

Ressourceneffizienz und ressourcenpolitische Aspekte des Systems Elektromobilität

- Ergebnisse

Gefördert durch:

Ausgewählte Ergebnisse

- In dieser Präsentationen werden ausgewählte Ergebnisse sowie Schlussfolgerungen und Handlungsempfehlungen vorgestellt.
- Die detaillierten Ergebnisse inkl. des zugrunde liegenden
 Datenmaterials sind dem ausführlichen Bericht zu entnehmen.
- Der Endbericht des Projektes liegt unter <u>www.resourcefever.org</u> und <u>www.oeko.de</u>

Agenda

- Einführung (Hintergrund der Untersuchung)
- Priorisierung der Elemente
- Marktszenarien
- Komponenten der E-Mobilität und ihre Materialbedarfe
- Ergebnisse der Szenarien
- Umweltaspekte
- Recycling
- Wachstum Gesamtnachfrage/anderer Sektoren bzgl. kritischer Metalle
- Schlussfolgerungen und Handlungsempfehlungen

vww.oeko.de

OPTUM-Ressourcen

Titel des Teilvorhabens:

 Ressourceneffizienz und ressourcenpolitische Aspekte des Systems* Elektromobilität

Projektziele:

- Untersuchung der Ressourcenaspekte des Systems Elektromobilität (exklusive der Batterie)** unter Berücksichtigung von Recyclingmöglichkeiten und -perspektiven
- Identifizierung wichtiger neuer technologischer Entwicklungen mit Auswirkung auf den Ressourcenbedarf
- Frühzeitige Identifizierung möglicher ressourcenpolitischer Eng-/Schwachstellen und Entwicklung entsprechender Strategien

^{*} Umfasst alle spezifischen Komponenten von Elektrofahrzeugen inkl. Ladestation

^{**} Batterien in Elektrofahrzeugen werden in den Projekten LiBRi und LithoRec ausführlich untersucht

Prioritäre Elemente

Die 15 prioritären Elemente der Elektromobilität*:

Lanthaniden

- Silber
- Gold
- Kupfer
- Dysprosium
- Neodym
- Praseodym
- Terbium
- Gallium
- Germanium
- Indium
- Palladium
- Platin
- (Ruthenium)
- (Lithium)
- (Kobalt)

I	II		I	Haupt	grupp	en de	s Peri	odens	ystem	IS		III	IV	V	VI	VII	VIII	Schale
H 1 Wasser- stoff																	4,00260 He 2 2 Helium	K
Li 2/1 Lithium	9,01218 Be 4 2/2 Beryllium											10,81 B 5 2/3 Bor	12,011 C 6 2/4 Kohlenstoff	14,0067 N 7 2/5 Stickstoff	15,9994 O 8 2/6 Sauerstoff	18,9984 F 9 2/7 Fluor	20,179 Ne 10 2/8 Neon	L
22,9898 Na 11 8/1 Natrium	24,305 Mg 12 8/2 Magnesium	III a	IV a	Va	VI a	Nebengri VII a	uppen	VIII a		Ia	II a	26,9815 Al 13 8/3 Aluminium	28,0855 Si 14 8/4 Silicium	30,9738 P 15 8/5 Phosphor	32,06 S 16 8/6 Schwefel	35,453 CI 17 8/7 Chlor	39,948 Ar 18 8/8 Argon	M
39,098 K 19 8/1 Kalium	40.08 Ca 20 8/2 Calcium	44,956 Sc 21 9/2 Scandium	47,88 Ti 22 10/2 Titan	50,941 V 23 11/2 Vanadium	51,996 Cr 24 13/1 Chrom	54,938 Mn 25 13/2 Mangan	55,847 Fe 26 14/2 Eisen	58,933 Co 27 15/2 Kobult	58.69 Ni 28 16/2 Nickel	63,546 Cu 29 18/1 Kupter	65,39 Zn 30 18/2 Zink	69.72 Ga 31 18/3 Gallium	72.59 Ge 32 18/4 Germanium	74,922 AS 33 18/5 Arsen	78,96 Se 34 18/6 Selen	79,904 Br 35 18/7 Brom	83,80 Kr 36 18/8 Krypton	N
85,468 Rb 37 8/1 Rubidium	87,62 Sr 38 8/2 Strontium	88,906 Y 39 9/2 Yttrium	91,224 Zr 40 10/2 Zirkonium	92,906 Nb 41 12/1 Niob	95,94 Mo 42 13/1 Molybdän	*Tc 43 13/2 Technetium	Ru	102,906 Rh 45 16/1 Rhodium	Pd 46 18/0 Palladium	Ag 47 18/1 Silber	112,41 Cd 48 18/2 Cadmium	114.82 In 49 18/3 Indium	118,710 Sn 50 18/4 Zinn	121,75 Sb 51 18/5 Antimon	127,60 Te 52 18/6 Tellur	126,905 I 53 18/7 Jod	131,29 Xe 54 18/8 Xenon	0
132.905 Cs 55 8/1 Cäsium	137,33 Ba 56 8/2 Barium	57 bis 71	178,49 Hf 72 10/2 Hafnium	180,948 Ta 73 11/2 Tantal	183,85 W 74 12/2 Wolfram	186,207 Re 75 13/2 Rhenium	190.2 Os 76 14/2 Osmium	192,22 Ir 77 15/2 Iridium	795,08 Pt 78 17/1 Platin	196,967 Au 79 18/1 Geld	200.59 Hg 80 18/2 Quecksilber	204,383 TI 81 18/3 Thallium	207,2 Pb 82 18/4 Blei	208,980 Bi 83 18/5 Wismut	*Po 84 18/6 Polonium	*At 85 18/7 Astatin	*Rn 86 18/8 Radon	P
* Fr 87 8/1 Francium	226,025 (226) * Ra 88 8/2 Radium	89 bis 103	*Ku 104 10/2 Kurtscha- tovium	* Ha 105 Hahnium	*Unh 106 Unnil- bexium	*Uns 107 Unnil- septium												Q

Ą	* Lithium und Kobalt werden im Projekt nicht weiter behandelt, da Szenarien im LithoRec-
	Projekt für diese Metalle bereits erstellt werden
	Buthonium wurde im Loufe der Unterguehung herebgestuft, de kein wegentlicher Beitrag

| 227,028 | 233,038 | 231,036 | 238,029 | 237,048 | 238,029 | 237,048 | 238,029 | 237,048 | 238,029 | 248,

