

W.OPKO.GP

Öko-Institut e.V.

Das Öko-Institut ist eine der europaweit führenden, unabhängigen Forschungs- und Beratungseinrichtungen für eine nachhaltige Zukunft.

Auf Basis einer wertorientierten wissenschaftlichen Forschung berät das Öko-Institut Entscheidungsträger aus Politik, Wirtschaft und Zivilgesellschaft.

An den drei Standorten Freiburg, Darmstadt und Berlin beschäftigt das Institut über 125 MitarbeiterInnen, darunter mehr als 85 WissenschaftlerInnen.

95
Ribeirastratio
Vegica

Büro Berlin

Büro Darmstadt

Öko-Institut e.V.

Jährlich bearbeiten sie mehr als 200 nationale und internationale Projekte in folgenden Arbeitsgebieten:

- Chemikalienmanagement und Technologiebewertung;
- Energie und Klima;
- Immisions- und Strahlenschutz;
- Landwirtschaft und Biodiversität;
- Nachhaltigkeit in Konsum, Mobilität, Ressourcenwirtschaft und Unternehmen;
- Nukleartechnik und Anlagensicherheit sowie
- Recht, Politik und Governance

Büro Berlin

www.oeko.de

Büro Darmstadt

Was ist dran am Medienrummel?

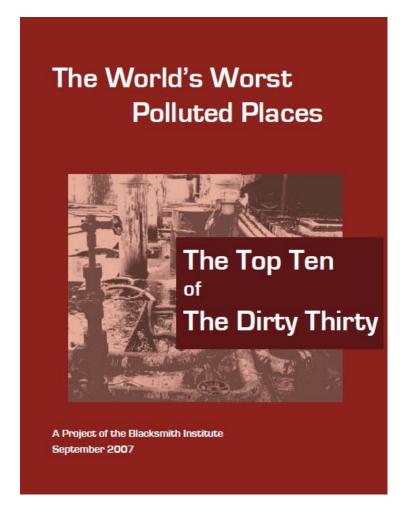
Was hat das Thema mit Umwelt und Nachhaltigkeit zu tun?

Grund 1... Umweltauswirkungen des Bergbaus

Gold

Wert: 1318 Euro / Feinunze (31,104g)

Und:

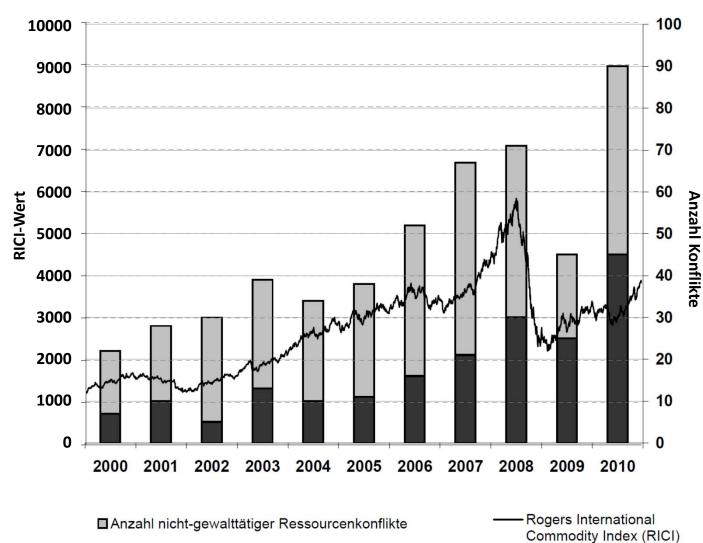


Im Goldbergbau werden 11% aller Quecksilberemissionen verursacht

· | | | |

Oko-Institut e.V. Institut für angewandte Ökologie Institute for Applied Ecology

Grund 1... Umweltauswirkungen des Bergbaus



4 der 10 am schlimmsten verseuchten Orte wurden durch Bergbau und/oder Erzverhüttung kontaminiert

- Sukinda, Indien (Cr…)
- La Oroya, Peru (Cu, Pb, Zn, Ag, Au…)
- Norilsk, Russland (Ni, PGMs...)
- Kabwe, Sambia (Pb, Zn, Cd, Mn, V…)

Grund 2... Soziale Auswirkungen der Rohstoffgewinnung

Quellen:

Heidelberger Institut für internationale Konflikt-Forschung 2001-2011

Rogers International **Commodity Index**

■ Anzahl gewalttätiger Ressourcenkonflikte

Grund 3... Bedeutung für "Nachhaltigkeitstechnologien"

- Windkraft: Seltenen Erden (Neodym, Praseodym, Dysprosium)...
- Photovoltaik: Gallium, Tellur, Germanium, Indium...
- Elektromobilität: Seltene Erden, Lithium, Kobalt...
- Katalyse: Platin Gruppen Metalle (PGMs), Seltene Erden...
- Energiesparlampen & LEDs: Seltene Erden, Indium, Gallium...
- Gasturbinen: Rhenium...

