

Energiewende: Strommarktdesign (oder:

Leistung muss sich wieder lohnen ...)

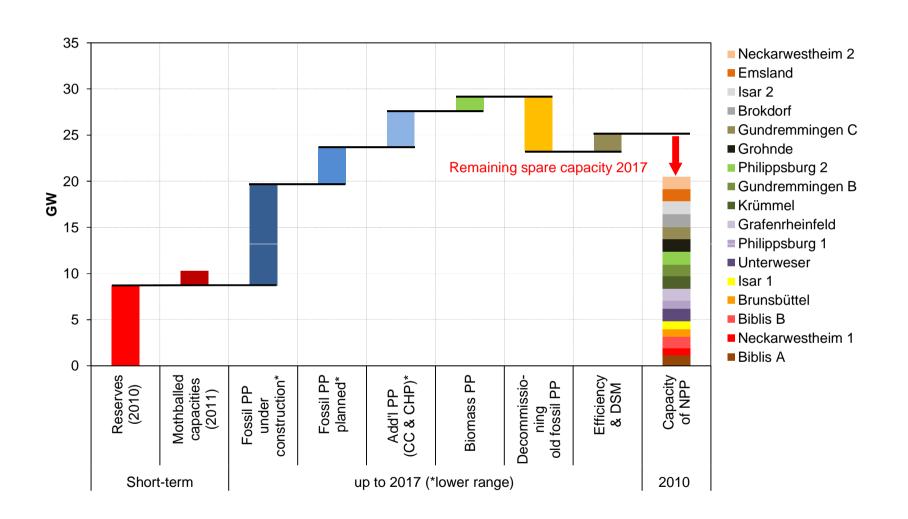
European Climate Foundation, 100% Erneuerbar Stiftung, Agentur für Erneuerbare Energien JournalistInnen-Workshop

Dr. Felix Chr. Matthes Berlin, 8. Juni 2012

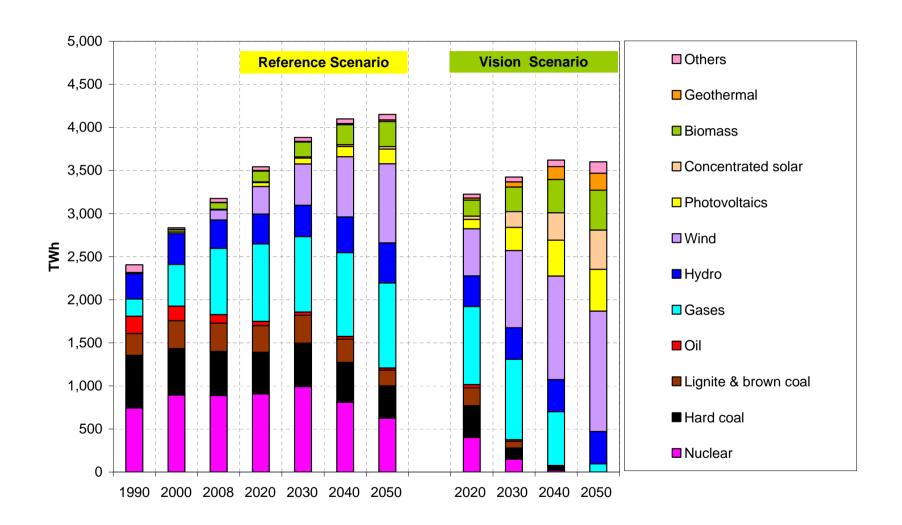
Alles nur Energiewende?