Ho

Er

Tm

Yb

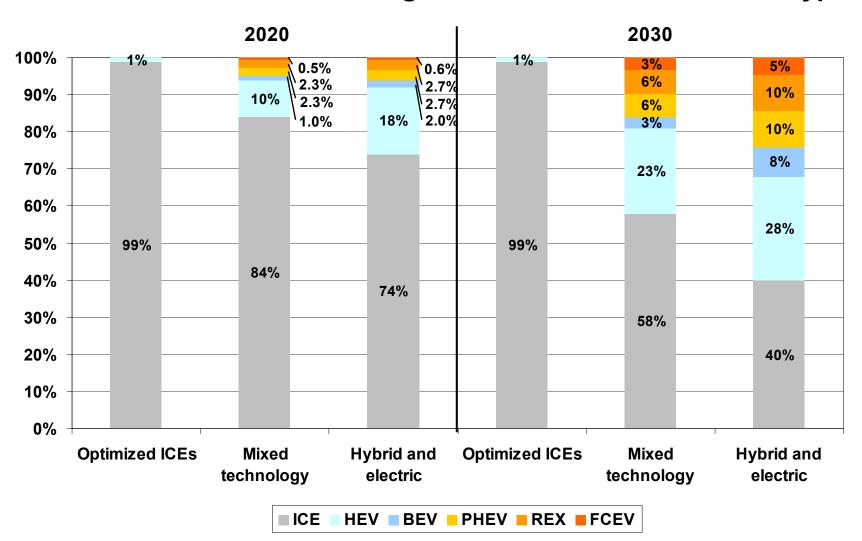
| ST | 9/2 | 58 | 8/2 | 59 | 8/2 | 60 | 8/2 | 61 | 8/2 | 62 | 8/2 | 63 | 8/2 | 64 | 9/2 | 65 | 8/2 | 69 | 8/2 | 61 | 8/2 | 62 | 8/2 | 63 | 8/2 | 64 | 9/2 | 65 | 8/2 | 66 | 8/2 | 8/2 | 67 | 8/2

Ruthenium wurde im Laufe der Untersuchung herabgestuft, da kein wesentlicher Beitrag festgestellt werden konnte

Prioritäre Elemente

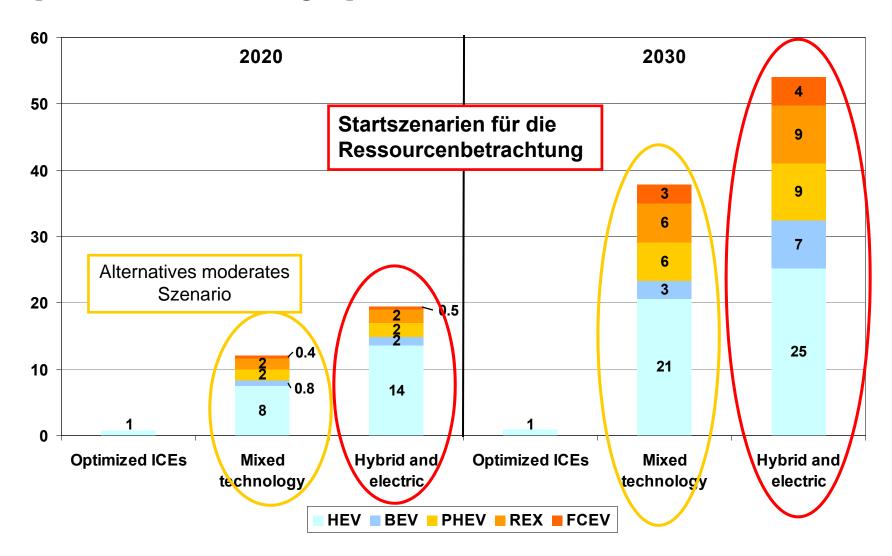
- Im Rahmen des ersten Experten-Workshops im September 2010 in Berlin wurden die prioritären Elemente mit Experten abgestimmt.
- Entscheidung für Priorisierung nach Materialbedarf im Elektro-Fahrzeug aber auch nach konkurrierenden Anwendungen: z.B.
 - Die Seltenen Erden (Neodym, Praseodym, Dysprosium, Terbium) werden vor allem für Permanentmagnete (Elektromotor bei E-Fahrzeugen) benötigt. Zusätzlich gibt es sehr stark wachsende konkurrierende Anwendungen wie z.B. Windkraftanlagen.
 - Indium findet Anwendung im Elektrofahrzeug in der Leistungselektronik. Das sehr starke Wachstum in konkurrierenden Anwendungen wie z.B. PV-Anlagen und die Potenziale bei den Primärressourcen (Minor Metal) setzen Indium jedoch eindeutig in die Gruppe der kritischen Metalle (z.B. EU 14 kritische Metalle).

Auswahl Marktszenarien



- Es wurden fünf Studien betrachtet:
 - IEA 2009
 - McKinsey & Co., 2010
 - McKinsey & Co., 2009
 - The Boston Consulting Group, 2009
 - Fraunhofer ISI, 2009
- → Auswahl der Studie McKinsey & Co., 2009, da sie folgende Kriterien erfüllt:
- Stellt den Marktanteil verschiedener elektrischer Antriebstypen für die Jahre 2020 & 2030 dar.
- Bildet eine möglichst große Bandbreite an möglichen Entwicklungen ab.
- Ist in sich konsistent und mit den Alternativszenarien vergleichbar.

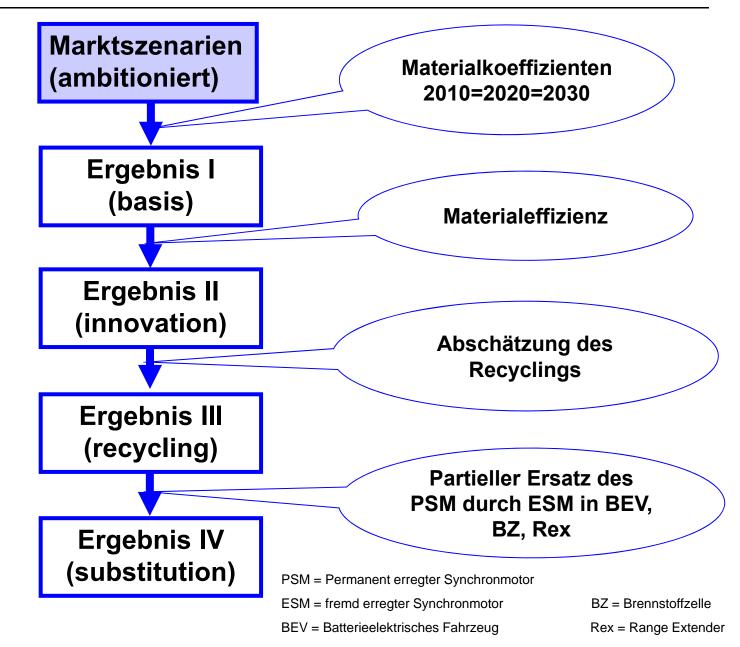
Drei Globalszenarien (Mc Kinsey 2009)


Struktur der Pkw-Neuzulassungen differenziert nach Antriebstyp

Drei Globalszenarien (Mc Kinsey 2009)

Jährliche Pkw-Neuzulassungen mit (teil-)elektrischem Antrieb [in Millionen Fahrzeugen]

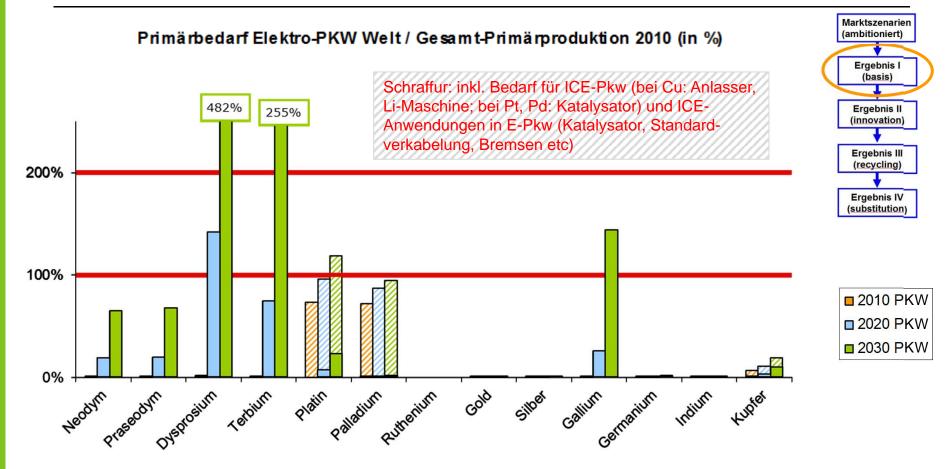
Übersicht Komponenten – Rohstoffbedarf 2010