Inhalt

- 1. Welche Stoffe sind kritisch?
- 2. Kobalt Armut & High-Tech
- 3. Seltene Erden Metalle für Magnete, Lampen & Co
- 4. Lösungsansätze

Inhalt

- 1. Welche Stoffe sind kritisch?
- 2. Kobalt Armut & High-Tech
- 3. Seltene Erden Metalle für Magnete, Lampen & Co
- 4. Lösungsansätze

WW OPKO OB

Was ist kritisch...?

	EU 2010	Öko-Institut 2009	U.S. Department of Energy 2010	IZT & Aldelphi 2011
			Ellergy 2010	(1 1
Antimon	Х			x (höchste Kritikalität)
Beryllium	X			
Bismut				x (hohe Kritikalität)
Chrom				x (hohe Kritikalität)
Kobalt	Х	x (long term critical)		
Fluorit	Х			
Gallium	Х	x (short term critical)		x (hohe Kritikalität)
Germanium	Х	x (long term critical)		x (höchste Kritikalität)
Graphit	Х			
Indium	Х	x (short term critical)	x (short term critical)	x (hohe Kritikalität)
Lithium		x (mid term critical)	x (mid term near critical)	
Magnesium	X			
Niob	X			x (hohe Kritikalität)
PGMs	Х	x (mid term critical)*		x (hohe Kritikalität)***
Rhenium				x (höchste Kritikalität)
Seltene Erden	Х	x (mid term critical)	x (short term critical)**	x (hohe Kritikalität)
Silber				x (hohe Kritikalität)
Tantal	X	x (mid term critical)		
Tellur		x (short term critical)	X (short term near critical)	
Wolfram	X			x (hohe Kritikalität)
Zinn				x (hohe Kritikalität)

^{*} Palladium, Platin, Ruthenium ** Dysprosium, Europium, Terbium, Neodym, Yttrium *** Palladium

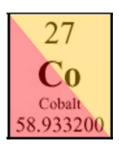
Die "kritischen" Rohstoffe

Hydrogen				kriti	sch												2 He Helium 4.003
3	4											5	6	7	8	9	10
Li	Be Beryllium											Boron	Carbon	N Nitrogen	O Oxygen	F Fluorine	Ne Neon
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24,3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44,955910	Titanium 47,867	Vanadium 50.9415	Chromium 51.9961	Manganese 54,938049	Iron 55,845	Cobalt 58,933200	Nickel 58,6934	Copper 63,546	Zinc 65.39	Gallium 69,723	Germanium 72,61	Arsenic 74.92160	Selenium 78.96	Bromine 79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	\mathbf{Cd}	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92,90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107,8682	Cadmium 112,411	Indium 114,818	Tin 118,710	Antimony 121,760	Tellurium 127.60	lodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137,327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196,96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208,98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200.20036	(207)	(210)	(222)
Fr	Ra Radium	Ac Actinium	Rf Rutherfordium	Db Dubnium	Sg Seaborgium	Bh Bohrium	Hs Hassium	Mt Meitnerium	(2(0)	(272)							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	(269)	(272)	(277)	113					

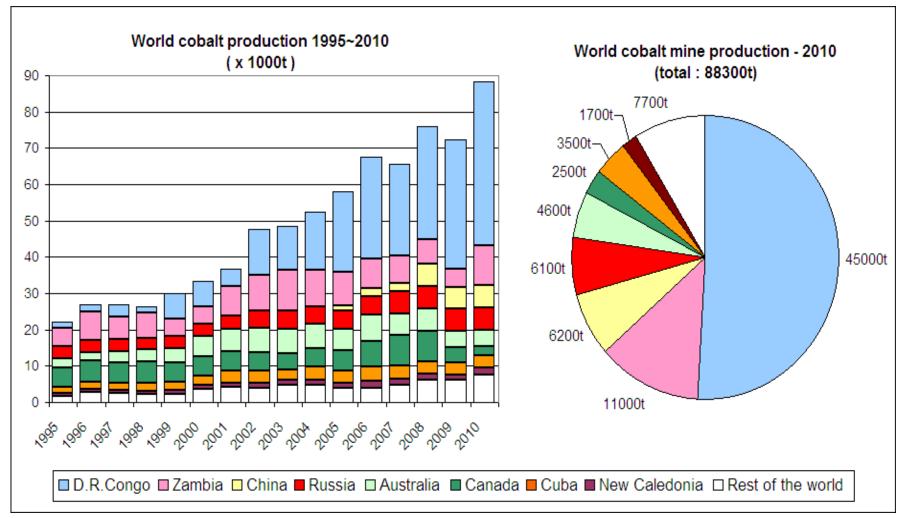
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium		Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