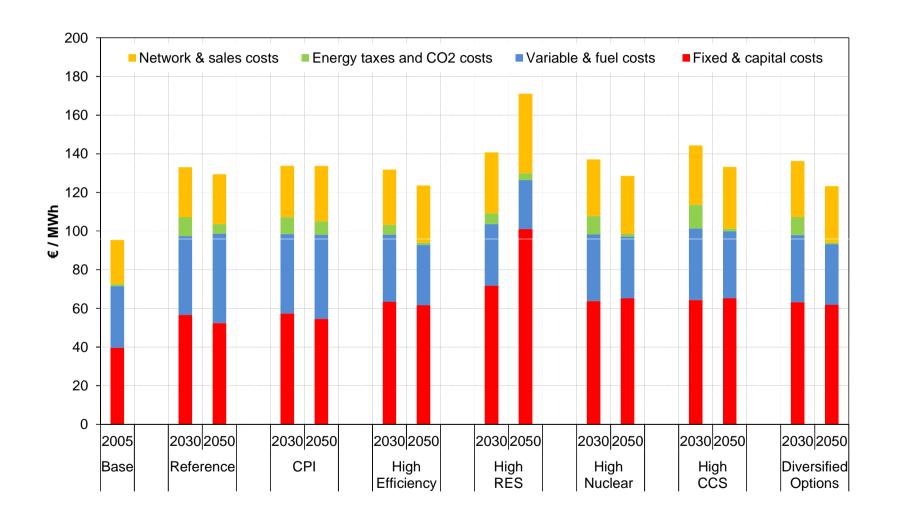
Transformationsphase der Brownfield-Liberalisierung

- Start der Liberalisierung (1998)
 - weitgehend abgeschriebener Kraftwerkspark (Ausnahme: Ost-Deutschland)
 - Kraftwerkspark geprägt durch kapitalintensive Anlagen mit niedrigen kurzfristigen Grenzkosten
 - Deckungsbeiträge = Gewinne
- Übergangsphase der Liberalisierung (2000/2010)
 - kaum "marktgetriebene" Kraftwerksinvestitionen ohne Sondereffekte (KWKG, Gratis-Zuteilung im EU ETS etc.)
- Investitionsphase im liberalisierten Umfeld
 - Altersstruktur des Kraftwerkspark
 - Ausstieg aus der Kernenergie
 - Deckungsbeiträge < Kapitaldienst


Rückblick: Die Kapazitätsdiskussion der letzten Jahre

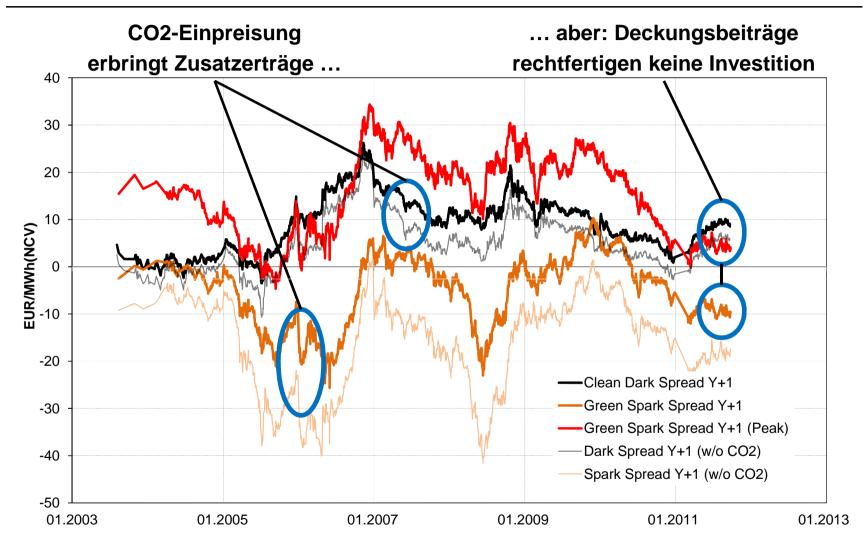
- Es geht in der konventionellen Erzeugungssystems nicht um Stromerzeugung sondern um (Spitzen-) Last-Deckung
- Zwei Blicke zurück
 - dena- (Strom-/Effizienzlücken-) Studie (2010) für 2020/2030
 - bei Zubau konventioneller (Kondensationskraftwerks-)
 Kapazitäten von 12,6 GW und
 - und 6,0 / 8,6 GW KWK-Zubau
 - und 1,5 / 3,8 GW Zubau gesicherter Leistung im Bereich erneuerbare Energien
 - und bei konstanter Stromnachfrage
 - verbleiben 14,7 / 27,5 GW nicht bereitgestellt gesicherte Leistung (10,6 / 21,7 GW bei sinkender Stromnachfrage
 - Prof. Dr. Georg Erdmann (TU Berlin): "Deutschland droht die Stromlücke. Futures-Preise sind kein unmittelbarer Ausdruck der Markterwartungen im Energiesektor" (HB 2. Juni 2008)