Kein Eintrag ≜ Rohstoff nicht eingesetzt Schraffiert = Konventioneller Antriebsstrang ≜ Einsatz im mg-Bereich je PKW Sermanium Dysprosium Praseodym Ruthenium ≜ Einsatz im g-Bereich je PKW alladium Neodym Terbium Gallium ndium Kupfer Platin Silber ≜ Einsatz im kg-Bereich je PKW Gold **Elektro-Motor** Leistungselektronik Batterie / Kabel Brennstoffzellen-Komponenten (BZ-Systemmodul, -Stack, H2-Tank) Standardverkabelung im Auto Ladestation/säule inkl. Ladekabel Weitere Elektro-Anwendungen (Lenkung, Bremsen, Elektronik) ICE-Anwendungen (Katalysator, V-Motor, Licht-Maschine)

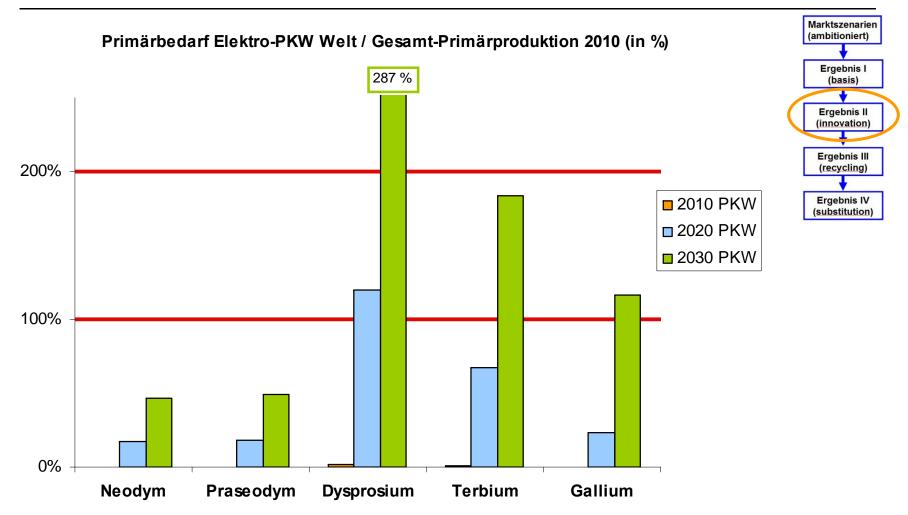
www.oeko.g

Die Szenarien



www.oeko.de

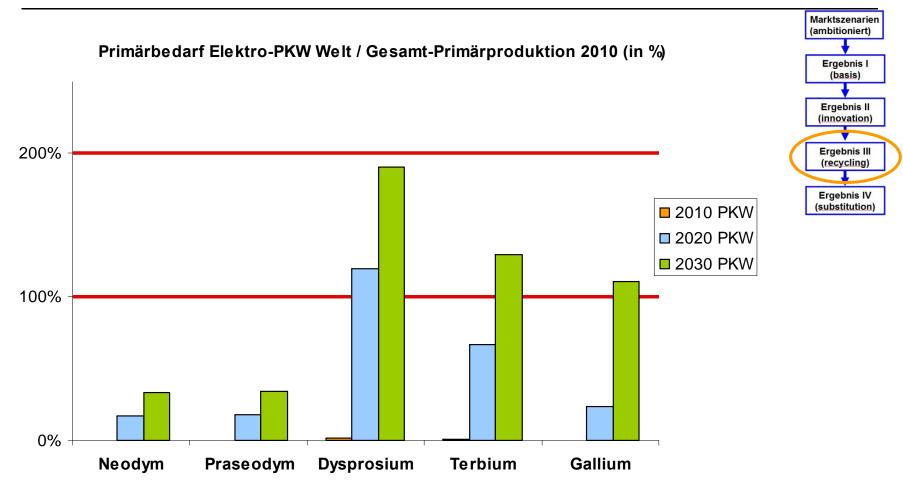
Das Basis-Szenario



Basis-Szenario "hybrid and electric":

ambitionierte Marktdurchdringung Materialkoeffizienten 2010 = 2020 = 2030 (außer bei Platin)

Das Innovations-Szenario



Innovations-Szenario:

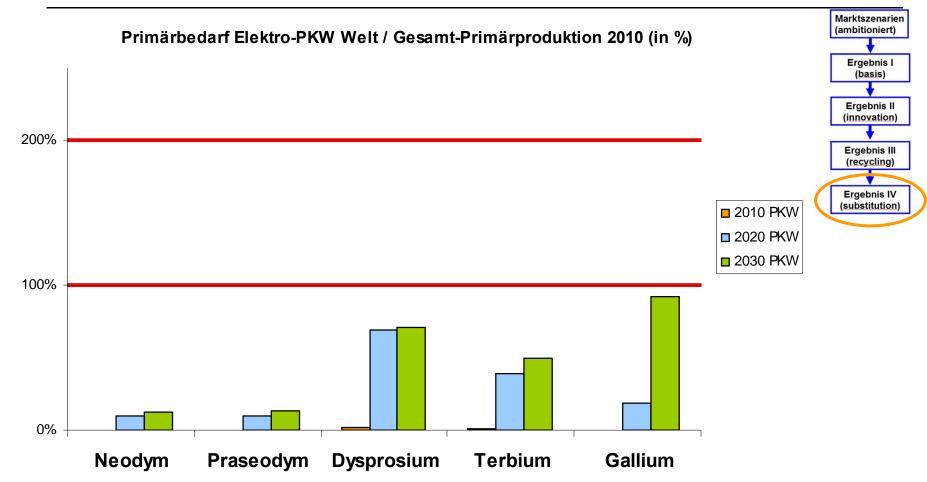
ambitionierte Marktdurchdringung "hybrid and electric" minus Innovationspotentiale/Materialeffizienz

Das Recycling-Szenario

Recycling-Szenario:

