk- lid	Max. Dosis [mSv/a]	Zeit- punkt [a]	u _a [m/a]	Porosität [-]	K _d [ml/g]	Pfad- länge [m]	Disper- sions- länge [m]
CI-36	2,91E-02	1,40E+03	5,5E-01	0,079	0	311,3	12,3
Ni-59	1,19E+00	3,40E+03	5,0E-01	0,149	0,119	361,0	20,5
Se-79	5,32E-02	2,00E+03	8,9E-01	0,124	0,111	341,4	17,4
Tc-99	4,69E-01	5,40E+03	3,2E-01	0,145	0,122	379,9	22,4

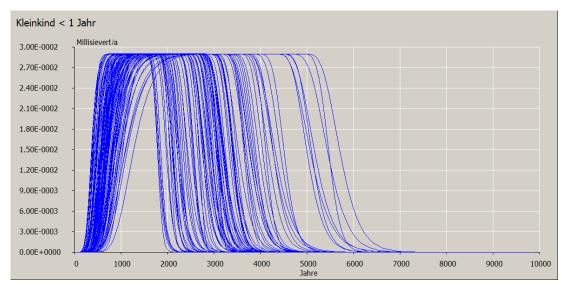


Abbildung 5.3: Cl-36: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)

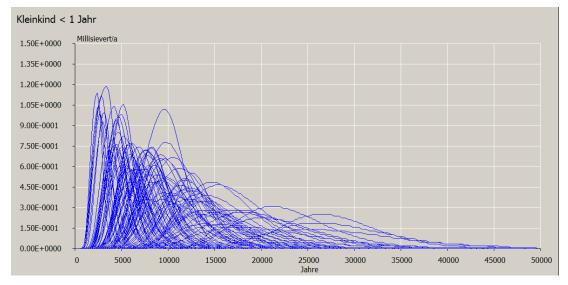


Abbildung 5.4: Ni-59: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)

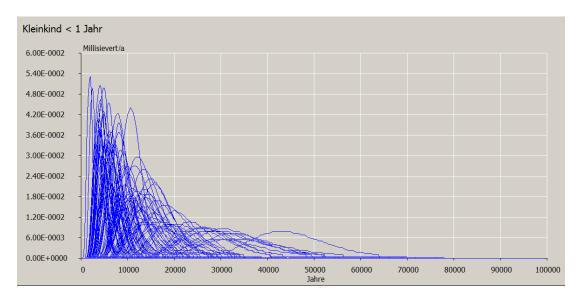


Abbildung 5.5: Se-79: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)

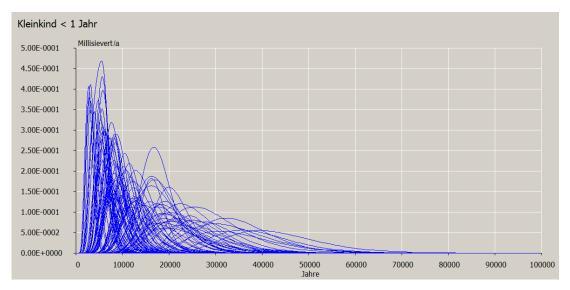


Abbildung 5.6: Tc-99: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)

5.3 Gruppe "Radionuklide in Zerfallsketten"

Zur Berücksichtigung von zwei relevanten Radionukliden in Zerfallsketten wurden die Konzentrationen und Strahlenpositionen für Pa-231 (Halbwertszeit 33.000 Jahre) und U-235 (Halbwertszeit 700 Mio. Jahre) der Zerfallskette des Pu-239 ermittelt. Die maximalen Dosen und entsprechenden Zeitpunkte des Eintretens sind in Tabelle 5.3 aufgeführt.

Da Pa-231 als Zerfallsprodukt des im Deckgebirge transportierten Pu-239 relevant wird, tritt trotz des hohen Sorptionskoeffizienten eine Strahlenexposition beim Konsum von Grundwasser ein, die allerdings zu einer eher niedrigen Dosis im Bereich von maximal 0,0039 mSv/a führt. Die höchsten Maxima sind bis zum Zeitpunkt von 60.000 Jahren verschoben.

Der niedrige Sorptionskoeffizient beim U-235 führt zu höheren Dosen, die zu ähnlichen Zeitpunkten wie im Fall der Gruppe "Langlebige Radionuklide" auftreten.

Tabelle 5.3: Maximale Dosen mit der relevanten Parameterkombinationen für Radionuklide in Zerfallsketten

Nuk- lid	Max. Dosis [mSv]	Zeit- punkt [a]	u _a [m/a]	Porosität [-]	K _d [ml/g]	Pfad- länge [m]	Disper- sions- länge [m]
Pa-231	3,88E-03	5,45E+04	3,58E-01	0,030	1.435	335,4	9,7
U-235	4,55E+00	1,23E+04	2,90E-01	0,128	0,5*	300,6	6,4

^{*}K_d-Wert wurde bei U-235 konstant angesetzt

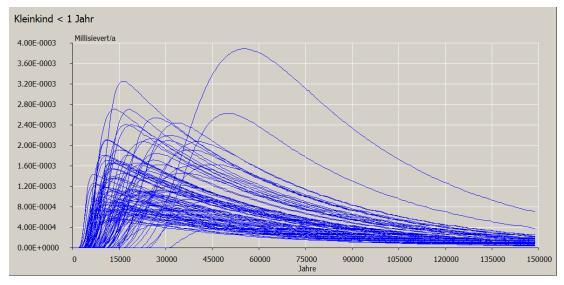


Abbildung 5.7: Pa-231: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)



Abbildung 5.8: U-235: 100 Realisierungen zeitlicher Verläufe der Aktivitätskonzentrationen für das Kleinkind (Alter ≤ 1 Jahr)

5.4 Sentsitivitätsanalyse - Korrelation zwischen Ergebnisgrößen und einzelnen Eingangsparametern

Die Ergebnisgrößen – die maximalen Dosen und zugehörigen Eintrittszeiten - wurden anhand des linearen Korrelationskoeffizienten auf ihre Korrelation mit den einzelnen in die Berechnung eingehenden Parametersätzen für den Transport im Deckgebirge sowie für die Sorptionseigenschaften geprüft. Im Folgenden werden die Zusammenhänge zwischen den eingehenden Parametern und den Ergebnisgrößen entsprechend den ermittelten Korrelationen qualitativ beschrieben und parameterabhängige Vergleiche zwischen dem Transportverhalten einzelner Radionuklide durchgeführt. Auf einen Signifikanztest wurde hier verzichtet. Die Korrelati-

onskoeffizienten sind für die einzelnen Radionuklidgruppen den Tabellen 5.4 bis 5.6 zu entnehmen.

5.4.1 Korrelationen bei "Kurzlebigen Radionukliden" (Ni-63)

Wie aus Abbildung 5.1 ersichtlich, unterliegt im Falle des Ni-63 der Anstieg der Aktivitätskonzentration einer deutlichen zeitlichen Variabilität. Die Korrelation zwischen der maximalen Dosis und der Dispersionslänge sowie dem Zeitpunkt der Maxima und der Abstandsgeschwindigkeiten wird für das Kleinkind (Alter ≤ 1 Jahr) in Abbildung 5.9 dargestellt, in der die Realisierungen aufsteigend nach maximaler Dosis sortiert wurden. Der Korrelationskoeffizient wird hier erst ab den Werten der Zeitpunkte bestimmt, für die eine von Null verschiedene Konzentration im oberflächennahen Grundwasser errechnet wurde. Der Korrelationskoeffizient bildet den richtigen Zusammenhang erst ab diesem Zeitpunkt ab.

Deutlicher zeigt sich hier der Zusammenhang zwischen der maximalen Dosis und der Abstandsgeschwindigkeit sowie der Porosität. Der K_d-Wert bewirkt eine Reduktion der Dosis, die Porosität hat hier aber größeren Einfluss. Die Abstandsgeschwindigkeit und die Pfadlänge tragen zum früheren Eintreten der Dosenmaxima bei (siehe Tabelle 5.4). Der Einfluss der Dispersion ist dagegen für die Dosis von geringer Bedeutung.

Tabelle 5.4: Korrelationskoeffizienten zwischen Ergebnisgrößen und Eingangsparametersätzen für Ni-63 der Gruppe "Kurzlebige Radionuklide"

Nuklid/ Ergebnisparame- ter			Eingehende Parameter						
		u _a	Porosität	K_d	Pfadlänge	Dispersi- onslänge			
33	Max. Dosis	0,31	0,34	-0,27	-0,01	-0,01			
Ni-63	Zeitpunkt	-0,26	0,12	0,07	-0,21	0,19			

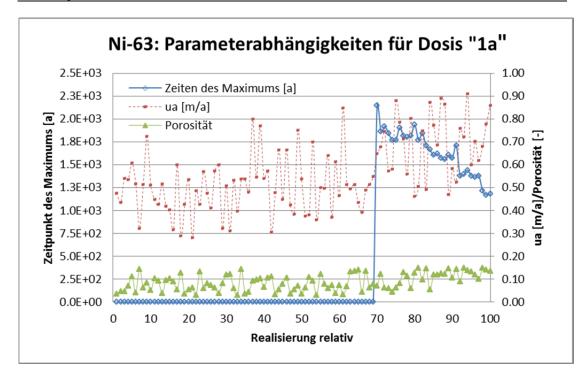


Abbildung 5.9: Ni-63: Darstellung von Parameterabhängigkeiten (Realisierungen sortiert nach aufsteigender Maximaldosis)

5.4.2 Korrelationen bei "Langlebigen Radionukliden"

Die Korrelationskoeffizienten für die Gruppe "Langlebige Radionuklide" sind in der Tabelle 5.5 zusammengefasst.

Wird bei dem stark mobilen Cl-36 keine Sorption vorausgesetzt, sind Dosismaximum und der Zeitpunkt des Eintretens vor allem von der Abstandsgeschwindigkeit bestimmt. Das Eintreten hängt auch deutlich von der Dispersionslänge ab, die zu einer zeitlichen Verzögerung beiträgt. Eine Vernachlässigung der Sorption bewirkt auch eine deutlich stärkere Abhängigkeit von der Pfadlänge und der Dispersionslänge im Vergleich zu anderen Radionukliden der Gruppe. Die Porosität kann dagegen keinen Einfluss haben, weil der relevante Term in dem Retardationsfaktor zu Null geht (siehe Gleichung 2.2).

Bei Ni-59, Se-79 und Tc-99 zeigt sich deutlich der Zusammenhang zwischen den erreichten maximalen Dosen und der Sorption sowie der Porosität (beispielhaft dargestellt für Ni-59 in Abbildung 5.10). Die Abstandsgeschwindigkeit hat Einfluss auf das zeitliche Verschieben der Maxima (siehe auch am Beispiel Ni-59 in Abbildung 5.11). Der Korrelationskoeffizient zwischen maximaler Dosis und Dispersionslänge beträgt für diese Nuklide im Durchschnitt -0,2, wobei beim Cl-36 ohne Sorption der Wert bei 0,4 liegt. Die Sorption verursacht eine zeitliche Verzögerung der Maxima.