"Kritische" Rohstoffe und "Konfliktmetalle"

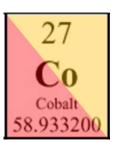
1 H Hydrogen 1.00794				kriti	sch			kon	fliktf	ördeı	rnd						2 He Helium 4.003
3 Li Lithium 6.941	4 Be Berythum 9,012182		kritisch & konfliktfördernd S												10 Ne Neon 20.1797		
11 Na Sodium 22.989770	Mg Magnesium 24,3050								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			13 Al Aluminum 26.981538	14 Si Silicon 28.0855	Phosphorus 30.973761	16 S Sulfur 32.066	Cl Chlorine 35.4527	18 Ar Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30 Zn	31 Ga	32	33	34	35	36
K Potassium 39,0983	Ca Calcium 40.078	Sc Scandium 44.955910	Titanium 47.867	Ti V Cr Mn Fe Co Ni Cu Copper									Ge Germanium 72.61	As Arsenic 74.92160	Se Selenium 78.96	Br Bromine 79.904	Kr Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	65.39 48	69.723 49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92,90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107,8682	Cadmium 112,411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Cesium 132,90545	Ba Barium 137.327	La Lanthanum 138 9055	Hf Hafnium 178.49	Ta Tantalum 180 9479	W Tungsten 183.84	Re Rhenium 186.207	Os Osmium 190.23	Ir Iridium 192.217	Pt Platinum 195.078	Au Gold 196,96655	Hg Mercury 200.59	Tl Thallium 204.3833	Pb Lead 207.2	Bi Bismuth 208.98038	Po Polonium (209)	At Astatine (210)	Rn Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	_00,700,70	(20))	(210)	(222)
Francium (223)	Ra Radium (226)	Ac Actinium (227)	Rf Rutherfordium (261)	Db Dubnium (262)	Sg Seaborgium (263)	Bh Bohrium (262)	Hs Hassium (265)	Mt Meitnerium (266)	(269)	(272)	(277)						


58	59	60	61	62	-63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium 140.116	Praseodymium 140.90765	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158,92534	Dysprosium 162.50	Holmium 164,93032	Erbium 167.26	Thulium 168,93421	Ytterbium 173.04	Lutetium 174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

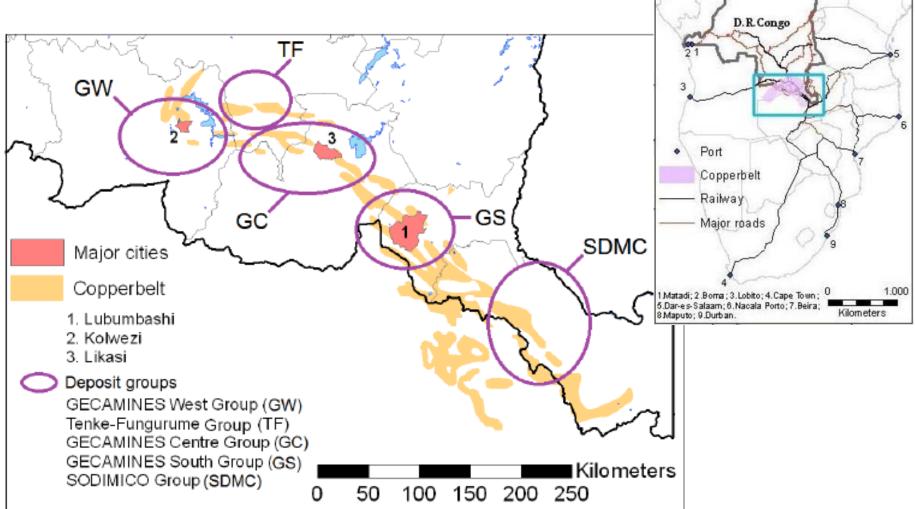
Beispiel Kobalt –


1 H Hydrogen 1.00794			Ar	mı	ıt 8	& F	dig	jh-	Te	ch							Helium 4.003
3	4											5	6	7	8	9	10
Li	Be Beryllium											B Boron	C Carbon	N Nitrogen	Oxygen	F Fluorine	Ne Neon
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11 No.	12											13	14	15 D	16 S	17 CI	18
Na Sodium	Mg Magnesium											Al Aluminum	Si Silicon	P Phosphorus	S Sulfur	Cl	Ar Argon
22.989770	24,3050											26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51,9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	\mathbf{Cd}	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106,42	Silver 107,8682	Cadmium 112.411	Indium 114.818	Tin 118,710	Antimony 121,760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	. 73	. 74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138,9055	Hafnium 178.49	Tantaluto 180,9479	Tungsten 183.84	Rhenium 186,207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196,96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200,70038	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt				1					
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	F12-78-20	*******							
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