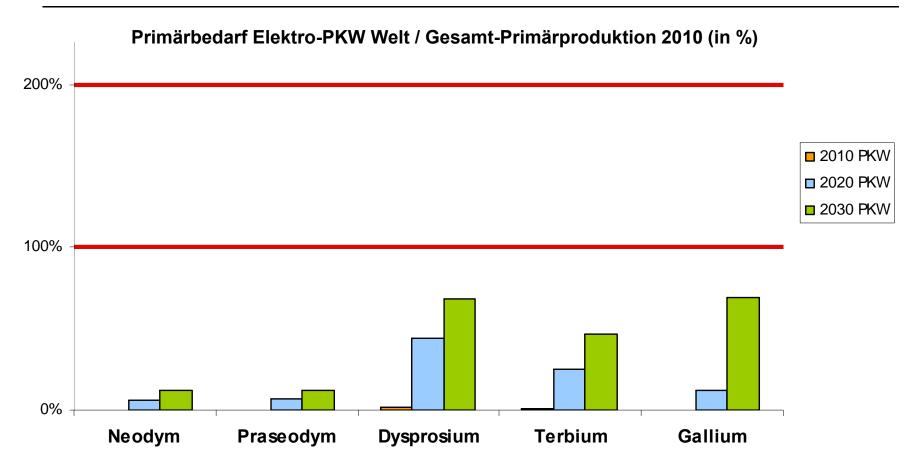
ambitionierte Marktdurchdringung "hybrid and electric" minus Innovationspotentiale minus Recycling

Die Recyclingquoten*


	2010	2020	2030
Seltene Erden (Dy, Tb, Nd, Pr)	0%	60%	80%
Pt, Pd	55%	70%	80%
Ag, Au	2%	15%	40%
Cu	50%	75%	80%
Ga	0%	10%	25%
In, Ge	0%	5%	15%

^{*} Rückgewinnungsraten aus dem System Automobil

Das Substitutions-Szenario


Substitutions-Szenario:

Materialbedarf ambitionierte Marktdurchdringung "hybrid and electric" minus Innovationspotentiale minus Recycling minus Substitution Elektromotor für BEV, BZ, Rex (33% der E-Fahrzeuge in 2030)

www.oeko.de

Das moderate Szenario

moderate Marktdurchdringung "mixed technology" minus Innovationspotentiale minus Recycling minus Substitution Elektromotor Ersatz amb. durch moderates Marktszenario

Steckbrief Gallium 1/2

Reserven: 28 Mrd. Tonnen Bauxit

250 Mio. Tonnen Zinkerz

Primärproduktion 2010: 106 Tonnen Ga

(211 Mio. Tonnen Bauxitproduktion) (12 Mio. Tonnen Zinkproduktion)

Stat. Reichweite: 133 Jahre (Bauxit) 21 Jahre (Zink)

Major Metal: nein → immer Minor Metal

Natürliche Erze: Bauxit (50 ppm Ga); davon 50% in Lösung im

Bayer-Prozess, wovon 80% gewonnen werden

können

Zink (bis zu 0,01% Ga)

Nachfragewachstum (in % pro Jahr)

bis 2020*: Ga: ca. 16% (abgeleitet von EU-Studie 2010)

Zink-Wachstum 2-3,5% (Quelle: BGR 2007)

Alu: 1 - 2,3% (Quelle: BGR 2007)

2020 – 2030*: Ga: ca. 14% (abgeleitet von EU-Studie 2010)

Zink-Wachstum 2-3,5% (Quelle: BGR 2007)

Alu: 1 - 2,3% (Quelle: BGR 2007)

Ga-Potential aus der gegenwärtigen Bauxit-Produktion wird bei weitem nicht ausgeschöpft

Steckbrief Gallium 2/2

EOL-Recycling-Rate 2010:

< 1%

Einschätzung Recycling Gallium:

Für Post-consumer-Recycling existieren bislang nur Ansätze (Umicore). Eingespielter ist das Galliumrecycling aus Produktionsprozessen.

Zukünftige Recyclingpotenziale Gallium 2020 / 2030:

Derzeit noch nicht absehbar. Die meisten Anwendungen sind dissipativer Natur; allerdings steigen zukünftig stark die Einsatzmengen.

www.oeko.de

Steckbrief Nd, Dy, Tb, Pr 1/5

Reserven: ca. 24 Mio. Tonnen

Primärproduktion 2010: ca. 35.355 Tonnen Nd, Dy*, Tb*, Pr-Oxide

* **Dy: 1.980 t** (Quelle BGR 2011)

* **Tb**: **375 t** (Quelle BGR 2011)

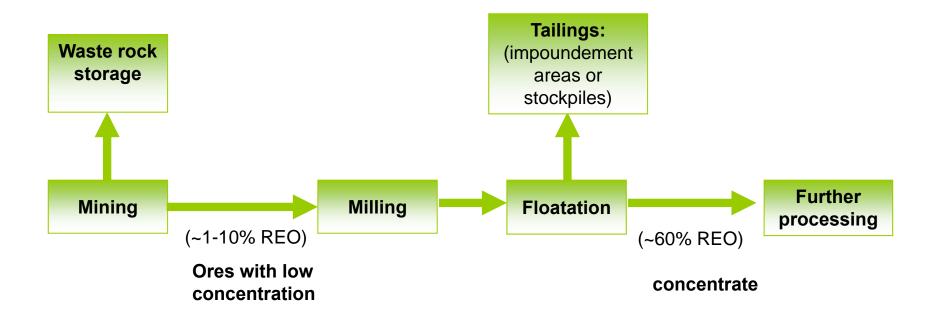
Stat. Reichweite: 679 Jahre

Major Metal: Vergesellschaftet mit anderen SEO

Natürliche Erze: Bastnäsit, Xenotime, Monazit, Ionen-

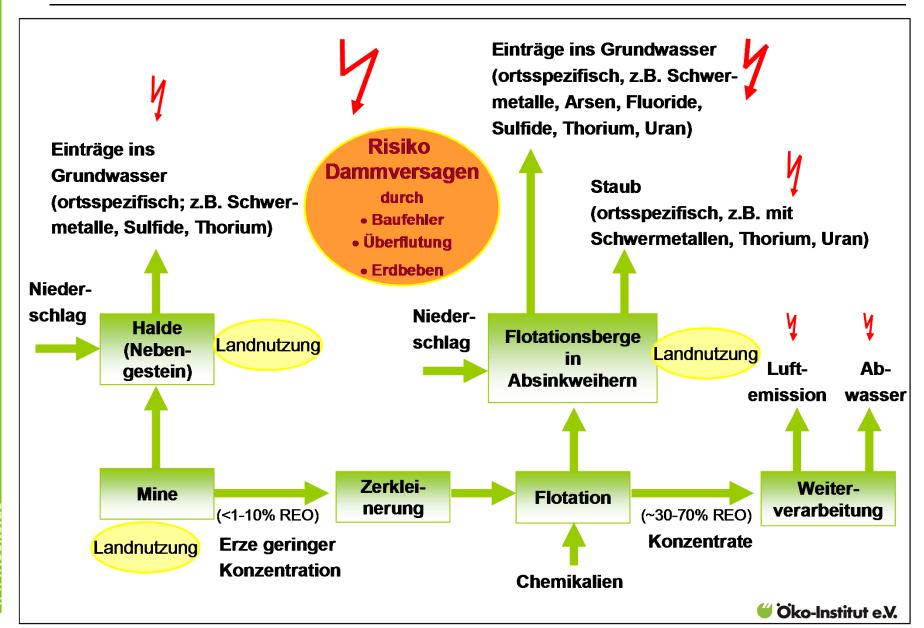
Adsorption-Ablagerung

Nachfragewachstum (in % pro Jahr)


bis 2020*: ca. 10% (Mittelwert Abschätzung)

2020 – 2030*: ca. 10% (Mittelwert Abschätzung)