Energiewende: Mittelfristiger Ersatz für KKW in Deutschland

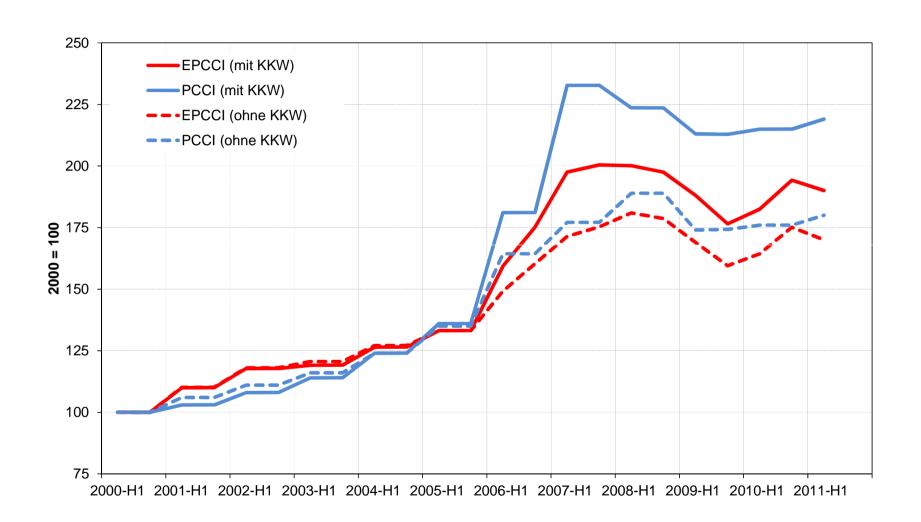

Stromerzeugung geprägt durch variable erneuerbaren Energien (hier: EU-27)

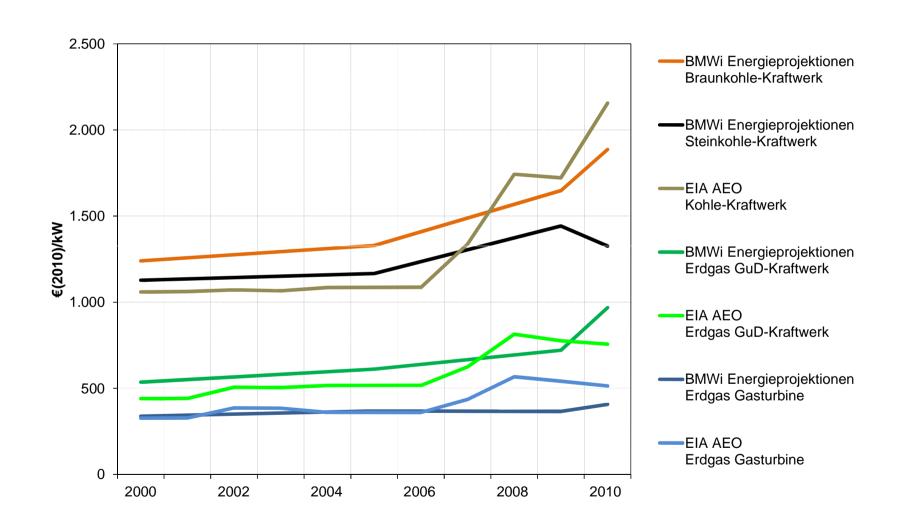
Systemkosten der Stromversorgung: Wachsende Bedeutung der Kapitalkosten

www.oeko.de


Kapazitätssicherung in Deutschland Die längerfristige Perspektive (1)