Tabelle 5.5: Korrelationskoeffizienten zwischen Ergebnisgrößen und Eingangsparametersätzen für die Gruppe "Langlebige Radionuklide"

Nuklid/ Ergebnisparame- ter			Eingehende Parameter							
		Ua	Porosität	K _d	Pfadlänge	Dispersi- onslänge				
98	Max. Dosis	0,73	-0,02	-	-0,32	0,02				
CI-36	Zeitpunkt	-0,79	0,002	-	0,20	0,43				
69	Max. Dosis	0,18	0,77	-0,52	-0,05	0				
Ni-5	Zeitpunkt	-0,53	-0,68	0,31	0,02	-0,20				
-79	Max. Dosis	0,10	0,70	-0,68	0,02	0				
Se	Zeitpunkt	-0,43	-0,65	0,56	-0,09	-0,27				
66	Max. Dosis	0,09	0,76	-0,59	0,06	0,01				
Tc-99	Zeitpunkt	-0,50	-0,67	0,44	-0,05	-0,20				

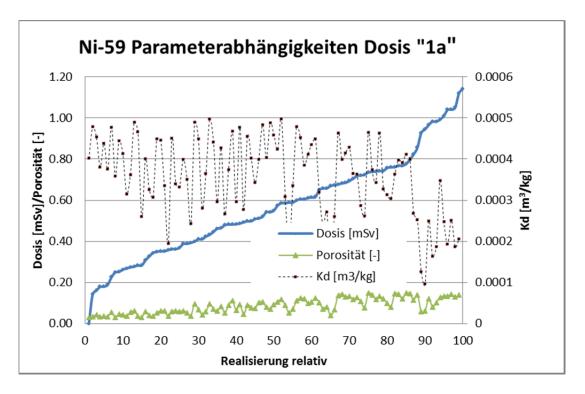


Abbildung 5.10: Ni-59: Darstellung von Parameterabhängigkeiten (Realisierungen sortiert nach aufsteigender Maximaldosis)

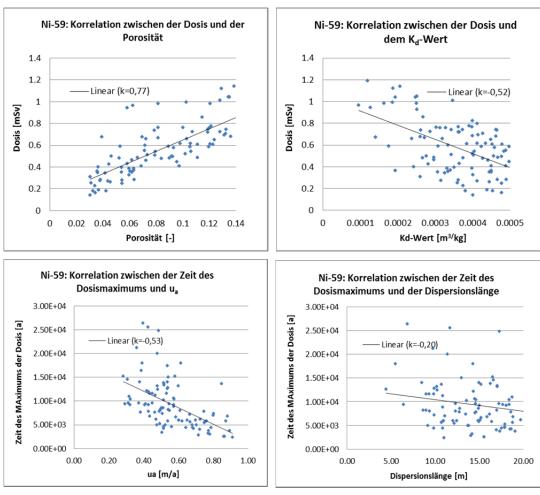


Abbildung 5.11: Ni-59: Beispielhafte Korrelationen zwischen den Ergebnisgrößen und den eingehenden Parametern

5.4.3 Korrelationen bei "Radionukliden in Zerfallsketten"

Beim U-235 wurde für die Monte-Carlo-Variation ein Wert der Sorption aus /INE 2012/ für alle Realisierungen übernommen und konstant gehalten. Somit hängt die Schwankung des Wertes des Retardationsfaktors entsprechend der Gleichung 2.2 nur von der Porosität ab, was im Ergebnis zu einer starken Korrelation zwischen der maximalen Dosis und Porosität führt. Weiterhin zeigt sich keine Korrelation zwischen dem Zeitpunkt des Eintretens der maximalen Dosis sowie der steigenden Dosis mit dem Sorptionskoeffizienten (siehe Tabelle 5.6 und Abbildung 5.812).

Beim Pa-231 ist eine deutlich stärkere Korrelation zwischen der maximalen Dosis und dem Sorptionskoeffizienten als bei anderen Radionukliden zu sehen. Dies liegt in dessen hohem K_d -Wert begründet. Im Gegensatz zu U-235 ist die Korrelation zwischen der Dosisänderung und der Porosität aufgrund der dominierenden Sorption sehr klein (vgl. Gleichung 2.5).

Bei beiden Radionukliden sind hohe Korrelationskoeffizienten zwischen dem Zeitpunkt des Maximums der Dosis und der Abstandsgeschwindigkeit ersichtlich. Die Korrelation ist indirekt proportional. Die Pfadlänge und auch die Dispersionslänge haben einen vergleichsweise viel kleineren Einfluss auf die Dosiserhöhung oder auf die zeitliche Variabilität des Eintretens des Maximums der Dosis. Dies liegt darin begründet, dass diese Radionuklide erst auf dem Transportweg entstehen.

Tabelle 5.6: Korrelationskoeffizienten zwischen Ergebnisgrößen und Eingangsparametersätzen für die Gruppe "Radionuklide in Zerfallsketten"

Nuklid/ Ergebnisparame-			Eingehende Parameter							
Erg	ter	u _a	Porosität	K _d	Pfadlänge	Dispersi- onslänge				
231	Max. Dosis	-0,47	0,05	-0,77	-0,09	0,01				
Pa-231	Zeitpunkt	-0,54	-0,79	-0,09	-0,02	-0,12				
35	Max. Dosis	0,09	0,95	0	-0,02	0,13				
U-235	Zeitpunkt	-0,55	-0,76	0	-0,01	-0,13				

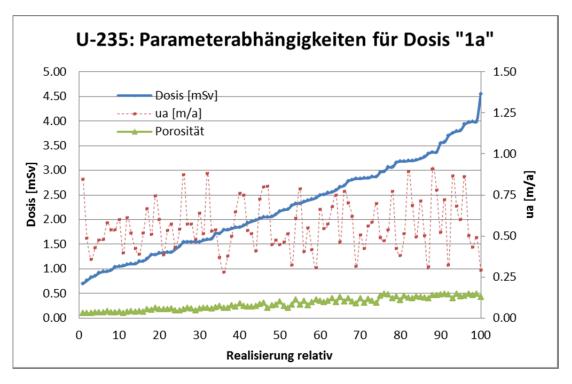


Abbildung 5.12: U-235: Darstellung von Parameterabhängigkeiten (Realisierungen sortiert nach aufsteigender Maximaldosis)

Literaturverzeichnis

Literaturv	erzeichnis
ALSA 2006a	Berechnungsprogramm ALSA-C: Detaillierte Modellrechnungen zum Lösungsaustausch in den Einlagerungskammern für den Referenzfall. Bericht ALSA-C-8.2B-CO148, NRG Petten, Colenco PE Baden, GRS Braunschweig, 11/2006
ALSA 2006b	Berechnungsprogramm ALSA-C: Ableitung des Quellterms für die Einlagerungsbereiche. Bericht ALSA-C-8.3B-GR074, NRG Petten, Colenco PE Baden, GRS Braunschweig, 12/2006
AVV 2012	Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Allgemeine Verwaltungsvorschrift zu § 47 der Strahlenschutzverordnung (Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus Anlagen oder Einrichtungen) vom 28.08.2012 (BAnz AT 05.09.2012 B1)
BglBb 2010	Bundesamt für Strahlenschutz: Berechnungsgrundlagen zur Ermittlung der Strahlenexposition infolge bergbaubedingter Umweltradioaktivität (Berechnungsgrundlagen - Bergbau), BfS-SW-07/10, Salzgitter, März 2010
Colenco 2006a	Colenco Power Engineering AG Baden, Schweiz, mit GSF Forschungszentrum für Umwelt und Gesundheit, Forschungsbergwerk Asse: Hydrogeologische Modellvorstellungen, Bericht 4956/07 Revision 3, Verfasser: W. Klemenz, JM. Lavanchy, G. Resele, A. Poller, November 2006
Colenco 2006b	Colenco Bericht 3331/71, Colenco Power Engineering AG, Baden, Schweiz, mit GSF Forschungszentrum für Umwelt und Gesundheit, Forschungsbergwerk Asse: Deckgebirgsmodellierung Phase IV, Grundwasserbewegung im Deckgebirge des Standortes Asse, Schlussbericht, Verfasser: A. Poller, G. Resele, J. Poppei, September 2006
FUGRO 2010	FUGRO-HGN GmbH: Schachtanlage Asse II, Radioökologisches Modell zur Berücksichtigung der gekoppelten Migration von Tochternukliden, Oktober 2010
GRS 2009	Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH: Abschätzung potenzieller Strahlenexposition in der Umgebung der Schachtanlage Asse II infolge auslegungsüberschreitender Zutrittsraten der Deckgebirgslösung während der Betriebsphase, GRS – A – 3468, Braunschweig, 21.04.2009
GRS 2010	Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH: Schachtanlage Asse; Stellungnahme zur Wirksamkeit von Einzelmaßnahmen der Notfallplanung, GRS – A – 3520, Braunschweig 26.04.2010
Habbar 2001	A. Habbar: Direkte und inverse Modellierung reaktiver Transportprozesse in klüftig-porösen Medien, Dissertation am Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der Universität Hannover, Bericht Nr. 65/2001, ISSN 0177-9028, Oktober 2001
IFAD 2011	KH. Lux, P. Roussev, O. Dyogtyev, R. Wolters: Risikobetrachtung für eine längerfristige Offenhaltung der Asse, Teil Gebirgsmechanische Untersuchungen, Abschlussbericht / Teil 1 – Erste gebirgsmechanische Impressionen zum längerfristigen Tragverhalten, Lehrstuhl für Deponietechnik und Geomechanik, Technische Universität Clausthal, Mai 2011
IFG 2009	P. Kamlot, RM. Günther, G. Assmusen-Günther: Gebirgsmechanische Zustandsanalyse und Prognose auf der Basis von Standortdaten sowie 3D Modellrechnungen. Institut für Gebirgsmechanik (IfG), Leipzig, März 2009.
INE 2010	Karlsruhe Institute of Technology (KIT), Institut für Nukleare Entsorgung (INE): Zusammenstellung von Daten zur wissenschaftlich belastbaren Abschätzung potentieller Strahlenexpositionen in der Umgebung der Schachtanlage Asse II. Februar 2010

anlage Asse II, Februar 2010

INE 2012	Karlsruhe Institute of Technology (KIT), Institut für Nukleare Entsorgung (INE): Abschätzung von Sorptionskoeffizienten im Deckgebirge der Schachtanlage Asse II – Ableitung von oberen und unteren Grenzwerten der Sorptionskoeffizienten für nicht untersuchte Nuklide, KIT-INE 05/2012, Dezember 2012
Öko 2010	Öko-Institut e.V.: Neuberechnungen zu den Auswirkungen eines auslegungsüberschreitenden Lösungszutritts in der Schachtanlage Asse II, Darmstadt, 16.06.2010
Öko 2011	Öko-Institut e.V.: Neuberechnungen zu den Auswirkungen eines auslegungsüberschreitenden Lösungszutritts in der Schachtanlage Asse II - Weiterentwicklung der radioökologischen Modellierung; Fortschreibung des Berichts vom 16.06.2010, Darmstadt, 31.05.2011
Öko 2012	Öko-Institut e.V.: Modellierung des Transports von Radionukliden durch Gesteinsschichten und der resultierenden Strahlenexposition von Referenzpersonen – Berechnungen mit Parametern der Asse II, Darmstadt 21.05.2012
OGS 2013	OpenGeoSys (OGS), a scientific open source project for the development of numerical methods for the simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous and fractured media, http://www.ufz.de/index.php?en=18345 von 24.07.2013
RockFlow 2009	M. Kohlmeier, J. Maßmann, M. Wulkau, G. Ziefle: RockFlow – Version 5.1.10, , RockFlow 5, User's Manual with Keyword Description, Hannover 12th January 2009
RESUS 2013	RESUS, Simulationsumgebung zur Behandlung von Unsicherheiten, entwicklung am Institut für Endlagerforschung der TU Clausthal

Anhang 1: Parametersätze der einzelnen Realisierungen

Hinweis: In den Tabellen des Anhangs 1 sind die Werte der Sorptionskoeffizienten in der Einheit m³/kg aufgeführt, da diese Einheit in RockFlow verwendet wird. In anderen Tabellen dieses Berichts oder in Anhang 2 wird dagegen die Einheit ml/g verwendet. Bei einem Vergleich der numerischen Werte ist daher zu beachten, dass 1 m³/kg 1.000 ml/g entspricht.