*Bezugsjahr 2010


Gewinnung Seltener Erden 2/5

Umweltrisiken bei der Gewinnung Seltener Erden 3/5

WWW.OPKO.OP

Umweltrisiken bei der Gewinnung SE – Zusammenfassung 4/5

- Die Primärgewinnung der Seltenen Erden ist meistens mit radioaktiven Belastungen verbunden
- Als Rückstände verbleiben v.a. Tailings, die in größeren Becken gelagert werden: Schwermetallbelastung etc.
- Bei der In-situ-Laugung bestehen große Risiken für das Grundwasser
- Die Auftrennung und Feinreinigung der Seltenen Erden bzw. ihrer Verbindungen erfordert einen hohen Chemikalien- und Energieeinsatz
- Aufgrund der massiven Probleme in China hat die Regierung umfassende Pläne zur Optimierung und Konsolidierung (Schließung kleiner Minen) für die nächsten 5 Jahre beschlossen

Steckbrief Seltene Erden 5/5

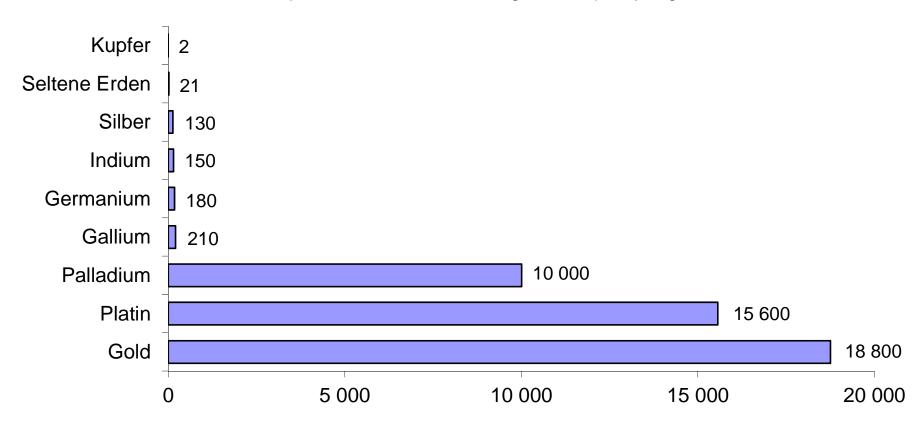
EOL-Recycling-Rate 2010:

< 1%

Einschätzung Recycling Seltene Erden (Nd, Pr, Dy, Tb):

Über Ansätze zum Pre-consumer-Recycling vor allem in Asien wird berichtet: Rückgewinnung von Schleifschlämmen aus der Magnetherstellung, Rückgewinnung von Seltenen Erden aus Nickel-Metallhydrid-Batterien (Mischmetall).

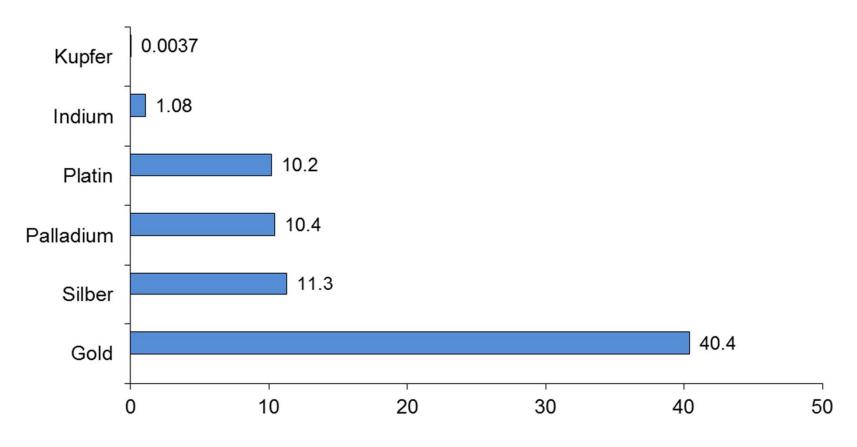
Zukünftige Recyclingpotenziale Seltene Erden (Nd, Pr, Dy, Tb) 2020 / 2030:


Die BGR schätzt für schwere Seltenerdoxide im Jahr 2015 ein Recyclinganteil von 10% für das Angebot ab. Steigende Preise für die SE, stark steigende Nachfrage und Verknappung des Primärangebots lassen verstärkte F&E sowie erste Umsetzungen von Recyclingverfahren erwarten: Vergleiche Ankündigung Rhodia zum Recycling von SE aus Leuchtstoffanwendungen.

www.oeko.de

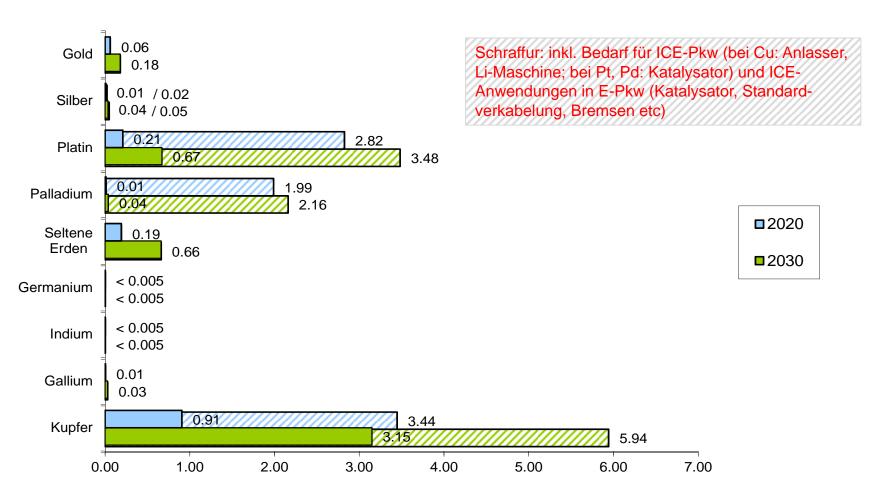
Umweltbelastungen der Primärförderung je kg gefördertes Metall

Klimawandel: Primärproduktion GWP 100a [kg CO2-equiv] je kg Primärmetall

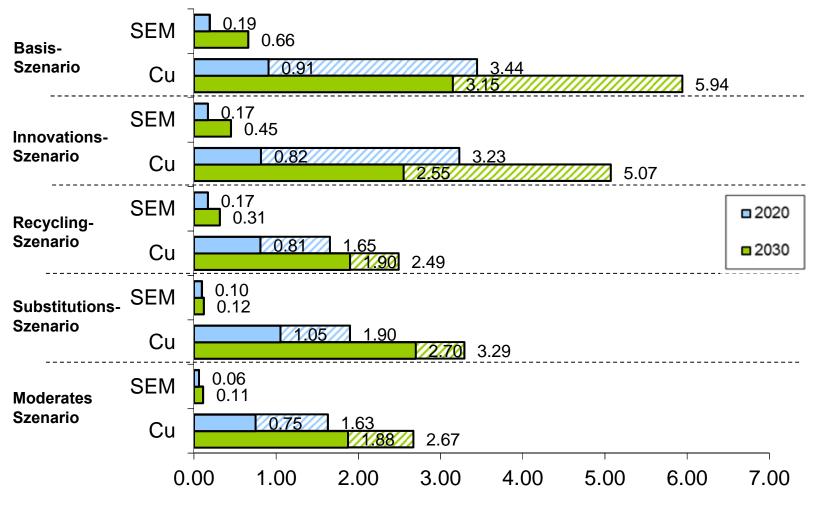

Quelle: ecoinvent 2010

www.oeko.de

Umweltbelastungen der Primärförderung je kg gefördertes Metall


ADP (reserve base) in kg Sb-Äquivalenten je kg Primärmetall

Globale Umweltbelastungen der Primärproduktion durch die Nachfrage an Elektro-PKW*


Basis-Szenario in Mio. Tonnen CO₂-Äquivalente

^{*} Ohne Betrachtung der Batterie!