- Der Ausbau erneuerbarer Energien wird für Deutschland v.a. bei Wind und Solar eine besondere Dynamik entfalten
- Die Kapazitätssicherung wird sich in unterschiedlichen Etappen unterschiedlich materialisieren
 - 2010/2020: Flexibilitäten des vorhandenen Kraftwerksparks, (teilweise begonnener) Zubau konventioneller Kapazitäten (auch: KWK) und Pumpspeicherkraftwerke
 - 2020/2030: (notwendiger) Zubau konventioneller Kapazitäten, (Abgang ca. 20 GW), Strom/Strom-Speicher, europäischer Verbund
 - 2030/2050: Strom/Strom-Speicher (mit Kraftwerkskomponente!), chemische Speicher (mit Kraftwerkskomponente!), europäischer Verbund
- Die Errichtung von "Nicht-EE"-Kraftwerksanlagen (als konventionelle Kraftwerke oder Speicherkomponenten) bleibt langfristig relevant


Clean/Green Dark/Spark Spreads: Neubaukraftwerke nicht attraktiv


Exkurs Investitionskosten CERA-Indizes

Exkurs Investitionskosten Standard-Projektionen

www.oeko.de

Kapazitätssicherung in Deutschland Die längerfristige Perspektive (2)

- These: Energy only-Märkte werden die notwendigen Einkommensströme nicht erzeugen können
 - Sehr hohe Volatilitäten/Spreads wären notwendig!
 - Glauben Investoren in die Nachhaltigkeit dieser Signale?
 - Sind die Verteilungseffekte (politisch) beherrschbar?
- Konsequenz: Ohne Einkommensströme für die Bereitstellung von Kapazitäten wird das Stromversorgungssystem in Europa – marktbasiert – nicht betrieben werden können
 - Konventionelle Kraftwerkskapazitäten
 - Marktintegration erneuerbarer Energien
 - Integration von Stromspeichern
 - (Lokalisierungssignale für Erzeugungsinvestitionen)
- Für jede dieser Herausforderungen sind auch andere Lösungsansätze als Kapazitätsmechanismen vorstellbar, nur Kapazitätsmechanismen erlauben jedoch integrierte Ansätze

Das Missing Money Problem

- die klassische Interpretation: durch Knappheitsprämien entstehende Preisspitzen, die Kraftwerksprojekte wirtschaftlich machen, werden (politisch) über kurz oder lang gekappt (oder die Märkte erwarten dies)
- die Interpretation im Kontext der "Großen Transformation": (sinnvolle und notwendige) politische Interventionen zum Ausbau der erneuerbaren Energien kappen bzw. verringern die (für Kraftwerksinvestitionen erforderlichen) Preisspitzen

Lösungsansatz

Bepreisung von Kraftwerkskapazitäten (wie auch immer)

Exkurs: Begriffliche Klärung

Kapazitätsmechanismen

- sind spezifische Instrumente, mit denen ein Einkommensstrom für die Bereitstellung von Kraftwerkskapazitäten oder äquivalenter Kapazitäten auf der Nachfrageseite erzeugt werden kann
- können über Preis- oder Mengensteuerung ansetzen
- sind marktwirtschaftliche Steuerungsinstrumente
- Kapazitätsmärkte (im engeren Sinn)
 - sind konkrete Umsetzungsoptionen für Kapazitätsmechanismen
 - bepreisen in den bisher vorherrschenden (nordamerikanischen)
 Modellen jegliche Kraftwerkskapazität
- Eine Fokussierung der Debatte auf Kapazitätsmärkte (im engeren Sinne) greift zu kurz

Die Marktintegration erneuerbarer Energien

 ein zunehmend durch erneuerbare Energien mit (sehr niedrigen) kurzfristigen Grenzkosten geprägter Markt erlaubt in letzter Konsequenz keine Marktintegration erneuerbarer Energien in "Energy only"-Märkte

Lösungsansätze

- eine Veränderung des Marktdesigns ist mittelfristig unausweichlich (wenn man nicht bei einem durchgeplanten Garantiepreissystem bleiben will)
- Kapazitätskomponenten sind hier sinnvoll und unausweichlich