Ni-63: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	0,00E+00	4,76E-01	0,036465	0,00037	346,015	10,1797
R2	4,29E-06	1,77E+03	5,04E-01	0,149014	0,000394	360,946	20,5424
R3	0,00E+00	0,00E+00	4,34E-01	0,046406	0,000472	306,152	8,94682
R4	0,00E+00	0,00E+00	5,41E-01	0,0454	0,000429	333,6	12,973
R5	4,09E-04	1,40E+03	7,20E-01	0,148593	0,000341	346,602	16,9196
R6	0,00E+00	0,00E+00	5,35E-01	0,071173	0,00019	351,233	4,42148
R7	1,91E-06	1,77E+03	5,80E-01	0,04251	0,000127	379,714	23,6639
R8	0,00E+00	0,00E+00	6,09E-01	0,111056	0,000322	401,15	9,3634
R9	0,00E+00	0,00E+00	5,17E-01	0,041542	0,000339	340,138	10,7301
R10	0,00E+00	0,00E+00	3,21E-01	0,144517	0,000337	379,85	22,3279
R11	0,00E+00	0,00E+00	5,14E-01	0,063445	0,000373	380,869	16,2689
R12	0,00E+00	0,00E+00	7,24E-01	0,083945	0,00044	343,204	15,108
R13	0,00E+00	0,00E+00	5,11E-01	0,052166	0,000448	320,183	14,9293
R14	0,00E+00	0,00E+00	4,48E-01	0,101892	0,000453	412,59	17,217
R15	0,00E+00	0,00E+00	4,25E-01	0,092459	0,000405	301,122	18,0333
R16	0,00E+00	0,00E+00	5,17E-01	0,037876	0,00049	343,919	17,0412
R17	3,50E-06	1,80E+03	5,60E-01	0,114762	0,000339	340,555	17,8418
R18	0,00E+00	0,00E+00	4,18E-01	0,095813	0,000437	379,858	14,3272
R19	0,00E+00	0,00E+00	4,04E-01	0,103244	0,000486	407,75	14,9975
R20	0,00E+00	0,00E+00	3,16E-01	0,089343	0,000189	365,659	18,7334
R21	9,43E-05	1,58E+03	5,85E-01	0,105597	0,000197	357,164	15,1952
R22	0,00E+00	0,00E+00	5,99E-01	0,054333	0,000375	376,75	17,0521
R23	0,00E+00	0,00E+00	2,90E-01	0,128131	0,000384	300,557	6,38751
R24	1,75E-03	1,38E+03	6,20E-01	0,100217	0,000111	370,859	10,7909
R25	0,00E+00	0,00E+00	4,27E-01	0,035762	0,000332	373,762	20,6833
R26	0,00E+00	0,00E+00	5,34E-01	0,053896	0,000367	343,701	8,47814
R27	3,03E-05	1,58E+03	8,92E-01	0,12376	0,000484	341,435	17,348
R28	0,00E+00	0,00E+00	2,81E-01	0,061947	0,000157	337,126	16,5259
R29	2,97E-06	1,91E+03	7,87E-01	0,081527	0,000302	308,06	9,83108
R30	4,40E-05	1,56E+03	8,64E-01	0,120891	0,000481	310,83	15,5164
R31	0,00E+00	0,00E+00	4,85E-01	0,030299	0,000334	395,369	17,2549
R32	0,00E+00	0,00E+00	4,26E-01	0,13229	0,000311	360,299	14,6144
R33	0,00E+00	0,00E+00	5,71E-01	0,059685	0,000247	412,756	14,4559
R34	6,66E-05	1,61E+03	4,69E-01	0,146977	0,000225	391,475	19,6764
R35	0,00E+00	0,00E+00	4,74E-01	0,081479	0,00049	311,763	13,8202
R36	8,05E-07	1,86E+03	6,77E-01	0,120704	0,000468	387,783	22,8437
R37	0,00E+00	0,00E+00	4,10E-01	0,073601	0,000302	316,974	17,6578
R38	1,17E-03	1,38E+03	6,01E-01	0,131483	0,000159	390,98	14,8787
R39	0,00E+00	0,00E+00	5,72E-01	0,06108	0,000367	394,706	21,8147
R40	2,55E-03	1,22E+03	6,81E-01	0,148133	0,000266	336,68	17,5048
R41	0,00E+00	0,00E+00	6,00E-01	0,039361	0,000298	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	1,86E-06	1,85E+03	5,74E-01	0,059853	0,000163	367,782	18,3724
R43	0,00E+00	0,00E+00	3,22E-01	0,081661	0,000464	342,289	14,6101
R44	0,00E+00	0,00E+00	5,07E-01	0,119657	0,00038	337,547	16,1866
R45	0,00E+00	0,00E+00	3,11E-01	0,121404	0,000492	311,592	12,3155
R46	0,00E+00	0,00E+00	5,32E-01	0,058363	0,000498	364,938	9,31869
R47	0,00E+00	0,00E+00	3,96E-01	0,031239	0,000431	344,756	6,82815
R48	5,13E-06	1,85E+03	7,48E-01	0,098181	0,000303	345,868	12,1338
R49	0,00E+00	0,00E+00	5,38E-01	0,14241	0,000424	379,293	14,9503
R50	0,00E+00	0,00E+00	5,38E-01	0,036208	0,00038	307,73	9,8842
R51	0,00E+00	0,00E+00	4,80E-01	0,044502	0,000341	347,423	10,2168
R52	6,09E-04	1,44E+03	9,10E-01	0,138581	0,000334	341,442	10,9947
R53	9,15E-07	1,92E+03	7,45E-01	0,063233	0,000198	418,322	18,5737
R54	0,00E+00	0,00E+00	7,98E-01	0,091644	0,000284	408,345	11,082
R55	0,00E+00	0,00E+00	5,45E-01	0,097574	0,000464	407,079	18,41
R56	0,00E+00	0,00E+00	7,70E-01	0,102792	0,000436	350,48	14,1708
R57	0,00E+00	0,00E+00	5,39E-01	0,065915	0,000282	368,23	17,0046
R58	0,00E+00	0,00E+00	5,73E-01	0,106268	0,000302	407,477	10,8722
R59	0,00E+00	0,00E+00	3,06E-01	0,111362	0,000473	406,271	16,6239
R60	0,00E+00	0,00E+00	4,78E-01	0,033946	0,000308	346,666	11,3957
R61	0,00E+00	0,00E+00	6,65E-01	0,053148	0,000468	392,331	18,7734
R62	2,57E-03	1,17E+03	7,79E-01	0,14095	0,000276	373,343	22,0861
R63	0,00E+00	0,00E+00	4,49E-01	0,079057	0,000444	375,215	9,81803
R64	0,00E+00	0,00E+00	6,64E-01	0,105862	0,000412	410,612	9,86179
R65	0,00E+00	0,00E+00	4,24E-01	0,036629	0,000111	371,86	11,6523
R66	4,17E-06	1,94E+03	4,63E-01	0,12822	0,000194	416,94	14,5403
R67	0,00E+00	0,00E+00	3,84E-01	0,054553	0,000291	404,267	21,9337
R68	0,00E+00	0,00E+00	7,50E-01	0,07177	0,000354	319,931	10,6847
R69	1,14E-05	1,61E+03	7,73E-01	0,119086	0,000485	332,999	19,086
R70	0,00E+00	0,00E+00	5,36E-01	0,034123	0,00022	312,987	21,014
R71	1,58E-05	1,62E+03	6,86E-01	0,120129	0,000383	349,142	18,6083
R72	0,00E+00	0,00E+00	3,76E-01	0,063149	0,000348	329,263	14,9542
R73	0,00E+00	0,00E+00	3,81E-01	0,107366	0,000299	361,66	20,6406
R74	1,51E-03	1,37E+03	7,01E-01	0,118822	0,000153	403,03	13,6901
R75	3,95E-06	1,82E+03	8,01E-01	0,060339	0,000238	319,311	13,4647
R76	2,83E-03	1,19E+03	8,60E-01	0,135282	0,000338	309,874	15,5303
R77	3,03E-06	1,82E+03	7,13E-01	0,129129	0,000495	324,055	14,0603
R78	0,00E+00	0,00E+00	6,98E-01	0,093059	0,000423	313,469	12,0211
R79	0,00E+00	0,00E+00	3,58E-01	0,030352	0,000285	335,427	9,73102
R80	0,00E+00	0,00E+00	5,01E-01	0,123042	0,000348	418,688	12,8071
R81	0,00E+00	0,00E+00	4,98E-01	0,078817	0,00027	399,679	8,97495
R82	0,00E+00	0,00E+00	6,41E-01	0,058395	0,000447	358,144	10,8503
R83	0,00E+00	0,00E+00	3,70E-01	0,072254	0,000348	362,747	14,5863

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	7,84E-06	1,67E+03	8,71E-01	0,053918	0,000252	308,101	16,4058
R85	0,00E+00	0,00E+00	6,13E-01	0,038271	0,000468	343,111	5,4886
R86	6,59E-07	2,15E+03	6,48E-01	0,06958	0,000197	350,133	10,9297
R87	0,00E+00	0,00E+00	4,64E-01	0,072426	0,000471	324,389	10,8399
R88	2,85E-06	1,77E+03	8,81E-01	0,061743	0,000286	329,036	15,8615
R89	0,00E+00	0,00E+00	8,47E-01	0,032393	0,000418	404,05	15,1783
R90	0,00E+00	0,00E+00	5,13E-01	0,068962	0,000271	315,132	13,5523
R91	1,51E-04	1,71E+03	5,23E-01	0,143029	0,000143	418,217	9,1733
R92	0,00E+00	0,00E+00	4,95E-01	0,132611	0,000337	400,815	8,63216
R93	0,00E+00	0,00E+00	5,14E-01	0,134657	0,000486	371,002	18,4921
R94	0,00E+00	0,00E+00	4,34E-01	0,141066	0,000492	378,825	18,8427
R95	3,92E-04	1,38E+03	7,60E-01	0,090193	0,000174	405,724	20,6176
R96	0,00E+00	0,00E+00	3,90E-01	0,043973	0,00043	309,436	14,3035
R97	7,02E-06	1,71E+03	4,91E-01	0,146548	0,000429	312,152	17,8921
R98	0,00E+00	0,00E+00	4,90E-01	0,136432	0,00047	395,634	12,7436
R99	0,00E+00	0,00E+00	5,14E-01	0,062381	0,000402	392,114	17,8846
R100	0,00E+00	0,00E+00	5,48E-01	0,079309	0,000454	311,3	12,2862