Mio. Tonnen CO₂-Äquivalente

Cu = Kupfer

* Ohne Betrachtung der Batterie!

SEM = Seltene-Erden-Metall

Aktueller GWP wurde für 2020 und 2030 konstant beibehalten

Geringerer Einsatz von Rohstoffen durch Elektro-PKW

Durch den Einsatz der Elektromobilität (Brennstoffzellen und Vollelektrischer-Pkw) entfallen folgende Komponenten und Metallbedarfe des konventionellen PKW:

- Motor (Kupfer, Aluminium, Stahl / Eisenwerkstoffe)
- Auspuff (Kupfer, Stahl / Eisenwerkstoffe)
- Kraftstoffanlage (Stahl / Eisenwerkstoffe)
- Katalysator (Platin, Palladium)

	Kupfer	Platin	Palladium	Aluminium	Stahl
Einsparung 2020					
in Tonnen Material	ca. 4.500	4	5	ca. 66.700	ca. 250.400
in Tonnen CO ₂ -Äquivalente	ca. 8.600	ca. 70.000	ca. 52.700	ca. 826.000	ca. 415.300
Einsparung 2030					
in Tonnen Material	ca. 26.500	26	31	ca. 394.000	ca. 1.479.200
in Tonnen CO ₂ -Äquivalente	ca. 51.000	ca. 412.400	ca. 311.400	ca. 4.879.500	ca. 2.453.200

Recycling Raten (EOL-RR)* der relevanten Elemente

*EOL-RR = End-of-life recycling rate (post consumer)

I	II		J	Haupt	grupp	en de	s Peri	odens	ystem	IS	HIND CO. C. C.	l III	IV	V	VI	VII	VIII	Schale
1,0079 H 1 Wasser-stoff																	4,00260 He 2 2 Helium	K
6,941 Li 3 2/1 Lithium	9,01218 Be 4 2/2 Beryllium											10.81 B 5 2/3 Bor	12,011 C 6 2/4 Kohlenstoff	14,0067 N 7 2/5 Stickstoff	15,9994 O 8 2/6 Sauerstoff	18,9984 F 9 2/7 Fluor	Neon	L
22,9898 Na 11 8/1 Natrium	24,305 Mg 12 8/2 Magnesium	III a	IV a	Va	VI a	Nebengri VII a	ppen	VIII a		l a	II a	26,9815 AI 13 8/3 Aluminium	28,0855 Si 14 8/4 Silicium	30,9738 P 15 8/5 Phosphor	32,06 S 16 8/6 Schwefel	35,453 CI 17 8/7 Chlor	39,948 Ar 18 8/8 Argon	M
39.098 K 19 8/1 Kalium	40.08 Ca 20 8/2 Calcium	44,956 Sc 21 9/2 Scandium	47,88 Ti 22 10/2 Titan	50,941 V 23 11/2 Vanadium	51,996 Cr 24 13/1 Chrom	54,938 Mn 25 13/2 Mangan	55,847 Fe 26 14/2 Eisen	58,933 Co 27 15/2 Kobalt	58,69 Ni 28 16/2 Nickel	63,546 Cu 29 18/1 Kupfer	65,39 Zn 30 18/2 Zink	69,72 Ga 31 18/3 Gullium	72.59 Ge 32 18/4 Germanium	74,922 AS 33 18/5 Arsen	78,96 Se 34 18/6 Selen	79,904 Br 35 18/7 Brom	83,80 Kr 36 18/8 Krypton	N
85,468 Rb 37 8/1 Rubidium	87,62 Sr 38 8/2 Strontium	88,906 Y 39 9/2 Yttrium	91,224 Zr 40 10/2 Zirkonium	92,906 Nb 41 12/1 Niob	95,94 Mo 42 13/1 Molybdän	* Tc 43 13/2 Technetium	101,07 Ru 44 15/1 Ruthenium	102,906 Rh 45 16/1 Rhodium	106,42 Pd 46 18/0 Palladium	107,868 Ag 47 18/1 Silber	112,41 Cd 48 18/2 Cadmium	114,82 In 49 18/3 Indium	118,710 Sn 50 18/4 Zinn	121,75 Sb 51 18/5 Antimon	127,60 Te 52 18/6 Tellur	126,905 I 53 18/7 Jod	131,29 Xe 54 18/8 Xenon	0
132,905 Cs 55 8/1 Cäsium	137,33 Ba 56 8/2 Barium	57 bis 71	178,49 Hf 72 10/2 Hafnium	180,948 Ta 73 11/2 Tantal	183,85 W 74 12/2 Wolfram	186,207 Re 75 13/2 Rhenium	190.2 Os 76 14/2 Osmium	192,22 Ir 77 15/2 Iridium	195,08 Pt 78 17/1 Platin	196,967 Au 79 18/1 Gold	200,59 Hg 80 18/2 Quecksilber	204,383 Tl 81 18/3 Thallium	207,2 Pb 82 18/4 Blei	208,980 Bi 83 18/5 Wismut	* Po 84 18/6 Polonium	*At	*Rn	P
* Fr 87 8/1 Francium	226,025 (226) * Ra 88 8/2 Radium	89 bis 103	* Ku 104 10/2 Kurtscha- tovium	*Ha	*Unh 106 Unnil- hexium	*Uns 107 Unnil- septium											9	Q

	138,906	140,12	140,908	144,24	(145)	150,36	151.96	157,25	158,925	162,50	164,930	167,26	168,934	173,04	174,967
Lanthaniden	La	Ce	Pr	Nd	*Pm		Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Zummunuen	57 9/2	58 8/2	59 8/2	60 8/2	61 8/2	62 8/2	63 8/2		65 8/2	66 8/2	67 8/2	68 8/2	69 8/2	70 8/2	71 9/2
CCC-3C-HILLIANS II-RCS-3C-CC-3C-HILLIANS II-RCS-3C-CC-3C-HILLIANS II-RCS-3C-CC-3C-3	Lanthan	Cer	Praseodym	Neodym	Prome- thium	Samarium	Europium	Gadoli- nium	Terbium	Dyspro- sium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	227,028 (227)	232,038 (232)	231,036 (231)	238,029 (238)	237,048 (237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Actiniden	*Ac	*Th	*Pa	*U	*Np	*Pu	*Am	*Cm	*Bk	*Cf	*Es	*Fm	*Md	*No	*Lr
recuirden	89 9/2	90 10/2	91 9/2	92 9/2	93 9/2	94 9/2	95 8/2	96 9/2	97 9/2	98 9/2	99 9/2	100 9/2	101 9/2	102 9/2	103 9/2
	Actinium	Thorium	Protac- tinium	Uran	Neptunium	Plutonium	Ame- ricium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mende- levium	Nobelium	Lawren- cium