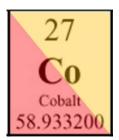
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium 140.116	Praseodymium 140,90765	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151,964	Gadolinium 157.25	Terbium 158,92534	Dysprosium 162,50	Holmium 164.93032	Erbium 167.26	Thulium 168.93421	Ytterbium 173.04	Lutetium 174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)



Daten zur Weltprimärproduktion


www.oeko.de

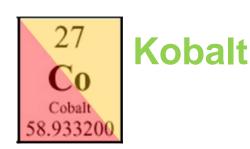
15



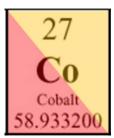
> 50% der Förderung in der D.R. Kongo

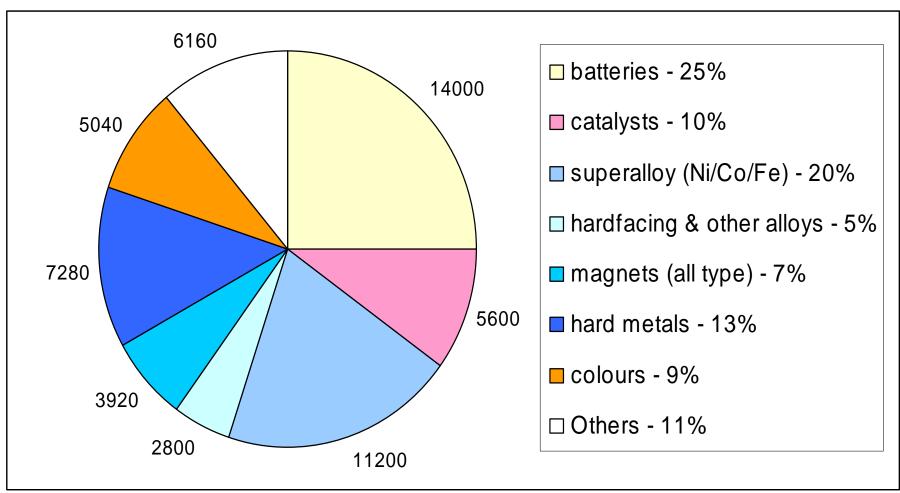
Quelle: Öko-Institut 2011

www.oeko.d

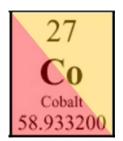


60-90% der kongolesischen Förderung durch informelle Kleinbergleute (artisanal mining)





- Im "artisanalen" Kobaltabbau finden 67.000 108.000 ihr Auskommen
- Davon 19.000-33.000 Kinder unter 15 Jahren
- Viele Kobalterze sind mit Schwermetallen wie Blei und Uran vergesellschaftet (Strahlenbelastungen von bis zu 24mSv pro Jahr)
- Todesrate durch Unfälle: Ca. 0,5% pro Jahr (v.a. Überschwemmungen und Schachteinstürze)



Daten zum Weltverbrauch nach Anwendungen

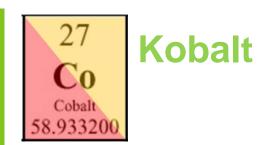
Quelle: CDI 2010

www.oeko.d

25% der Weltkobaltproduktion für Li-Ionen Akkus

Kobaltgehalt:

Ø 13,8 % der Akkumasse


Gesamt:

Ca. 3,8 g pro Handy

Ca. 6,3 g pro Smartphone

Ca. 65 g pro Notebook

Ca. 2,5 kg pro Hybridauto

Arbeitsbedingungen bezogen auf einzelne Produkte

	Handy	Smartphone	Notebook	Hybridauto
Arbeitszeit	0,6 Min	1 Min	10 Min	370 Min
Kinderarbeit	0,18 Min	0,3 Min	3 Min	104 Min
Entlohnung	0,0029 US\$	0,005 US\$	0,05 US\$	1,83 US\$
Tödl. Arbeitsunfälle	0,00000012	0,00000002	0,00000021	0,0000081

Kalkulatorische Annahme: In jedem Produkt steckt ein Kobaltgemisch entsprechend der Weltmarktanteile der Abbauregionen