CI-36: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	1,30E+03	4,76E-01	0,036465	0	346,015	10,1797
R2	2,90E-02	1,55E+03	5,04E-01	0,149014	0	360,946	20,5424
R3	2,90E-02	1,25E+03	4,34E-01	0,046406	0	306,152	8,94682
R4	2,91E-02	1,55E+03	5,41E-01	0,0454	0	333,6	12,973
R5	2,91E-02	1,20E+03	7,20E-01	0,148593	0	346,602	16,9196
R6	2,91E-02	9,50E+02	5,35E-01	0,071173	0	351,233	4,42148
R7	2,91E-02	2,05E+03	5,80E-01	0,04251	0	379,714	23,6639
R8	2,90E-02	1,10E+03	6,09E-01	0,111056	0	401,15	9,3634
R9	2,91E-02	1,70E+03	5,17E-01	0,041542	0	340,138	10,7301
R10	2,90E-02	2,60E+03	3,21E-01	0,144517	0	379,85	22,3279
R11	2,90E-02	1,45E+03	5,14E-01	0,063445	0	380,869	16,2689
R12	2,91E-02	1,15E+03	7,24E-01	0,083945	0	343,204	15,108
R13	2,91E-02	1,70E+03	5,11E-01	0,052166	0	320,183	14,9293
R14	2,90E-02	1,85E+03	4,48E-01	0,101892	0	412,59	17,217
R15	2,90E-02	1,55E+03	4,25E-01	0,092459	0	301,122	18,0333
R16	2,91E-02	2,00E+03	5,17E-01	0,037876	0	343,919	17,0412
R17	2,91E-02	1,70E+03	5,60E-01	0,114762	0	340,555	17,8418
R18	2,90E-02	1,75E+03	4,18E-01	0,095813	0	379,858	14,3272
R19	2,90E-02	1,95E+03	4,04E-01	0,103244	0	407,75	14,9975
R20	2,90E-02	2,45E+03	3,16E-01	0,089343	0	365,659	18,7334
R21	2,91E-02	1,55E+03	5,85E-01	0,105597	0	357,164	15,1952
R22	2,91E-02	1,70E+03	5,99E-01	0,054333	0	376,75	17,0521
R23	2,90E-02	1,75E+03	2,90E-01	0,128131	0	300,557	6,38751
R24	2,91E-02	1,30E+03	6,20E-01	0,100217	0	370,859	10,7909
R25	2,90E-02	1,85E+03	4,27E-01	0,035762	0	373,762	20,6833
R26	2,91E-02	1,45E+03	5,34E-01	0,053896	0	343,701	8,47814
R27	2,91E-02	9,50E+02	8,92E-01	0,12376	0	341,435	17,348
R28	2,90E-02	2,50E+03	2,81E-01	0,061947	0	337,126	16,5259
R29	2,91E-02	8,00E+02	7,87E-01	0,081527	0	308,06	9,83108
R30	2,91E-02	9,00E+02	8,64E-01	0,120891	0	310,83	15,5164
R31	2,90E-02	1,65E+03	4,85E-01	0,030299	0	395,369	17,2549
R32	2,90E-02	1,65E+03	4,26E-01	0,13229	0	360,299	14,6144
R33	2,90E-02	1,35E+03	5,71E-01	0,059685	0	412,756	14,4559
R34	2,90E-02	1,75E+03	4,69E-01	0,146977	0	391,475	19,6764
R35	2,91E-02	1,85E+03	4,74E-01	0,081479	0	311,763	13,8202
R36	2,91E-02	1,60E+03	6,77E-01	0,120704	0	387,783	22,8437
R37	2,90E-02	1,65E+03	4,10E-01	0,073601	0	316,974	17,6578
R38	2,91E-02	1,70E+03	6,01E-01	0,131483	0	390,98	14,8787
R39	2,90E-02	1,45E+03	5,72E-01	0,06108	0	394,706	21,8147
R40	2,91E-02	1,25E+03	6,81E-01	0,148133	0	336,68	17,5048
R41	2,91E-02	1,30E+03	6,00E-01	0,039361	0	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	2,91E-02	1,80E+03	5,74E-01	0,059853	0	367,782	18,3724
R43	2,90E-02	2,15E+03	3,22E-01	0,081661	0	342,289	14,6101
R44	2,91E-02	2,00E+03	5,07E-01	0,119657	0	337,547	16,1866
R45	2,90E-02	1,95E+03	3,11E-01	0,121404	0	311,592	12,3155
R46	2,90E-02	1,20E+03	5,32E-01	0,058363	0	364,938	9,31869
R47	2,90E-02	1,45E+03	3,96E-01	0,031239	0	344,756	6,82815
R48	2,91E-02	1,00E+03	7,48E-01	0,098181	0	345,868	12,1338
R49	2,90E-02	1,35E+03	5,38E-01	0,14241	0	379,293	14,9503
R50	2,91E-02	1,30E+03	5,38E-01	0,036208	0	307,73	9,8842
R51	2,90E-02	1,30E+03	4,80E-01	0,044502	0	347,423	10,2168
R52	2,91E-02	7,50E+02	9,10E-01	0,138581	0	341,442	10,9947
R53	2,91E-02	1,40E+03	7,45E-01	0,063233	0	418,322	18,5737
R54	2,91E-02	1,05E+03	7,98E-01	0,091644	0	408,345	11,082
R55	2,90E-02	1,50E+03	5,45E-01	0,097574	0	407,079	18,41
R56	2,91E-02	1,05E+03	7,70E-01	0,102792	0	350,48	14,1708
R57	2,90E-02	1,40E+03	5,39E-01	0,065915	0	368,23	17,0046
R58	2,90E-02	1,25E+03	5,73E-01	0,106268	0	407,477	10,8722
R59	2,90E-02	2,65E+03	3,06E-01	0,111362	0	406,271	16,6239
R60	2,90E-02	1,35E+03	4,78E-01	0,033946	0	346,666	11,3957
R61	2,91E-02	1,55E+03	6,65E-01	0,053148	0	392,331	18,7734
R62	2,91E-02	1,30E+03	7,79E-01	0,14095	0	373,343	22,0861
R63	2,90E-02	1,45E+03	4,49E-01	0,079057	0	375,215	9,81803
R64	2,91E-02	1,30E+03	6,64E-01	0,105862	0	410,612	9,86179
R65	2,90E-02	1,60E+03	4,24E-01	0,036629	0	371,86	11,6523
R66	2,90E-02	1,70E+03	4,63E-01	0,12822	0	416,94	14,5403
R67	2,90E-02	2,25E+03	3,84E-01	0,054553	0	404,267	21,9337
R68	2,91E-02	9,00E+02	7,50E-01	0,07177	0	319,931	10,6847
R69	2,91E-02	1,10E+03	7,73E-01	0,119086	0	332,999	19,086
R70	2,91E-02	1,70E+03	5,36E-01	0,034123	0	312,987	21,014
R71	2,91E-02	1,35E+03	6,86E-01	0,120129	0	349,142	18,6083
R72	2,90E-02	1,80E+03	3,76E-01	0,063149	0	329,263	14,9542
R73	2,90E-02	2,05E+03	3,81E-01	0,107366	0	361,66	20,6406
R74	2,91E-02	1,30E+03	7,01E-01	0,118822	0	403,03	13,6901
R75	2,91E-02	9,00E+02	8,01E-01	0,060339	0	319,311	13,4647
R76	2,91E-02	9,00E+02	8,60E-01	0,135282	0	309,874	15,5303
R77	2,91E-02	1,10E+03	7,13E-01	0,129129	0	324,055	14,0603
R78	2,91E-02	1,00E+03	6,98E-01	0,093059	0	313,469	12,0211
R79	2,90E-02	1,70E+03	3,58E-01	0,030352	0	335,427	9,73102
R80	2,90E-02	1,55E+03	5,01E-01	0,123042	0	418,688	12,8071
R81	2,90E-02	1,35E+03	4,98E-01	0,078817	0	399,679	8,97495
R82	2,91E-02	1,20E+03	6,41E-01	0,058395	0	358,144	10,8503
R83	2,90E-02	1,95E+03	3,70E-01	0,072254	0	362,747	14,5863

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	2,91E-02	9,00E+02	8,71E-01	0,053918	0	308,101	16,4058
R85	2,91E-02	9,50E+02	6,13E-01	0,038271	0	343,111	5,4886
R86	2,91E-02	1,20E+03	6,48E-01	0,06958	0	350,133	10,9297
R87	2,90E-02	1,30E+03	4,64E-01	0,072426	0	324,389	10,8399
R88	2,91E-02	9,00E+02	8,81E-01	0,061743	0	329,036	15,8615
R89	2,91E-02	1,10E+03	8,47E-01	0,032393	0	404,05	15,1783
R90	2,91E-02	1,60E+03	5,13E-01	0,068962	0	315,132	13,5523
R91	2,90E-02	1,35E+03	5,23E-01	0,143029	0	418,217	9,1733
R92	2,90E-02	1,35E+03	4,95E-01	0,132611	0	400,815	8,63216
R93	2,90E-02	1,50E+03	5,14E-01	0,134657	0	371,002	18,4921
R94	2,90E-02	1,80E+03	4,34E-01	0,141066	0	378,825	18,8427
R95	2,91E-02	1,40E+03	7,60E-01	0,090193	0	405,724	20,6176
R96	2,90E-02	1,60E+03	3,90E-01	0,043973	0	309,436	14,3035
R97	2,91E-02	1,85E+03	4,91E-01	0,146548	0	312,152	17,8921
R98	2,90E-02	1,50E+03	4,90E-01	0,136432	0	395,634	12,7436
R99	2,90E-02	1,55E+03	5,14E-01	0,062381	0	392,114	17,8846
R100	2,91E-02	1,40E+03	5,48E-01	0,079309	0	311,3	12,2862

Ni-59: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	1,32E+04	4,76E-01	0,036465	0,000243	346,015	10,1797
R2	1,19E+00	3,40E+03	5,04E-01	0,149014	0,000119	360,946	20,5424
R3	4,98E-01	1,16E+04	4,34E-01	0,046406	0,000277	306,152	8,94682
R4	2,63E-01	1,50E+04	5,41E-01	0,0454	0,000445	333,6	12,973
R5	7,98E-01	4,00E+03	7,20E-01	0,148593	0,000412	346,602	16,9196
R6	5,50E-01	1,26E+04	5,35E-01	0,071173	0,000489	351,233	4,42148
R7	1,79E-01	1,52E+04	5,80E-01	0,04251	0,000453	379,714	23,6639
R8	6,05E-01	8,00E+03	6,09E-01	0,111056	0,000478	401,15	9,3634
R9	3,44E-01	1,36E+04	5,17E-01	0,041542	0,000325	340,138	10,7301
R10	6,85E-01	9,20E+03	3,21E-01	0,144517	0,000399	379,85	22,3279
R11	2,83E-01	1,38E+04	5,14E-01	0,063445	0,00049	380,869	16,2689
R12	4,79E-01	6,20E+03	7,24E-01	0,083945	0,000427	343,204	15,108
R13	4,82E-01	8,60E+03	5,11E-01	0,052166	0,000266	320,183	14,9293
R14	5,20E-01	9,60E+03	4,48E-01	0,101892	0,000399	412,59	17,217
R15	4,93E-01	9,20E+03	4,25E-01	0,092459	0,000477	301,122	18,0333
R16	2,74E-01	1,34E+04	5,17E-01	0,037876	0,000315	343,919	17,0412
R17	8,56E-01	4,60E+03	5,60E-01	0,114762	0,000268	340,555	17,8418
R18	4,46E-01	1,22E+04	4,18E-01	0,095813	0,000498	379,858	14,3272
R19	6,58E-01	9,20E+03	4,04E-01	0,103244	0,000319	407,75	14,9975
R20	5,89E-01	1,10E+04	3,16E-01	0,089343	0,000308	365,659	18,7334
R21	5,86E-01	6,60E+03	5,85E-01	0,105597	0,000423	357,164	15,1952
R22	2,49E-01	1,32E+04	5,99E-01	0,054333	0,000478	376,75	17,0521
R23	1,01E+00	9,40E+03	2,90E-01	0,128131	0,000347	300,557	6,38751
R24	7,60E-01	5,80E+03	6,20E-01	0,100217	0,000314	370,859	10,7909
R25	3,63E-01	1,20E+04	4,27E-01	0,035762	0,000194	373,762	20,6833
R26	3,52E-01	1,40E+04	5,34E-01	0,053896	0,000449	343,701	8,47814
R27	6,49E-01	3,80E+03	8,92E-01	0,12376	0,000449	341,435	17,348
R28	4,65E-01	1,52E+04	2,81E-01	0,061947	0,000296	337,126	16,5259
R29	7,62E-01	4,40E+03	7,87E-01	0,081527	0,000304	308,06	9,83108
R30	9,82E-01	2,60E+03	8,64E-01	0,120891	0,00025	310,83	15,5164
R31	1,42E-01	2,48E+04	4,85E-01	0,030299	0,000401	395,369	17,2549
R32	7,05E-01	7,80E+03	4,26E-01	0,13229	0,000428	360,299	14,6144
R33	3,88E-01	1,06E+04	5,71E-01	0,059685	0,000332	412,756	14,4559
R34	7,68E-01	6,20E+03	4,69E-01	0,146977	0,000363	391,475	19,6764
R35	9,82E-01	5,00E+03	4,74E-01	0,081479	0,000163	311,763	13,8202
R36	6,11E-01	5,00E+03	6,77E-01	0,120704	0,000385	387,783	22,8437
R37	5,12E-01	9,40E+03	4,10E-01	0,073601	0,000343	316,974	17,6578
R38	6,94E-01	6,00E+03	6,01E-01	0,131483	0,000415	390,98	14,8787
R39	3,58E-01	9,20E+03	5,72E-01	0,06108	0,000335	394,706	21,8147
R40	7,38E-01	4,40E+03	6,81E-01	0,148133	0,000465	336,68	17,5048
R41	6,74E-01	6,00E+03	6,00E-01	0,039361	0,00014	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	3,27E-01	1,04E+04	5,74E-01	0,059853	0,000401	367,782	18,3724
R43	6,69E-01	1,04E+04	3,22E-01	0,081661	0,000271	342,289	14,6101
R44	5,86E-01	7,40E+03	5,07E-01	0,119657	0,000498	337,547	16,1866
R45	7,76E-01	9,60E+03	3,11E-01	0,121404	0,000392	311,592	12,3155
R46	4,32E-01	1,16E+04	5,32E-01	0,058363	0,000365	364,938	9,31869
R47	2,52E-01	2,64E+04	3,96E-01	0,031239	0,000359	344,756	6,82815
R48	6,14E-01	5,40E+03	7,48E-01	0,098181	0,000412	345,868	12,1338
R49	7,68E-01	5,80E+03	5,38E-01	0,14241	0,000398	379,293	14,9503
R50	3,50E-01	1,28E+04	5,38E-01	0,036208	0,000307	307,73	9,8842
R51	4,24E-01	1,24E+04	4,80E-01	0,044502	0,000281	347,423	10,2168
R52	1,14E+00	2,40E+03	9,10E-01	0,138581	0,000206	341,442	10,9947
R53	3,69E-01	7,80E+03	7,45E-01	0,063233	0,00034	418,322	18,5737
R54	4,98E-01	7,00E+03	7,98E-01	0,091644	0,000456	408,345	11,082
R55	4,10E-01	9,40E+03	5,45E-01	0,097574	0,000489	407,079	18,41
R56	9,93E-01	3,20E+03	7,70E-01	0,102792	0,000187	350,48	14,1708
R57	4,87E-01	8,20E+03	5,39E-01	0,065915	0,000297	368,23	17,0046
R58	5,42E-01	8,80E+03	5,73E-01	0,106268	0,000484	407,477	10,8722
R59	4,84E-01	1,46E+04	3,06E-01	0,111362	0,000467	406,271	16,6239
R60	2,26E-01	2,00E+04	4,78E-01	0,033946	0,000375	346,666	11,3957
R61	5,89E-01	5,60E+03	6,65E-01	0,053148	0,000176	392,331	18,7734
R62	9,27E-01	3,00E+03	7,79E-01	0,14095	0,000252	373,343	22,0861
R63	5,09E-01	1,16E+04	4,49E-01	0,079057	0,000402	375,215	9,81803
R64	6,16E-01	7,20E+03	6,64E-01	0,105862	0,000436	410,612	9,86179
R65	1,89E-01	2,56E+04	4,24E-01	0,036629	0,000439	371,86	11,6523
R66	7,21E-01	7,60E+03	4,63E-01	0,12822	0,000363	416,94	14,5403
R67	2,78E-01	1,64E+04	3,84E-01	0,054553	0,000362	404,267	21,9337
R68	6,00E-01	5,60E+03	7,50E-01	0,07177	0,000334	319,931	10,6847
R69	7,18E-01	3,80E+03	7,73E-01	0,119086	0,000365	332,999	19,086
R70	1,61E-01	1,74E+04	5,36E-01	0,034123	0,000478	312,987	21,014
R71	7,57E-01	4,20E+03	6,86E-01	0,120129	0,000328	349,142	18,6083
R72	3,88E-01	1,40E+04	3,76E-01	0,063149	0,000399	329,263	14,9542
R73	7,24E-01	7,60E+03	3,81E-01	0,107366	0,000286	361,66	20,6406
R74	7,43E-01	5,00E+03	7,01E-01	0,118822	0,000344	403,03	13,6901
R75	3,63E-01	7,40E+03	8,01E-01	0,060339	0,000451	319,311	13,4647
R76	1,04E+00	2,60E+03	8,60E-01	0,135282	0,000248	309,874	15,5303
R77	1,12E+00	2,80E+03	7,13E-01	0,129129	0,000187	324,055	14,0603
R78	5,75E-01	6,00E+03	6,98E-01	0,093059	0,000459	313,469	12,0211
R79	3,08E-01	2,12E+04	3,58E-01	0,030352	0,00026	335,427	9,73102
R80	6,05E-01	8,60E+03	5,01E-01	0,123042	0,000453	418,688	12,8071
R81	7,35E-01	8,20E+03	4,98E-01	0,078817	0,000261	399,679	8,97495
R82	9,44E-01	4,40E+03	6,41E-01	0,058395	0,000127	358,144	10,8503
R83	6,58E-01	9,60E+03	3,70E-01	0,072254	0,000238	362,747	14,5863