> 50%

Rezyklierbarkeit Elemente 1. Priorität

Element	Rezyklierbarkeit	Einschätzung
Palladium	Das Recycling von Edelmetallen stellt kein metallurgisches Problem dar. Die	
Silber	wichtigste Voraussetzung ist eine gezielte Vorbehandlung der Produkte, damit die Edelmetalle tatsächlich dem eigentlichen Recycling / Refining zugeführt werden	\geq
Platin	und nicht durch eine falsche Aufbereitung in anderen Fraktionen verloren gehen.	lacksquare
Gold		
Kupfer	Kupfer dient in pyrometallurgischen Prozessen als "Sammler" für Edelmetalle und kann über Leaching und el. Abscheidung zurück gewonnen werden.	8
Gallium	In niedrigen Konzentrationen bestehen kaum Chancen eines wirtschaftlichen	\bigcirc
Germanium	Recyclings, ähnlich SEE – Rezyklierbarkeit steigt mit zunehmender Konzentration. In Pyro-Prozessen (Hoboken) werden Ga, Ge verdampft und gehen in die Flugasche.	8
Indium	Bei In und Ru wären die Verluste hoch wenn diese selbst in aufbereiteter Form direkt zu Beginn des Recycling Prozesses eingebracht werden würden, bei einer Einschleusung von Ru in die pyrometallurgischen EM Aufkonzentration, oder des	8
Ruthenium	In in den Blei Prozess ergibt sich für beide eine bessere Rückgewinnungsquote; jedoch hohe Verluste ohne vorgeschaltete Aufkonzentration.	8
Praseodym	Als Spurenelemente im Mix in komplexen Materialien und z.B. in Verbindung mit	
Neodym	Edelmetallen -> gehen SEE zumeist in die Schlacke und sind dann dort soweit verdünnt, dass sich das Recycling nicht lohnt.	Q
Terbium	Die Rezyklierbarkeit wird besser bei hohen SEE Konzentrationen bereits im Produkt (s. Dauermagnete), oder über Anreicherungsverfahren in der Schlacke	
Dysprosium	(s. UHT). Recyclingverfahren / Aufbereitungsverfahren befinden sich im Entwicklungsstadium / Lösungsansätze zum Teil vorhanden.	

www.oeko.de

Fazit Umwelt und Recycling 1/3

Nachfolgende Aussagen umfassen nicht die größte Komponente Batterie

CO₂-Äquivalente:

Der Kupferbedarf für die Elektromobilität spielt die größte Rolle gefolgt von Platin für Brennstoffzellen und Seltene Erden für Elektromotoren.

- Dies gilt in ähnlicher Weise für Säurebildner, Photochemische Oxidation, Überdüngung und den kumulierten Energieaufwand.
- Kupfer hat auch beim ADP absolut den größten Beitrag
- Klassische Ökobilanz-Daten bilden das spezifische Belastungspotential nicht ausreichend ab: Bei Seltenen Erden haben spezifische Belastungsfaktoren wie Radioaktivität etc. eine erhebliche Relevanz.

Recycling:

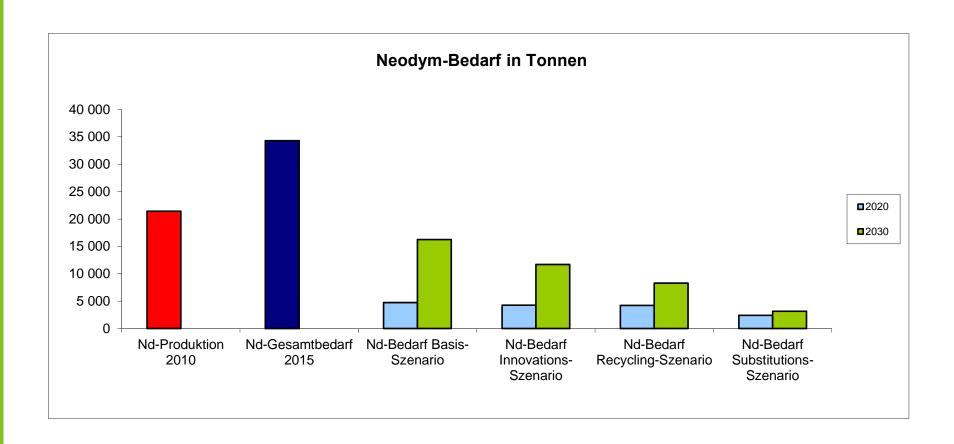
Für das Kupfer- und Edelmetall-Recycling bestehen eingefahrene Kreisläufe – hier kommt es vor allem auf die Erfassung an.

Für Spezialmetalle (Seltene Erden, Indium etc.) besteht großer Forschungsund Entwicklungsbedarf.

Fazit Umwelt und Recycling 2/3

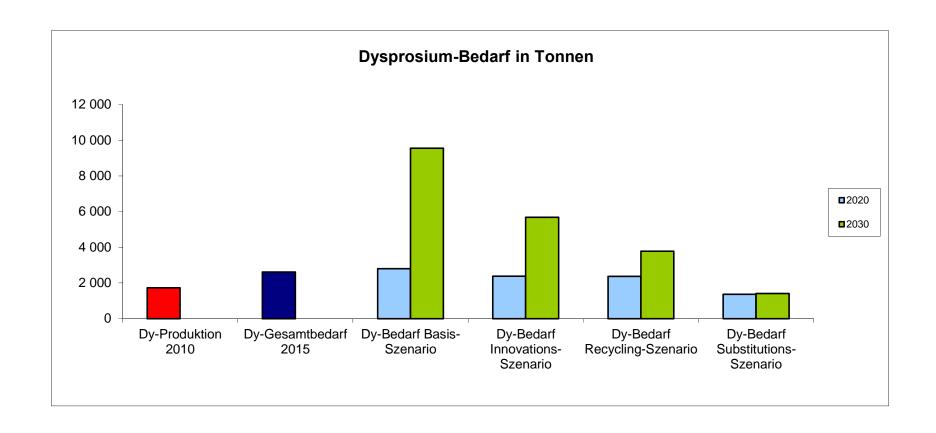
Nachfolgende Aussagen umfassen nicht die größte Komponente Batterie

- Gute Recyclingverfahren versprechen klare ökologische Vorteile (Erfahrungswerte bei Edelmetallen)
- Eine überschlägige Kalkulation der eingesparten klassischen Materialien für Fahrzeuge mit Verbrennungsmotor ergibt erhebliche Rohstoffeinsparungen und entsprechende Umweltentlastungen (Stahl etc.).
- Die im Projekt produzierten Ergebnisse geben Hinweise für Be- und Entlastungsschwerpunkte.
 - Sie haben bei Weitem nicht den Anspruch von Ökobilanz-Ergebnissen, da
 - A) die Batterie komplett ausgeklammert wurde
 - B) die Herstellungsprozesse für Elektrokomponenten und für spezifische Komponenten der ICE-Fahrzeuge nicht berücksichtigt wurden.