Beispiel Seltene Erden –

	_	R/I	4		4::				-4-		6 14		0 10				
1				пе	TU				4()	<u> </u>		np	en	Oz.			2
Н										7			•				He
Hydroge	n																Helium
1.0079	4																4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
Lathium	Berylimm											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium												Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.9897												26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassiur	n Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.098		44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	\mathbf{Cd}	In	Sn	Sb	Te	I	Xe
Rubidiun		Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
85.467		88,90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118,710	121,760	127.60	126.90447	131.29
55	56	57	72	73	. 74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.905		38.905	178.49	180.9479	183.84	186,207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	$\mathbf{S}\mathbf{g}$	Bh	Hs	Mt									
Franciun	n Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	No. of the Control	0.0000000000000000000000000000000000000							
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

	50	59	60	61	62	-63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Cerium	Praseodymium		Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
١	140.116	10.00765	144.24	(145)	150.36	151,964	157.25	158.92534	162.50	164.93032	167.26	168.93421	172.04	1 /4.967
	90	91	92	93	94	93	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
- 1	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

- Energiesparlampen
- LED
- LCD
- Plasma-Bildschirm
- Laser

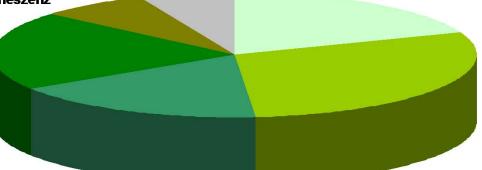
- Wasseraufbereitung
- Pigmente
- Düngemittel
- Nuklear-Technologie
- Verteidigung

- Auto-Katalysatoren
- Katalysatoren in Raffinerieund chemischen Prozessen
- Diesel-Zusatz

Katalysatoren

Andere

Phosphor, Lumineszenz


Magnete

Nd Pr Sm La Tb Dy

- Motoren und Generatoren Windräder Elektrofahrzeuge Hybrid-Fahrzeuge
- Festplatten

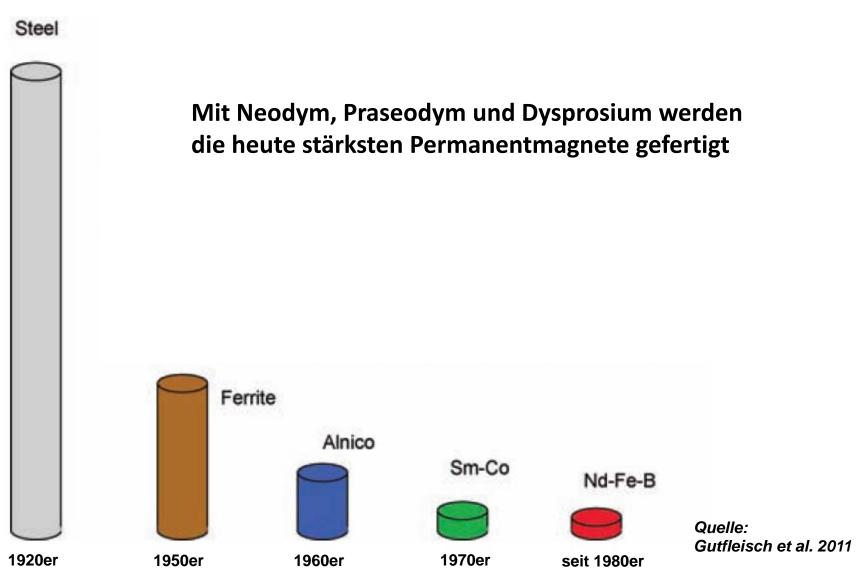
www.oeko.de

- Kernspintomograph
- Lautsprecher
- Magnetische Kühlung

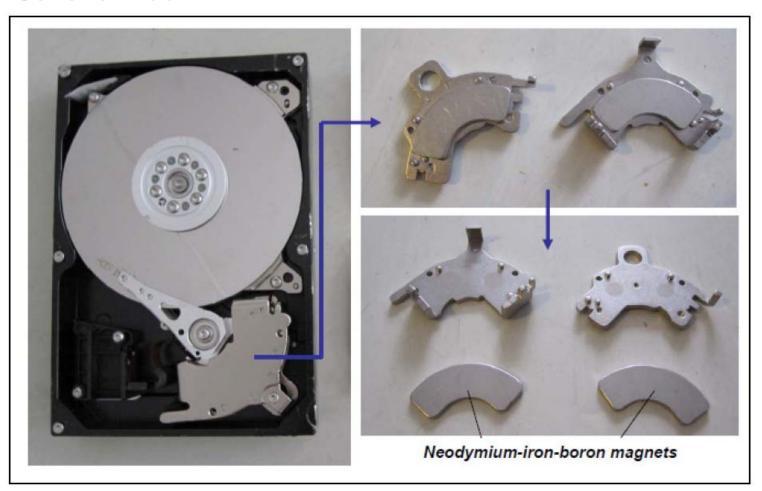
Metall-Legierung / Batterien

- Legierungen für Stahl und Eisenguss
- Super-Legierung
- Zündgeräte
- NiMH-Batterie
- Brennstoffzelle
- H₂-Speicherung
- Leichtbau