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	3,94E-01	5,80E+03	8,71E-01	0,053918	0,000351	308,101	16,4058
R85	2,83E-01	1,80E+04	6,13E-01	0,038271	0,000466	343,111	5,4886
R86	6,77E-01	6,00E+03	6,48E-01	0,06958	0,00026	350,133	10,9297
R87	4,62E-01	1,12E+04	4,64E-01	0,072426	0,000441	324,389	10,8399
R88	3,52E-01	6,80E+03	8,81E-01	0,061743	0,000446	329,036	15,8615
R89	1,80E-01	1,36E+04	8,47E-01	0,032393	0,000381	404,05	15,1783
R90	4,10E-01	1,02E+04	5,13E-01	0,068962	0,00045	315,132	13,5523
R91	1,05E+00	5,00E+03	5,23E-01	0,143029	0,000251	418,217	9,1733
R92	7,43E-01	8,20E+03	4,95E-01	0,132611	0,000463	400,815	8,63216
R93	1,04E+00	4,20E+03	5,14E-01	0,134657	0,000194	371,002	18,4921
R94	7,40E-01	6,80E+03	4,34E-01	0,141066	0,000374	378,825	18,8427
R95	4,82E-01	5,80E+03	7,60E-01	0,090193	0,000374	405,724	20,6176
R96	2,69E-01	1,80E+04	3,90E-01	0,043973	0,000412	309,436	14,3035
R97	8,23E-01	5,20E+03	4,91E-01	0,146548	0,0004	312,152	17,8921
R98	6,82E-01	7,80E+03	4,90E-01	0,136432	0,000463	395,634	12,7436
R99	9,66E-01	4,60E+03	5,14E-01	0,062381	9,58E-05	392,114	17,8846
R100	5,42E-01	8,00E+03	5,48E-01	0,079309	0,000404	311,3	12,2862

Se-79: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	3,28E+04	4,76E-01	0,036465	0,000663	346,015	10,1797
R2	4,64E-02	4,20E+03	5,04E-01	0,149014	0,000221	360,946	20,5424
R3	8,53E-03	3,02E+04	4,34E-01	0,046406	0,000813	306,152	8,94682
R4	9,86E-03	1,92E+04	5,41E-01	0,0454	0,000583	333,6	12,973
R5	2,19E-02	6,20E+03	7,20E-01	0,148593	0,000805	346,602	16,9196
R6	3,97E-02	8,00E+03	5,35E-01	0,071173	0,000279	351,233	4,42148
R7	1,05E-02	1,32E+04	5,80E-01	0,04251	0,000378	379,714	23,6639
R8	3,03E-02	7,40E+03	6,09E-01	0,111056	0,000434	401,15	9,3634
R9	8,73E-03	2,46E+04	5,17E-01	0,041542	0,00063	340,138	10,7301
R10	3,67E-02	8,00E+03	3,21E-01	0,144517	0,000321	379,85	22,3279
R11	1,90E-02	1,04E+04	5,14E-01	0,063445	0,000344	380,869	16,2689
R12	1,45E-02	9,40E+03	7,24E-01	0,083945	0,000686	343,204	15,108
R13	1,08E-02	1,64E+04	5,11E-01	0,052166	0,000589	320,183	14,9293
R14	1,96E-02	1,16E+04	4,48E-01	0,101892	0,000518	412,59	17,217
R15	3,33E-02	6,80E+03	4,25E-01	0,092459	0,000296	301,122	18,0333
R16	1,18E-02	1,46E+04	5,17E-01	0,037876	0,000355	343,919	17,0412
R17	3,35E-02	5,20E+03	5,60E-01	0,114762	0,000336	340,555	17,8418
R18	2,68E-02	9,80E+03	4,18E-01	0,095813	0,000377	379,858	14,3272
R19	2,01E-02	1,32E+04	4,04E-01	0,103244	0,000538	407,75	14,9975
R20	2,72E-02	1,14E+04	3,16E-01	0,089343	0,000318	365,659	18,7334
R21	1,69E-02	1,02E+04	5,85E-01	0,105597	0,000734	357,164	15,1952
R22	1,82E-02	9,00E+03	5,99E-01	0,054333	0,000304	376,75	17,0521
R23	4,39E-02	1,06E+04	2,90E-01	0,128131	0,00041	300,557	6,38751
R24	4,50E-02	4,20E+03	6,20E-01	0,100217	0,000196	370,859	10,7909
R25	1,51E-02	1,38E+04	4,27E-01	0,035762	0,000226	373,762	20,6833
R26	9,03E-03	2,56E+04	5,34E-01	0,053896	0,000867	343,701	8,47814
R27	5,32E-02	2,00E+03	8,92E-01	0,12376	0,000111	341,435	17,348
R28	2,96E-02	1,18E+04	2,81E-01	0,061947	0,000211	337,126	16,5259
R29	1,68E-02	8,80E+03	7,87E-01	0,081527	0,000732	308,06	9,83108
R30	3,38E-02	3,40E+03	8,64E-01	0,120891	0,0004	310,83	15,5164
R31	5,71E-03	3,26E+04	4,85E-01	0,030299	0,000523	395,369	17,2549
R32	4,97E-02	4,80E+03	4,26E-01	0,13229	0,000178	360,299	14,6144
R33	1,01E-02	1,84E+04	5,71E-01	0,059685	0,000629	412,756	14,4559
R34	5,06E-02	4,20E+03	4,69E-01	0,146977	0,000152	391,475	19,6764
R35	1,32E-02	1,56E+04	4,74E-01	0,081479	0,000815	311,763	13,8202
R36	3,01E-02	4,60E+03	6,77E-01	0,120704	0,000346	387,783	22,8437
R37	3,68E-02	6,40E+03	4,10E-01	0,073601	0,00019	316,974	17,6578
R38	2,70E-02	6,80E+03	6,01E-01	0,131483	0,000517	390,98	14,8787
R39	8,97E-03	1,66E+04	5,72E-01	0,06108	0,000653	394,706	21,8147
R40	2,56E-02	5,60E+03	6,81E-01	0,148133	0,000668	336,68	17,5048
R41	5,62E-03	2,92E+04	6,00E-01	0,039361	0,000888	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m ³ /kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	1,85E-02	8,80E+03	5,74E-01	0,059853	0,000328	367,782	18,3724
R43	4,23E-02	7,80E+03	3,22E-01	0,081661	0,000167	342,289	14,6101
R44	3,40E-02	6,00E+03	5,07E-01	0,119657	0,000364	337,547	16,1866
R45	2,33E-02	1,50E+04	3,11E-01	0,121404	0,000707	311,592	12,3155
R46	2,66E-02	9,20E+03	5,32E-01	0,058363	0,000271	364,938	9,31869
R47	7,81E-03	4,26E+04	3,96E-01	0,031239	0,000604	344,756	6,82815
R48	3,74E-02	4,00E+03	7,48E-01	0,098181	0,000272	345,868	12,1338
R49	4,21E-02	4,80E+03	5,38E-01	0,14241	0,000289	379,293	14,9503
R50	1,00E-02	2,04E+04	5,38E-01	0,036208	0,000524	307,73	9,8842
R51	9,04E-03	2,62E+04	4,80E-01	0,044502	0,000656	347,423	10,2168
R52	4,99E-02	2,40E+03	9,10E-01	0,138581	0,000222	341,442	10,9947
R53	1,99E-02	6,80E+03	7,45E-01	0,063233	0,000287	418,322	18,5737
R54	2,86E-02	5,60E+03	7,98E-01	0,091644	0,000348	408,345	11,082
R55	3,10E-02	6,20E+03	5,45E-01	0,097574	0,00027	407,079	18,41
R56	3,40E-02	4,20E+03	7,70E-01	0,102792	0,000309	350,48	14,1708
R57	1,52E-02	1,18E+04	5,39E-01	0,065915	0,000465	368,23	17,0046
R58	3,74E-02	6,00E+03	5,73E-01	0,106268	0,000282	407,477	10,8722
R59	2,59E-02	1,32E+04	3,06E-01	0,111362	0,000412	406,271	16,6239
R60	8,76E-03	2,56E+04	4,78E-01	0,033946	0,00049	346,666	11,3957
R61	1,20E-02	1,18E+04	6,65E-01	0,053148	0,000445	392,331	18,7734
R62	2,27E-02	5,20E+03	7,79E-01	0,14095	0,00062	373,343	22,0861
R63	1,38E-02	1,98E+04	4,49E-01	0,079057	0,000752	375,215	9,81803
R64	2,15E-02	9,40E+03	6,64E-01	0,105862	0,000615	410,612	9,86179
R65	1,70E-02	1,62E+04	4,24E-01	0,036629	0,000253	371,86	11,6523
R66	1,90E-02	1,26E+04	4,63E-01	0,12822	0,000733	416,94	14,5403
R67	7,90E-03	2,76E+04	3,84E-01	0,054553	0,000636	404,267	21,9337
R68	1,85E-02	8,20E+03	7,50E-01	0,07177	0,000535	319,931	10,6847
R69	2,36E-02	5,00E+03	7,73E-01	0,119086	0,000555	332,999	19,086
R70	1,02E-02	1,40E+04	5,36E-01	0,034123	0,000374	312,987	21,014
R71	4,05E-02	3,60E+03	6,86E-01	0,120129	0,000244	349,142	18,6083
R72	1,87E-02	1,40E+04	3,76E-01	0,063149	0,0004	329,263	14,9542
R73	2,50E-02	9,80E+03	3,81E-01	0,107366	0,000423	361,66	20,6406
R74	3,35E-02	5,00E+03	7,01E-01	0,118822	0,000348	403,03	13,6901
R75	1,65E-02	7,60E+03	8,01E-01	0,060339	0,000463	319,311	13,4647
R76	3,16E-02	3,80E+03	8,60E-01	0,135282	0,000507	309,874	15,5303
R77	3,79E-02	4,00E+03	7,13E-01	0,129129	0,000362	324,055	14,0603
R78	4,04E-02	4,00E+03	6,98E-01	0,093059	0,000249	313,469	12,0211
R79	2,19E-02	1,56E+04	3,58E-01	0,030352	0,00018	335,427	9,73102
R80	3,35E-02	7,20E+03	5,01E-01	0,123042	0,000356	418,688	12,8071
R81	3,10E-02	9,00E+03	4,98E-01	0,078817	0,000298	399,679	8,97495
R82	1,42E-02	1,26E+04	6,41E-01	0,058395	0,000525	358,144	10,8503
R83	1,56E-02	1,80E+04	3,70E-01	0,072254	0,000531	362,747	14,5863