Die Integration von Speichern in das Stromversorgungssystem

- Speicher werden mittelfristig (2025+) ein wichtiges Element des Strommarktes
- notwendig werden sehr verschiedene Speicherprofile
 (Tag/Nacht, Wochentag/Wochenende, windreiche/-arme Perioden/Jahreszeiten, überjährige Versorgungssicherheit)
- Speicheroptionen mit eher geringen Be-/Entladefrequenzen sehen sich mit erheblichen ökonomischen Problemen konfrontiert

Lösungsansatz

 Kapazitätskomponenten bei den Einkommensstömen für Speicher sind sinnvoll und unausweichlich

Lokalisierungssignale für Kraftwerksinvestitionen

 die Fiktion der "Kupferplatte" erzeugt keine Lokalisierungssignale für Kraftwerke (und Nachfrager)

Lösungsansätze

- Bepreisungsansätze auf der Netzseite (Preiszonen, Nodal Pricing): Unzweifelhaft kurzfristige Einsparung von Redispatch-Kosten, Lenkungswirkungen für Investitionen/Ansiedlungen in einem sich hochdynamisch verändernden Netz sind frag-/diskussionswürdig
- Kapazitätsmechanismen mit regionalen Komponenten können ggf. einen Teil der Lösung bilden

Design von Kapazitätsmechanismen Zentrale Fragestellungen

- Preisbildung
 - Mengensteuerung
 - Preissteuerung
- Adressierte Kapazitätsarten
 - (notwendige) Neubaukraftwerke (separat)
 - (stilllegungsgefährdete) Bestandskraftwerke (separat)
 - alle Kraftwerke (gleichermaßen)
 - Nachfrageseite
- Zusätzliche Qualifikationsanforderungen
 - Flexibilität
 - Emissionsstandards
 - Lokalisierung (ggf. temporär)
- Europäischer Harmonisierungsbedarf

Design von Kapazitätsmechanismen Zentrale Bewertungsmaßstäbe

- Effektive Gewährleistung von langfristiger Versorgungssicherheit
 - insgesamt und regional
 - in einem nicht perfekten Infrastruktur-Umfeld
- Kosten
 - für die Verbraucher/Netznutzer (!)
- (Zukünftige) Skalier- oder Nutzbarkeit jenseits des konventionellen Kraftwerkssegments
 - erneuerbare Energien
 - Speicher
 - Infrastruktur(subtitut?)

Schlussfolgerungen

- Praktische Erfahrungen mit wettbewerblich ausgerichteten Kapazitätsmechanismen sinnvoll und notwendig
- Umfassende Kapazitätsmärkte bilden derzeit keinen sinnvollen Ansatz
 - wahrscheinlich leichte Effizienzvorteile aber
 - erhebliche Verteilungseffekte (von den Netznutzern zu den Betreibern der Bestandskraftwerke), d.h. Kosten für die Kunden
- Selektive Kapazitätsmechanismen bilden einen sehr interessanten Ansatz
 - kurzfristige Lösungsoption für anstehende Kraftwerksinvestitionen
 - Möglichkeit der Integration von Lokalisierungskomponenten
 - Mengensteuerung als zukunftsträchtigerer Ansatz
 - begrenztes "Experiment" ist mit überschaubaren Risiken (Europa, "slippery slope") verbunden

... und die Notwendigkeit europäischer Harmonisierung?

Kapazitätselemente im Strommarkt-Design

- gibt es in einigen Teilmärkten Europas heute schon
- werden (im unterschiedlichen Konkretisierungsgrad) für viele Teilmärkte Europas diskutiert
- haben natürlich Verteilungswirkungen
- sind (für Europa) nicht umfassend erprobt

europäische Harmonisierung ist ein längerer Prozess

- umfassende EU-Gesetzgebung derzeit möglich und wirklich notwendig?
- aber: ohne Harmonisierungsschritte: Wildwuchs von Regelungen (direkte Subventionierung als Präferenz einiger Staaten ...)
- Zwischenschritt: harmonisierte Bedarfsplanung?

Besten Dank für Ihre Aufmerksamkeit

Dr. Felix Chr. Matthes
Energy & Climate Division
Büro Berlin
Schicklerstraße 5-7
D-10179 Berlin
f.matthes@oeko.de
www.oeko.de