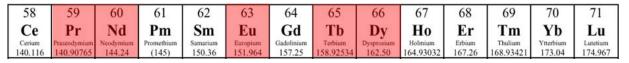
Glas, Polierung, Keramik



- Poliermittel
- Glasadditive zu Färbung/ Entfärbung
- Stabilisator in Keramik
- Keramik-Kondensatoren
- UV-Adsorption



www.oeko.de



58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967

Festplatten: Lange Zeit eine Hauptanwendung von Seltenen Erden Magneten Seltene Erden Gehalte pro Festplatte (3,5"): 5-6 g

Vergleich zweier Elektromotoren:

	50Hz Induktionsmotor	Motor mit Seltenen Erden Magneten
Mechanische Leistung	1,5 kW	1,5 kW
Benötigte elektrische Leistung	2,0 kW	1,7 kW
Effizienz	75 %	88 %
Gewicht	45 kg	18 kg
Volumen	15953 cm ³	4598 cm ³

Quelle: Gutfleisch et al. 2011

Ingenieure werden sich bei vielen Anwendungen für Motoren mit Seltenen Erden entscheiden

Pr

Ce

Seltene Erden

Nd

L 191/26

61

Pm

DE

62

Sm

150.36

Gd

Gadoliniur

157.25

Eu

Tb

Amtsblatt der Europäischen Union

Ho

164.93032

Dv

68

Er

167.26

Tm

168.93421

Yb

173.04

Lu

Lutetium

174.967

23.7.2009

VERORDNUNG (EG) Nr. 640/2009 DER KOMMISSION

vom 22. Juli 2009

zur Durchführung der Richtlinie 2005/32/EG des Europäischen Parlaments und des Rates im Hinblick auf die Festlegung von Anforderungen an die umweltgerechte Gestaltung von Elektromotoren

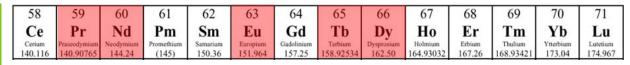
(Text von Bedeutung für den EWR)

DIE KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN —

Elektrische Antriebssysteme umfassen eine Reihe energiebetriebener Produkte, zum Beispiel Motoren, Steuerungen, Pumpen oder Ventilatoren, Motoren und Drehzahl-

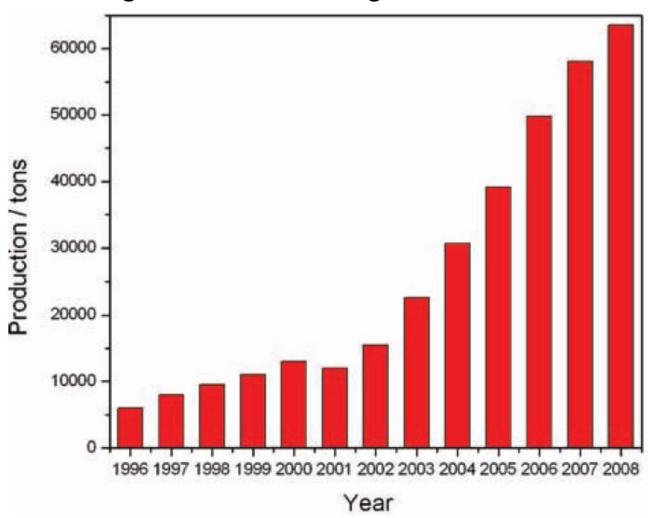
Auch gesetzliche Vorgaben zur Energieeffizienz machen einen vermehrten Einsatz von Seltenen Erden erforderlich.

gerechte Gestaltung energiebetriebener Produkte und zur Änderung der Richtlinie 92/42/EWG des Rates sowie der Richtlinien 96/57/EG und 2000/55/EG des Europäischen Parlaments und des Rates (1), insbesondere auf Artikel 15 Absatz 1,