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	1,27E-02	8,00E+03	8,71E-01	0,053918	0,000515	308,101	16,4058
R85	1,08E-02	2,28E+04	6,13E-01	0,038271	0,00061	343,111	5,4886
R86	2,77E-02	6,80E+03	6,48E-01	0,06958	0,000303	350,133	10,9297
R87	1,76E-02	1,36E+04	4,64E-01	0,072426	0,000563	324,389	10,8399
R88	2,01E-02	5,40E+03	8,81E-01	0,061743	0,00035	329,036	15,8615
R89	1,44E-02	8,60E+03	8,47E-01	0,032393	0,000226	404,05	15,1783
R90	4,30E-02	4,80E+03	5,13E-01	0,068962	0,000148	315,132	13,5523
R91	3,16E-02	8,40E+03	5,23E-01	0,143029	0,000539	418,217	9,1733
R92	4,57E-02	6,00E+03	4,95E-01	0,132611	0,000281	400,815	8,63216
R93	1,75E-02	1,06E+04	5,14E-01	0,134657	0,000845	371,002	18,4921
R94	2,03E-02	1,08E+04	4,34E-01	0,141066	0,000732	378,825	18,8427
R95	2,72E-02	4,80E+03	7,60E-01	0,090193	0,000288	405,724	20,6176
R96	8,18E-03	2,80E+04	3,90E-01	0,043973	0,000677	309,436	14,3035
R97	3,23E-02	6,00E+03	4,91E-01	0,146548	0,000502	312,152	17,8921
R98	2,72E-02	9,00E+03	4,90E-01	0,136432	0,000565	395,634	12,7436
R99	1,80E-02	1,04E+04	5,14E-01	0,062381	0,000339	392,114	17,8846
R100	3,63E-02	5,60E+03	5,48E-01	0,079309	0,000246	311,3	12,2862

Ni-63: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	3,54E+04	4,76E-01	0,036465	0,000735	346,015	10,1797
R2	3,25E-01	5,40E+03	5,04E-01	0,149014	0,000368	360,946	20,5424
R3	1,26E-01	1,88E+04	4,34E-01	0,046406	0,000487	306,152	8,94682
R4	1,34E-01	1,28E+04	5,41E-01	0,0454	0,000375	333,6	12,973
R5	4,11E-01	3,20E+03	7,20E-01	0,148593	0,000258	346,602	16,9196
R6	1,82E-01	1,60E+04	5,35E-01	0,071173	0,000651	351,233	4,42148
R7	6,15E-02	1,92E+04	5,80E-01	0,04251	0,000576	379,714	23,6639
R8	3,53E-01	5,60E+03	6,09E-01	0,111056	0,000295	401,15	9,3634
R9	1,25E-01	1,56E+04	5,17E-01	0,041542	0,000386	340,138	10,7301
R10	4,69E-01	5,40E+03	3,21E-01	0,144517	0,000122	379,85	22,3279
R11	1,17E-01	1,44E+04	5,14E-01	0,063445	0,000513	380,869	16,2689
R12	1,67E-01	7,40E+03	7,24E-01	0,083945	0,000519	343,204	15,108
R13	8,43E-02	1,86E+04	5,11E-01	0,052166	0,000671	320,183	14,9293
R14	1,13E-01	1,74E+04	4,48E-01	0,101892	0,000831	412,59	17,217
R15	2,62E-01	7,60E+03	4,25E-01	0,092459	0,000355	301,122	18,0333
R16	6,75E-02	2,18E+04	5,17E-01	0,037876	0,000552	343,919	17,0412
R17	1,77E-01	8,60E+03	5,60E-01	0,114762	0,000664	340,555	17,8418
R18	3,19E-01	7,60E+03	4,18E-01	0,095813	0,000255	379,858	14,3272
R19	2,89E-01	8,60E+03	4,04E-01	0,103244	0,000297	407,75	14,9975
R20	1,65E-01	1,62E+04	3,16E-01	0,089343	0,000502	365,659	18,7334
R21	1,94E-01	8,20E+03	5,85E-01	0,105597	0,000554	357,164	15,1952
R22	1,42E-01	1,04E+04	5,99E-01	0,054333	0,000355	376,75	17,0521
R23	2,58E-01	1,66E+04	2,90E-01	0,128131	0,000767	300,557	6,38751
R24	2,42E-01	7,40E+03	6,20E-01	0,100217	0,000443	370,859	10,7909
R25	9,63E-02	1,84E+04	4,27E-01	0,035762	0,00032	373,762	20,6833
R26	8,08E-02	2,50E+04	5,34E-01	0,053896	0,00085	343,701	8,47814
R27	2,18E-01	4,60E+03	8,92E-01	0,12376	0,000575	341,435	17,348
R28	1,13E-01	2,50E+04	2,81E-01	0,061947	0,000549	337,126	16,5259
R29	2,55E-01	5,40E+03	7,87E-01	0,081527	0,000399	308,06	9,83108
R30	1,59E-01	6,20E+03	8,64E-01	0,120891	0,0009	310,83	15,5164
R31	5,33E-02	3,00E+04	4,85E-01	0,030299	0,000489	395,369	17,2549
R32	3,97E-01	5,80E+03	4,26E-01	0,13229	0,000253	360,299	14,6144
R33	1,37E-01	1,24E+04	5,71E-01	0,059685	0,000403	412,756	14,4559
R34	2,11E-01	8,80E+03	4,69E-01	0,146977	0,000623	391,475	19,6764
R35	2,82E-01	7,00E+03	4,74E-01	0,081479	0,000296	311,763	13,8202
R36	1,44E-01	8,20E+03	6,77E-01	0,120704	0,000748	387,783	22,8437
R37	8,39E-02	2,12E+04	4,10E-01	0,073601	0,000932	316,974	17,6578
R38	2,95E-01	5,80E+03	6,01E-01	0,131483	0,000395	390,98	14,8787
R39	1,28E-01	1,08E+04	5,72E-01	0,06108	0,000399	394,706	21,8147
R40	2,26E-01	5,80E+03	6,81E-01	0,148133	0,000685	336,68	17,5048
R41	1,33E-01	1,18E+04	6,00E-01	0,039361	0,000331	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	7,35E-02	1,84E+04	5,74E-01	0,059853	0,000768	367,782	18,3724
R43	1,20E-01	2,18E+04	3,22E-01	0,081661	0,000716	342,289	14,6101
R44	2,18E-01	8,20E+03	5,07E-01	0,119657	0,000569	337,547	16,1866
R45	1,87E-01	1,60E+04	3,11E-01	0,121404	0,000788	311,592	12,3155
R46	1,86E-01	1,16E+04	5,32E-01	0,058363	0,000361	364,938	9,31869
R47	1,60E-01	1,96E+04	3,96E-01	0,031239	0,00026	344,756	6,82815
R48	1,81E-01	7,40E+03	7,48E-01	0,098181	0,000614	345,868	12,1338
R49	3,01E-01	6,20E+03	5,38E-01	0,14241	0,000429	379,293	14,9503
R50	9,85E-02	1,86E+04	5,38E-01	0,036208	0,000471	307,73	9,8842
R51	7,65E-02	2,66E+04	4,80E-01	0,044502	0,000678	347,423	10,2168
R52	3,72E-01	3,20E+03	9,10E-01	0,138581	0,000358	341,442	10,9947
R53	9,33E-02	1,22E+04	7,45E-01	0,063233	0,000578	418,322	18,5737
R54	1,84E-01	7,60E+03	7,98E-01	0,091644	0,00052	408,345	11,082
R55	1,87E-01	8,80E+03	5,45E-01	0,097574	0,000447	407,079	18,41
R56	2,30E-01	5,40E+03	7,70E-01	0,102792	0,000454	350,48	14,1708
R57	1,25E-01	1,28E+04	5,39E-01	0,065915	0,000509	368,23	17,0046
R58	1,60E-01	1,24E+04	5,73E-01	0,106268	0,000726	407,477	10,8722
R59	1,79E-01	1,68E+04	3,06E-01	0,111362	0,000557	406,271	16,6239
R60	1,20E-01	1,68E+04	4,78E-01	0,033946	0,000313	346,666	11,3957
R61	7,22E-02	1,66E+04	6,65E-01	0,053148	0,000659	392,331	18,7734
R62	4,07E-01	2,80E+03	7,79E-01	0,14095	0,000207	373,343	22,0861
R63	4,30E-01	5,60E+03	4,49E-01	0,079057	0,000135	375,215	9,81803
R64	2,98E-01	6,20E+03	6,64E-01	0,105862	0,000354	410,612	9,86179
R65	5,46E-02	3,84E+04	4,24E-01	0,036629	0,000683	371,86	11,6523
R66	2,80E-01	8,00E+03	4,63E-01	0,12822	0,000398	416,94	14,5403
R67	9,93E-02	2,00E+04	3,84E-01	0,054553	0,000445	404,267	21,9337
R68	1,41E-01	9,40E+03	7,50E-01	0,07177	0,000636	319,931	10,6847
R69	3,13E-01	3,60E+03	7,73E-01	0,119086	0,00033	332,999	19,086
R70	1,12E-01	1,18E+04	5,36E-01	0,034123	0,000302	312,987	21,014
R71	1,60E-01	7,60E+03	6,86E-01	0,120129	0,000752	349,142	18,6083
R72	7,14E-02	2,92E+04	3,76E-01	0,063149	0,000941	329,263	14,9542
R73	1,75E-01	1,22E+04	3,81E-01	0,107366	0,000568	361,66	20,6406
R74	2,76E-01	5,60E+03	7,01E-01	0,118822	0,000394	403,03	13,6901
R75	1,08E-01	1,00E+04	8,01E-01	0,060339	0,000643	319,311	13,4647
R76	3,83E-01	2,80E+03	8,60E-01	0,135282	0,00031	309,874	15,5303
R77	3,45E-01	4,00E+03	7,13E-01	0,129129	0,000354	324,055	14,0603
R78	1,40E-01	9,80E+03	6,98E-01	0,093059	0,000835	313,469	12,0211
R79	8,56E-02	3,18E+04	3,58E-01	0,030352	0,000415	335,427	9,73102
R80	2,11E-01	1,02E+04	5,01E-01	0,123042	0,000567	418,688	12,8071
R81	2,19E-01	1,14E+04	4,98E-01	0,078817	0,000402	399,679	8,97495
R82	1,72E-01	9,60E+03	6,41E-01	0,058395	0,000379	358,144	10,8503
R83	2,01E-01	1,26E+04	3,70E-01	0,072254	0,000351	362,747	14,5863