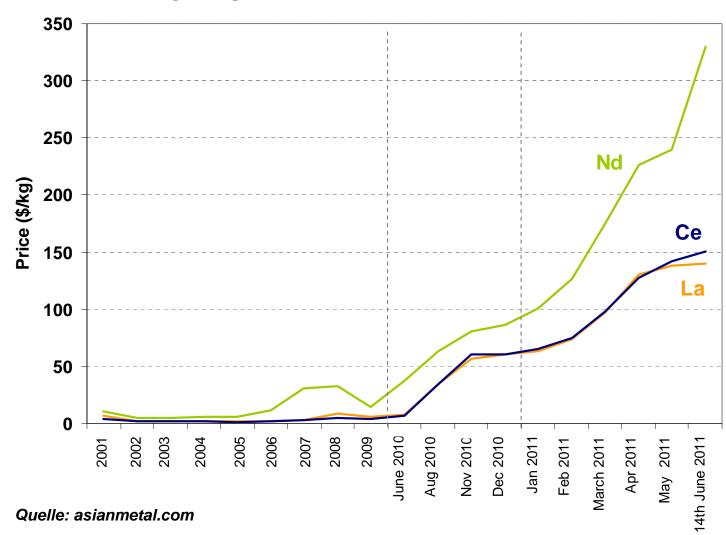

nach Anhörung des Ökodesign-Konsultationsforums,

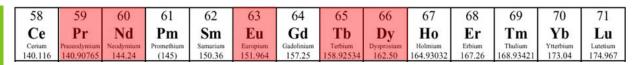
in Erwägung nachstehender Gründe:

Gemäß der Richtlinie 2005/32/EG legt die Kommission Anforderungen an die umweltgerechte Gestaltung ("Ökodesign") energiebetriebener Produkte fest, die ein erhebliches Vertriehs- und Handelsvolumen eine erhehliche


linie 2005/32/EG und der Richtlinie 2006/42/EG des Europäischen Parlaments und des Rates (2) in Verkehr gebracht und in Betrieb genommen. Damit das gesamte Energieeinsparpotenzial kosteneffizient realisiert werden kann, sollten die in andere Erzeugnisse eingebauten Motoren den Bestimmungen dieser Verordnung unterliegen.

- Die Kommission hat in einer vorbereitenden Studie die technischen, ökologischen und wirtschaftlichen Aspekte von Elektromotoren untersucht. Die Studie wurde zusammen mit Interessengruppen und betroffenen Kreisen aus der EU und Drittländern durchgeführt, und die Ergebnisse wurden öffentlich zugänglich gemacht.
- Aus der vorbereitenden Studie geht hervor, dass Elektromotoren in großen Mengen auf den Gemeinschaftsmarkt

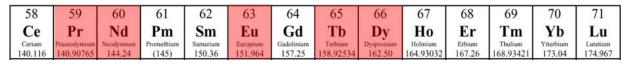

Entwicklung der Produktionsmengen von Seltenen Erden Magneten



Quelle: Gutfleisch et al. 2011

Preisentwicklung einiger Seltener Erden

Wesentliche Umweltrisiken beim Abbau:


 Radioaktive Stoffe, die über Staub und Wasser Mensch und Umwelt schädigen

- Rückstände aus der Erzaufbereitung (Flotationsberge):
 - Enthalten radioaktive und toxische Stoffe aus dem Gestein und aus den chemischen Hilfsmitteln
 - Ablagerung in künstlichen Teichen
 - Kontinuierlicher Grundwassereintrag bei Undichtigkeiten
 - Risiko von Dammbrüchen (siehe Rotschlamm in Ungarn)

Produktion in China (97 % der Weltproduktion)

- Batou Obo Mine die größte Selten Erden Mine
 - Umweltschäden: radioaktive Stäube,Lungenkrebs, Grundwasserverunreinigung
- Ionen-Adsorptions-Tone in Süd-China
 - Hohe Gehalte an schweren Seltenen Erden
 - In-situ Laugung, hydro-geologisch nicht kontrollierbar
- Zahlreiche kleine illegale Minen
 - Schätzungsweise 20.000 t Seltene Erden Oxide,
 die illegal abgebaut und exportiert wurden
 - Vermutlich haben diese Minen keinerlei Umweltschutzvorrichtungen

Umweltpläne der chinesischen Regierung

- Schließen der kleinen illegalen Minen. Konzentration und Konsolidierung der Seltenen Erden Wirtschaft
- Installation von Umweltschutztechnologien im Bergbau und in der Verarbeitung

Chinesische Exporte

Chinesische Exporte in 2010: - 29 % im Vergleich zu 2008.
 Anhaltende Exportrestriktionen in 2011.

Inhalt

- 1. Welche Stoffe sind kritisch?
- 2. Kobalt Armut & High-Tech
- 3. Seltene Erden Metalle für Magnete, Lampen & Co
- 4. Lösungsansätze

Lösungsansätze

- 1. Effizienter Einsatz
- 2. Recycling
- 3. Fairer Abbau (sozial und ökologisch)

Lösungsansätze – Effizienter Einsatz

- Im Bereich des effizienten Einsatzes kritischer Rohstoffe ist sehr viel Dynamik gekommen
- Dahinter stehen intrinsische Interessen der Industrie, Risiken durch Knappheiten und Preisanstiege vorzeitig abzufangen

Beispiele:

- Forschung zu Magneten mit weniger Seltenen Erden
- Optimierter Platineinsatz bei Katalysatoren
- Forschung zur Substitution von Indium

Lösungsansätze – Recycling

- Fortschritte beim "Pre-Consumer-Recycling" (Produktionsabfälle)
- Probleme beim "Post-Consumer-Recycling" (Nachgebrauchsphase)

Beispiel Notebook:

A: Leiterplatten

B: LCD-Bildschirm

C: Akkublock

D: Optisches Laufwerk E: Festplattenlaufwerk

F: Stahlbleche,

Kühlelemente & Lüfter

G: Tastatur

H: Kunststoffteile

Lösungsansätze – Recycling

Metall		Gehalt je Note- book (CCFL ¹⁹) [mg]	Gehalt je Note-book (LED ²⁰) [mg]	Gehalt in allen 2010 in D verkauften Notebooks [kg]
Kobalt	Со	65.000	65.000	461.305
Neodym Nd		2.100	2.100	15.159
Tantal	Та	1.700	1.700	12.065
Silber	Ag	440	440	3.106
Praseodym	Pr	270	270	1.945
Gold	Au	100	100	736
Dysprosium	Dy	60	60	426
Indium	In	40	40	286
Palladium	Pd	40	40	280
Platin	Pt	4	4	28,40
Yttrium	Υ	1,80	1,60	11,50
Gallium	Ga	0,00	1,60	10,30
Gadolinium	Gd	0,01	0,75	4,80
Cer	Ce	0,08	0,10	0,69
Europium	Eu	0,13	0,03	0,28
Lanthan	La	0,11	0,00	0,08
Terbium Tb		0,04	0,00	0,03

Lösungsansätze – Recycling

		Gehalt in					
Metall		allen 2010 in D verkauften Notebooks [t]	Verluste bei der Erfassung	Verluste bei der Vorbehandlung	Verluste bei der Endbehandlung	Rückgewinnung in Deutschland [t]	
Kobalt	Со	461,31	50%	20%	4%	177	
Neodym	Nd	15,16		100%	100%	0	
Tantal	Та	12,06		100%	5%	0	
Silber	Ag	3,11		70%	5%	0,443	
Praseodym	Pr	1,94		100%	100%	0	
Gold	Au	0,74		70%	5%	0,105	
Dysprosium	Dy	0,43		100%	100%	0	
Indium	In	0,29		20%	100%	0	
Palladium	Pd	0,28		70%	5%	0,040	
Platin	Pt	0,028		100%	5%	0	
Yttrium	Υ	0,012		40%	100%	0	
Gallium	Ga	0,010		40%	100%	0	
Gadolinium	Gd	0,0048		40%	100%	0	
Cer	Се	0,00069		40%	100%	0	
Europium	Eu	0,00028		40%	100%	0	
Lanthan	La	0,00008		40%	100%	0	
Terbium	Tb	0,00003		40%	100%	0	

Lösungsansätze – Fairer Abbau

- Oftmals Forderung "keine Verwendung von Konfliktrohstoffen"
- Dodd-Frank Act in den USA:
 - Gesetz zur Finanzmarkttransparenz.
 - Für Rohstoffe relevant: § 1502 & 1504
 - Betroffen sind alle Firmen die in an US-amerikanischen Börsen notiert sind.
 - Diese dürfen keine Rohstoffe mehr verwenden, die aus dem Kongo kommen und verdächtigt werden, zur Kriegsfinanzierung beigetragen zu haben.
 - Wenn bewiesen werden kann, dass die Rohstofferlöse nicht zur Kriegsfinanzierung genutzt worden sind, dürfen sie frei verwendet werden (Zertifizierung nötig).
 - Aber: Es gibt bislang keine Zertifizierung.

Lösungsansätze – Fairer Abbau

Die unerwünschten Folgen des Dodd-Frank Act:

- De Facto Handelsembargo gegen Erze aus dem Kongo.
- Vorübergehender Zusammenbruch vieler Bergbaustrukturen in 2011, steigende Arbeitslosigkeit, Rückfall in Armut.
- Seitdem steigender Anteil illegaler Exporte v.a. nach Asien.
- Etablierung neuer, überwiegend fragwürdiger Handelsstrukturen.

Lösungsansätze – Fairer Abbau

Alternativen:

- Kein generelles Handelsembargo gegen Rohstoffe aus Konfliktregionen.
- Aber: Unterstützung zur Verbesserung der Abbau- und Handelsbedingungen insbesondere im Kleinbergbau.
- Aufgabenverteilung basierend auf den Marktanteilen der Sektoren und Unternehmen.
- Lückenlose Zertifizierung der Handelsketten nicht zwangsläufig notwendig

Langfristig werden die Bedingungen des Handels darüber entscheiden, wer die Rohstoffe letztendlich erhält.