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	1,41E-01	6,40E+03	8,71E-01	0,053918	0,000408	308,101	16,4058
R85	9,07E-02	2,44E+04	6,13E-01	0,038271	0,000641	343,111	5,4886
R86	1,27E-01	1,24E+04	6,48E-01	0,06958	0,000646	350,133	10,9297
R87	2,70E-01	8,60E+03	4,64E-01	0,072426	0,000301	324,389	10,8399
R88	1,33E-01	7,20E+03	8,81E-01	0,061743	0,000491	329,036	15,8615
R89	8,64E-02	1,24E+04	8,47E-01	0,032393	0,000342	404,05	15,1783
R90	2,26E-01	8,00E+03	5,13E-01	0,068962	0,000328	315,132	13,5523
R91	2,89E-01	8,20E+03	5,23E-01	0,143029	0,000522	418,217	9,1733
R92	2,43E-01	1,04E+04	4,95E-01	0,132611	0,000637	400,815	8,63216
R93	3,10E-01	5,80E+03	5,14E-01	0,134657	0,000357	371,002	18,4921
R94	2,81E-01	7,40E+03	4,34E-01	0,141066	0,000424	378,825	18,8427
R95	1,45E-01	7,60E+03	7,60E-01	0,090193	0,000533	405,724	20,6176
R96	1,18E-01	1,80E+04	3,90E-01	0,043973	0,000413	309,436	14,3035
R97	3,72E-01	4,80E+03	4,91E-01	0,146548	0,000332	312,152	17,8921
R98	2,03E-01	1,06E+04	4,90E-01	0,136432	0,000703	395,634	12,7436
R99	7,74E-02	2,00E+04	5,14E-01	0,062381	0,000724	392,114	17,8846
R100	1,29E-01	1,28E+04	5,48E-01	0,079309	0,00075	311,3	12,2862

Pa-231: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	3,65E+04	4,76E-01	0,036465	2,86738	346,015	10,1797
R2	2,10E-03	1,10E+04	5,04E-01	0,149014	2,97295	360,946	20,5424
R3	1,09E-03	3,00E+04	4,34E-01	0,046406	4,97696	306,152	8,94682
R4	2,54E-03	2,60E+04	5,41E-01	0,0454	1,88376	333,6	12,973
R5	7,38E-04	8,50E+03	7,20E-01	0,148593	6,00295	346,602	16,9196
R6	6,99E-04	1,90E+04	5,35E-01	0,071173	6,99126	351,233	4,42148
R7	9,00E-04	2,95E+04	5,80E-01	0,04251	4,27794	379,714	23,6639
R8	1,13E-03	1,30E+04	6,09E-01	0,111056	4,14854	401,15	9,3634
R9	7,83E-04	3,15E+04	5,17E-01	0,041542	5,57068	340,138	10,7301
R10	2,69E-03	1,75E+04	3,21E-01	0,144517	3,45057	379,85	22,3279
R11	1,44E-03	2,20E+04	5,14E-01	0,063445	3,71979	380,869	16,2689
R12	5,81E-04	1,25E+04	7,24E-01	0,083945	6,4518	343,204	15,108
R13	6,82E-04	2,45E+04	5,11E-01	0,052166	6,61096	320,183	14,9293
R14	1,13E-03	1,85E+04	4,48E-01	0,101892	5,37227	412,59	17,217
R15	2,40E-03	1,65E+04	4,25E-01	0,092459	2,79649	301,122	18,0333
R16	2,43E-03	3,25E+04	5,17E-01	0,037876	1,92831	343,919	17,0412
R17	1,55E-03	1,25E+04	5,60E-01	0,114762	3,41903	340,555	17,8418
R18	1,51E-03	2,00E+04	4,18E-01	0,095813	4,38334	379,858	14,3272
R19	1,67E-03	2,05E+04	4,04E-01	0,103244	4,09189	407,75	14,9975
R20	1,72E-03	2,60E+04	3,16E-01	0,089343	5,04356	365,659	18,7334
R21	8,89E-04	1,30E+04	5,85E-01	0,105597	5,65349	357,164	15,1952
R22	1,10E-03	2,30E+04	5,99E-01	0,054333	3,83115	376,75	17,0521
R23	1,80E-03	1,75E+04	2,90E-01	0,128131	5,74047	300,557	6,38751
R24	1,40E-03	1,30E+04	6,20E-01	0,100217	3,38562	370,859	10,7909
R25	1,62E-03	4,35E+04	4,27E-01	0,035762	2,99088	373,762	20,6833
R26	7,60E-04	2,45E+04	5,34E-01	0,053896	5,88735	343,701	8,47814
R27	1,22E-03	7,50E+03	8,92E-01	0,12376	2,87769	341,435	17,348
R28	1,92E-03	3,70E+04	2,81E-01	0,061947	4,36605	337,126	16,5259
R29	1,71E-03	1,15E+04	7,87E-01	0,081527	2,18646	308,06	9,83108
R30	6,71E-04	7,00E+03	8,64E-01	0,120891	5,43313	310,83	15,5164
R31	4,42E-04	5,05E+04	4,85E-01	0,030299	7,07684	395,369	17,2549
R32	1,92E-03	1,50E+04	4,26E-01	0,13229	3,63727	360,299	14,6144
R33	1,36E-03	2,35E+04	5,71E-01	0,059685	3,2441	412,756	14,4559
R34	1,36E-03	1,35E+04	4,69E-01	0,146977	4,70269	391,475	19,6764
R35	9,17E-04	1,75E+04	4,74E-01	0,081479	6,05853	311,763	13,8202
R36	8,89E-04	1,10E+04	6,77E-01	0,120704	4,90923	387,783	22,8437
R37	2,07E-03	2,25E+04	4,10E-01	0,073601	3,08439	316,974	17,6578
R38	2,11E-03	1,05E+04	6,01E-01	0,131483	2,49241	390,98	14,8787
R39	1,07E-03	2,30E+04	5,72E-01	0,06108	4,24582	394,706	21,8147
R40	9,28E-04	8,00E+03	6,81E-01	0,148133	5,04157	336,68	17,5048
R41	1,13E-03	2,75E+04	6,00E-01	0,039361	3,50007	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	1,03E-03	2,10E+04	5,74E-01	0,059853	4,35056	367,782	18,3724
R43	1,84E-03	2,65E+04	3,22E-01	0,081661	4,3729	342,289	14,6101
R44	2,69E-03	1,30E+04	5,07E-01	0,119657	2,16298	337,547	16,1866
R45	2,40E-03	1,85E+04	3,11E-01	0,121404	3,82601	311,592	12,3155
R46	1,50E-03	2,35E+04	5,32E-01	0,058363	3,22953	364,938	9,31869
R47	2,63E-03	5,00E+04	3,96E-01	0,031239	2,15361	344,756	6,82815
R48	1,79E-03	1,05E+04	7,48E-01	0,098181	2,20142	345,868	12,1338
R49	1,10E-03	1,15E+04	5,38E-01	0,14241	5,12797	379,293	14,9503
R50	2,19E-03	3,05E+04	5,38E-01	0,036208	2,00265	307,73	9,8842
R51	2,10E-03	3,10E+04	4,80E-01	0,044502	2,554	347,423	10,2168
R52	1,25E-03	7,00E+03	9,10E-01	0,138581	2,78293	341,442	10,9947
R53	7,55E-04	1,85E+04	7,45E-01	0,063233	4,51911	418,322	18,5737
R54	5,41E-04	1,25E+04	7,98E-01	0,091644	6,48476	408,345	11,082
R55	3,25E-03	1,60E+04	5,45E-01	0,097574	1,63419	407,079	18,41
R56	8,55E-04	1,05E+04	7,70E-01	0,102792	4,48646	350,48	14,1708
R57	1,61E-03	2,15E+04	5,39E-01	0,065915	3,06651	368,23	17,0046
R58	1,69E-03	1,40E+04	5,73E-01	0,106268	3,01281	407,477	10,8722
R59	2,13E-03	2,50E+04	3,06E-01	0,111362	4,0767	406,271	16,6239
R60	2,06E-03	3,85E+04	4,78E-01	0,033946	2,26696	346,666	11,3957
R61	5,81E-04	2,20E+04	6,65E-01	0,053148	6,2218	392,331	18,7734
R62	1,07E-03	8,00E+03	7,79E-01	0,14095	3,79341	373,343	22,0861
R63	8,55E-04	2,15E+04	4,49E-01	0,079057	6,79017	375,215	9,81803
R64	7,38E-04	1,30E+04	6,64E-01	0,105862	5,97902	410,612	9,86179
R65	9,17E-04	4,25E+04	4,24E-01	0,036629	5,54722	371,86	11,6523
R66	1,45E-03	1,55E+04	4,63E-01	0,12822	4,35019	416,94	14,5403
R67	9,45E-04	3,70E+04	3,84E-01	0,054553	6,20834	404,267	21,9337
R68	6,76E-04	1,30E+04	7,50E-01	0,07177	5,37219	319,931	10,6847
R69	9,84E-04	9,00E+03	7,73E-01	0,119086	4,01385	332,999	19,086
R70	1,23E-03	3,30E+04	5,36E-01	0,034123	3,43418	312,987	21,014
R71	1,81E-03	9,50E+03	6,86E-01	0,120129	2,45262	349,142	18,6083
R72	1,62E-03	2,75E+04	3,76E-01	0,063149	4,11385	329,263	14,9542
R73	1,14E-03	1,85E+04	3,81E-01	0,107366	6,59534	361,66	20,6406
R74	7,16E-04	1,05E+04	7,01E-01	0,118822	5,97908	403,03	13,6901
R75	1,04E-03	1,35E+04	8,01E-01	0,060339	3,38051	319,311	13,4647
R76	1,43E-03	6,50E+03	8,60E-01	0,135282	2,62255	309,874	15,5303
R77	7,83E-04	8,50E+03	7,13E-01	0,129129	5,48894	324,055	14,0603
R78	8,44E-04	1,05E+04	6,98E-01	0,093059	5,0252	313,469	12,0211
R79	3,88E-03	5,45E+04	3,58E-01	0,030352	1,43541	335,427	9,73102
R80	9,39E-04	1,45E+04	5,01E-01	0,123042	6,30326	418,688	12,8071
R81	1,10E-03	2,10E+04	4,98E-01	0,078817	4,84068	399,679	8,97495
R82	1,03E-03	1,95E+04	6,41E-01	0,058395	3,95614	358,144	10,8503
R83	1,12E-03	2,65E+04	3,70E-01	0,072254	5,85403	362,747	14,5863

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	7,66E-04	1,45E+04	8,71E-01	0,053918	3,99506	308,101	16,4058
R85	7,49E-04	2,80E+04	6,13E-01	0,038271	5,08422	343,111	5,4886
R86	6,88E-04	1,65E+04	6,48E-01	0,06958	6,05672	350,133	10,9297
R87	9,11E-04	2,05E+04	4,64E-01	0,072426	6,35419	324,389	10,8399
R88	5,65E-04	1,30E+04	8,81E-01	0,061743	5,37085	329,036	15,8615
R89	4,62E-04	2,95E+04	8,47E-01	0,032393	5,20826	404,05	15,1783
R90	1,12E-03	1,90E+04	5,13E-01	0,068962	4,63128	315,132	13,5523
R91	1,67E-03	1,20E+04	5,23E-01	0,143029	3,55122	418,217	9,1733
R92	1,67E-03	1,35E+04	4,95E-01	0,132611	3,66541	400,815	8,63216
R93	1,36E-03	1,25E+04	5,14E-01	0,134657	4,31252	371,002	18,4921
R94	1,72E-03	1,35E+04	4,34E-01	0,141066	4,14454	378,825	18,8427
R95	1,53E-03	1,35E+04	7,60E-01	0,090193	2,452	405,724	20,6176
R96	1,46E-03	3,45E+04	3,90E-01	0,043973	3,85203	309,436	14,3035
R97	1,19E-03	1,05E+04	4,91E-01	0,146548	5,32354	312,152	17,8921
R98	8,33E-04	1,35E+04	4,90E-01	0,136432	7,24749	395,634	12,7436
R99	7,10E-04	2,40E+04	5,14E-01	0,062381	6,77708	392,114	17,8846
R100	9,56E-04	1,55E+04	5,48E-01	0,079309	5,3112	311,3	12,2862

U-235: Parametersätze der 100 Realisierungen

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R1	0,00E+00	2,28E+07	4,76E-01	3,65E-02	0,0005	3,46E+02	1,02E+01
R2	8,69E-01	7,00E+06	5,04E-01	1,49E-01	0,0005	3,61E+02	2,05E+01
R3	3,06E-01	1,88E+07	4,34E-01	4,64E-02	0,0005	3,06E+02	8,95E+00
R4	3,20E-01	1,75E+07	5,41E-01	4,54E-02	0,0005	3,34E+02	1,30E+01
R5	7,80E-01	4,50E+06	7,20E-01	1,49E-01	0,0005	3,47E+02	1,69E+01
R6	4,21E-01	1,18E+07	5,35E-01	7,12E-02	0,0005	3,51E+02	4,42E+00
R7	2,08E-01	1,75E+07	5,80E-01	4,25E-02	0,0005	3,80E+02	2,37E+01
R8	5,07E-01	7,50E+06	6,09E-01	1,11E-01	0,0005	4,01E+02	9,36E+00
R9	2,40E-01	1,85E+07	5,17E-01	4,15E-02	0,0005	3,40E+02	1,07E+01
R10	8,09E-01	1,15E+07	3,21E-01	1,45E-01	0,0005	3,80E+02	2,23E+01
R11	4,84E-01	1,58E+07	5,14E-01	6,34E-02	0,0005	3,81E+02	1,63E+01
R12	4,41E-01	7,00E+06	7,24E-01	8,39E-02	0,0005	3,43E+02	1,51E+01
R13	2,83E-01	1,35E+07	5,11E-01	5,22E-02	0,0005	3,20E+02	1,49E+01
R14	4,74E-01	1,13E+07	4,48E-01	1,02E-01	0,0005	4,13E+02	1,72E+01
R15	6,22E-01	1,03E+07	4,25E-01	9,25E-02	0,0005	3,01E+02	1,80E+01
R16	2,53E-01	2,18E+07	5,17E-01	3,79E-02	0,0005	3,44E+02	1,70E+01
R17	6,22E-01	7,00E+06	5,60E-01	1,15E-01	0,0005	3,41E+02	1,78E+01
R18	5,26E-01	1,23E+07	4,18E-01	9,58E-02	0,0005	3,80E+02	1,43E+01
R19	5,17E-01	1,25E+07	4,04E-01	1,03E-01	0,0005	4,08E+02	1,50E+01
R20	6,19E-01	1,78E+07	3,16E-01	8,93E-02	0,0005	3,66E+02	1,87E+01
R21	6,28E-01	7,75E+06	5,85E-01	1,06E-01	0,0005	3,57E+02	1,52E+01
R22	2,90E-01	1,40E+07	5,99E-01	5,43E-02	0,0005	3,77E+02	1,71E+01
R23	9,94E-01	1,23E+07	2,90E-01	1,28E-01	0,0005	3,01E+02	6,39E+00
R24	6,15E-01	8,25E+06	6,20E-01	1,00E-01	0,0005	3,71E+02	1,08E+01
R25	1,88E-01	2,83E+07	4,27E-01	3,58E-02	0,0005	3,74E+02	2,07E+01
R26	2,92E-01	1,40E+07	5,34E-01	5,39E-02	0,0005	3,44E+02	8,48E+00
R27	6,97E-01	4,25E+06	8,92E-01	1,24E-01	0,0005	3,41E+02	1,73E+01
R28	3,92E-01	2,43E+07	2,81E-01	6,19E-02	0,0005	3,37E+02	1,65E+01
R29	5,10E-01	6,25E+06	7,87E-01	8,15E-02	0,0005	3,08E+02	9,83E+00
R30	8,23E-01	4,25E+06	8,64E-01	1,21E-01	0,0005	3,11E+02	1,55E+01
R31	1,67E-01	3,25E+07	4,85E-01	3,03E-02	0,0005	3,95E+02	1,73E+01
R32	6,91E-01	8,50E+06	4,26E-01	1,32E-01	0,0005	3,60E+02	1,46E+01
R33	2,92E-01	1,48E+07	5,71E-01	5,97E-02	0,0005	4,13E+02	1,45E+01
R34	6,51E-01	7,25E+06	4,69E-01	1,47E-01	0,0005	391,475	19,6764
R35	4,61E-01	9,75E+06	4,74E-01	8,15E-02	0,0005	311,763	13,8202
R36	5,59E-01	6,00E+06	6,77E-01	1,21E-01	0,0005	387,783	22,8437
R37	4,34E-01	1,30E+07	4,10E-01	7,36E-02	0,0005	316,974	17,6578
R38	8,32E-01	7,25E+06	6,01E-01	1,31E-01	0,0005	390,98	14,8787
R39	3,39E-01	1,40E+07	5,72E-01	6,11E-02	0,0005	394,706	21,8147
R40	8,29E-01	4,75E+06	6,81E-01	1,48E-01	0,0005	336,68	17,5048
R41	2,29E-01	1,63E+07	6,00E-01	3,94E-02	0,0005	332,829	12,4704

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R42	3,39E-01	1,30E+07	5,74E-01	5,99E-02	0,0005	367,782	18,3724
R43	5,00E-01	1,70E+07	3,22E-01	8,17E-02	0,0005	342,289	14,6101
R44	6,19E-01	7,25E+06	5,07E-01	1,20E-01	0,0005	337,547	16,1866
R45	7,30E-01	1,13E+07	3,11E-01	1,21E-01	0,0005	3,12E+02	1,23E+01
R46	3,52E-01	1,50E+07	5,32E-01	5,84E-02	0,0005	3,65E+02	9,32E+00
R47	2,32E-01	3,55E+07	3,96E-01	3,12E-02	0,0005	3,45E+02	6,83E+00
R48	5,69E-01	6,25E+06	7,48E-01	9,82E-02	0,0005	3,46E+02	1,21E+01
R49	6,68E-01	6,50E+06	5,38E-01	1,42E-01	0,0005	3,79E+02	1,50E+01
R50	2,28E-01	1,83E+07	5,38E-01	3,62E-02	0,0005	3,08E+02	9,88E+00
R51	3,39E-01	2,10E+07	4,80E-01	4,45E-02	0,0005	3,47E+02	1,02E+01
R52	7,37E-01	3,75E+06	9,10E-01	1,39E-01	0,0005	3,41E+02	1,10E+01
R53	2,83E-01	1,05E+07	7,45E-01	6,32E-02	0,0005	4,18E+02	1,86E+01
R54	4,47E-01	7,00E+06	7,98E-01	9,16E-02	0,0005	4,08E+02	1,11E+01
R55	5,49E-01	1,03E+07	5,45E-01	9,76E-02	0,0005	4,07E+02	1,84E+01
R56	5,89E-01	6,00E+06	7,70E-01	1,03E-01	0,0005	3,50E+02	1,42E+01
R57	3,75E-01	1,28E+07	5,39E-01	6,59E-02	0,0005	3,68E+02	1,70E+01
R58	5,56E-01	9,00E+06	5,73E-01	1,06E-01	0,0005	4,07E+02	1,09E+01
R59	5,33E-01	1,50E+07	3,06E-01	1,11E-01	0,0005	4,06E+02	1,66E+01
R60	2,06E-01	2,58E+07	4,78E-01	3,39E-02	0,0005	3,47E+02	1,14E+01
R61	2,64E-01	1,33E+07	6,65E-01	5,31E-02	0,0005	3,92E+02	1,88E+01
R62	7,37E-01	4,75E+06	7,79E-01	1,41E-01	0,0005	3,73E+02	2,21E+01
R63	4,51E-01	1,35E+07	4,49E-01	7,91E-02	0,0005	3,75E+02	9,82E+00
R64	5,46E-01	7,75E+06	6,64E-01	1,06E-01	0,0005	4,11E+02	9,86E+00
R65	2,40E-01	2,98E+07	4,24E-01	3,66E-02	0,0005	3,72E+02	1,17E+01
R66	5,82E-01	9,00E+06	4,63E-01	1,28E-01	0,0005	4,17E+02	1,45E+01
R67	2,92E-01	2,40E+07	3,84E-01	5,46E-02	0,0005	4,04E+02	2,19E+01
R68	4,11E-01	7,25E+06	7,50E-01	7,18E-02	0,0005	3,20E+02	1,07E+01
R69	6,68E-01	5,00E+06	7,73E-01	1,19E-01	0,0005	3,33E+02	1,91E+01
R70	2,13E-01	1,98E+07	5,36E-01	3,41E-02	0,0005	3,13E+02	2,10E+01
R71	6,97E-01	5,75E+06	6,86E-01	1,20E-01	0,0005	3,49E+02	1,86E+01
R72	3,92E-01	1,70E+07	3,76E-01	6,31E-02	0,0005	3,29E+02	1,50E+01
R73	6,94E-01	1,23E+07	3,81E-01	1,07E-01	0,0005	3,62E+02	2,06E+01
R74	6,09E-01	6,50E+06	7,01E-01	1,19E-01	0,0005	4,03E+02	1,37E+01
R75	4,47E-01	8,75E+06	8,01E-01	6,03E-02	0,0005	3,19E+02	1,35E+01
R76	8,59E-01	4,00E+06	8,60E-01	1,35E-01	0,0005	3,10E+02	1,55E+01
R77	7,07E-01	4,75E+06	7,13E-01	1,29E-01	0,0005	3,24E+02	1,41E+01
R78	6,28E-01	6,50E+06	6,98E-01	9,31E-02	0,0005	3,13E+02	1,20E+01
R79	1,81E-01	3,60E+07	3,58E-01	3,04E-02	0,0005	3,35E+02	9,73E+00
R80	7,14E-01	9,50E+06	5,01E-01	1,23E-01	0,0005	4,19E+02	1,28E+01
R81	3,98E-01	1,25E+07	4,98E-01	7,88E-02	0,0005	4,00E+02	8,97E+00
R82	3,39E-01	1,18E+07	6,41E-01	5,84E-02	0,0005	3,58E+02	1,09E+01
R83	3,75E-01	1,60E+07	3,70E-01	7,23E-02	0,0005	3,63E+02	1,46E+01

Realisie- rung	Max. Dosis [mSv]	Zeitpunkt der max. Dosis [a]	u _a [m/a]	Porosität [-]	K _d [m³/kg]	Pfad- länge [m]	Dispersi- onslänge [m]
R84	3,36E-01	8,00E+06	8,71E-01	5,39E-02	0,0005	3,08E+02	1,64E+01
R85	2,38E-01	1,80E+07	6,13E-01	3,83E-02	0,0005	3,43E+02	5,49E+00
R86	4,01E-01	9,75E+06	6,48E-01	6,96E-02	0,0005	3,50E+02	1,09E+01
R87	4,80E-01	1,25E+07	4,64E-01	7,24E-02	0,0005	3,24E+02	1,08E+01
R88	3,49E-01	7,25E+06	8,81E-01	6,17E-02	0,0005	3,29E+02	1,59E+01
R89	1,54E-01	1,70E+07	8,47E-01	3,24E-02	0,0005	4,04E+02	1,52E+01
R90	4,28E-01	1,10E+07	5,13E-01	6,90E-02	0,0005	3,15E+02	1,36E+01
R91	7,76E-01	8,00E+06	5,23E-01	1,43E-01	0,0005	4,18E+02	9,17E+00
R92	7,01E-01	8,50E+06	4,95E-01	1,33E-01	0,0005	4,01E+02	8,63E+00
R93	6,94E-01	7,25E+06	5,14E-01	1,35E-01	0,0005	3,71E+02	1,85E+01
R94	8,72E-01	9,00E+06	4,34E-01	1,41E-01	0,0005	3,79E+02	1,88E+01
R95	4,05E-01	7,00E+06	7,60E-01	9,02E-02	0,0005	4,06E+02	2,06E+01
R96	2,52E-01	2,00E+07	3,90E-01	4,40E-02	0,0005	3,09E+02	1,43E+01
R97	8,72E-01	6,25E+06	4,91E-01	1,47E-01	0,0005	3,12E+02	1,79E+01
R98	6,48E-01	7,75E+06	4,90E-01	1,36E-01	0,0005	3,96E+02	1,27E+01
R99	3,45E-01	1,53E+07	5,14E-01	6,24E-02	0,0005	3,92E+02	1,79E+01
R100	5,23E-01	9,50E+06	5,48E-01	7,93E-02	0,0005	3,11E+02	1,23E+01

Anhang 2: Bericht /INE 2012/