Fazit Umwelt und Recycling 3/3

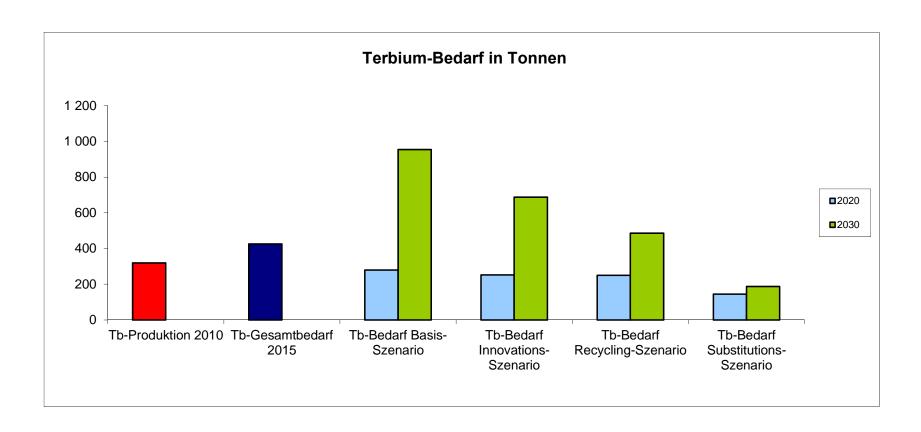
- → Für zukünftige Projekte bestehen die Herausforderungen einer umfassenden Bilanzierung und Bewertung der Umweltbe- und -entlastungen durch die Komponenten der Elektromobilität: Ökobilanzielle Verfahren ergänzt um weitere Betrachtungsaspekte (siehe Seltene Erden)!
- Die große Komplexität (diverse Komponenten mit verschiedensten Materialien, Herstellungsprozesse mit starkem Geheimhaltungsvorbehalt und dynamische Entwicklungen) darf dabei auf keinen Fall unterschätzt werden!
- → Die Kalkulation zukünftiger relativer Umweltbelastungen (pro Produktionseinheit) für die Herstellung von Metallen etc. ist eine anspruchsvolle Aufgabe, da die Entwicklung von Umweltstandards, Stromerzeugungsaufwendungen etc. in vielen Ländern der Erde einbezogen werden müssen!
- → Vor Schnellschüssen bei der Bewertung der Umweltbelastung und -entlastung der Elektromobilität sei daher an dieser Stelle gewarnt!

Nd-Bedarfe E-Mobilität in den Szenarien und Gesamtbedarf über alle Anwendungen



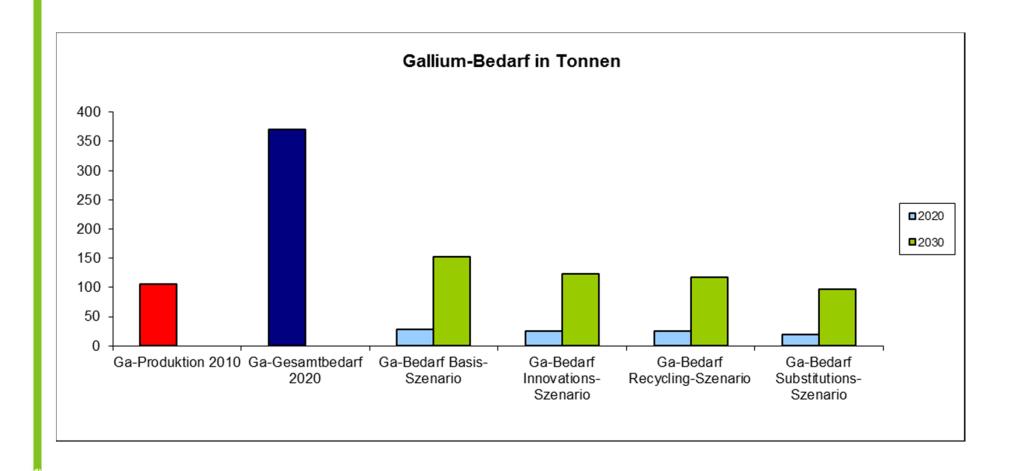
Quelle: IMCOA 2011 (Nd-Gesamtbedarf 2015), Öko-Institut 2011

Dy-Bedarfe E-Mobilität in den Szenarien und Gesamtbedarf über alle Anwendungen



Quellen: BGR 2011 (Dy-Produktion 2010), IMCOA 2011 (Dy-Gesamtbedarf 2015), Öko-Institut 2011

Tb-Bedarfe E-Mobilität in den Szenarien und Gesamtbedarf über alle Anwendungen



Quellen: BGR 2011 (Tb-Produktion 2010), IMCOA 2011 (Gesamtbedarf 2015), Öko-Institut

Ga-Bedarfe E-Mobilität in den Szenarien und Gesamtbedarf über alle Anwendungen

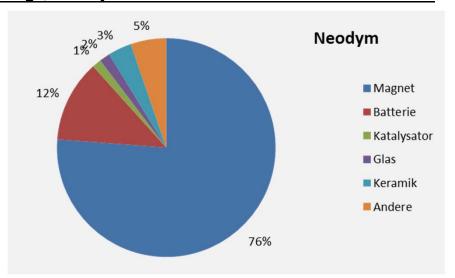
Quellen: USGS 2011 (Ga-Produktion 2010), EU critical raw materials 2010 (Ga-Gesamtbedarf 2020), Öko-Institut

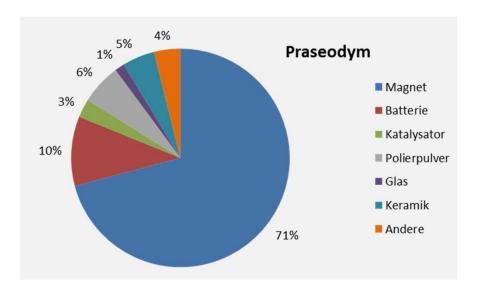
www.oeko.de

Anwendungen der Seltenen Erden: Aktuelle Verteilung (Nd, Pr, Dy, Tb)

Neodym-Einsatz:

zu ca. 77% in Magneten, zu ca. 12% in Batterien, und ca. 3% in Keramik, ca. 2% Glas, ca. 1% Katalysator, ca. 5% Andere


Praseodym-Einsatz:


zu ca. 71% in Magneten, zu ca. 10% in Batterien, zu ca. 6% in Polierpulver, und ca. 5% in Keramik, 3% Katalysator, 1% Glass, 4% Andere

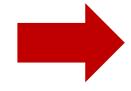
Dysprosium-Einsatz: zu 100% in Magneten

Terbium-Einsatz:

zu ca. 11% in Magneten, zu ca. 89% in Leuchtmitteln

Andere Anwendungen der Seltenen Erden: Zukünftige Verteilung

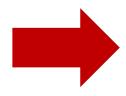
- Wachstumsraten für Magnetanwendungen steigen mit ca. 12,5% pro Jahr bis 2014 stärker als bei anderen Anwendungen (5-8% pro Jahr).
- Der Anteil der Magnetanwendungen für Neodym und Praseodym steigt auf ca. 80% bzw. ca. 74% an. Dieser Anteil könnte bis 2020 bzw. 2030 noch weiter zunehmen.
- Der zukünftige Dysprosiumbedarf wird ausschließlich über die Magnetanwendungen bestimmt im Falle von Terbium bleiben die Leuchtmittel bis 2014 mit 87% dominierend, Magnete nehmen auch für Terbium leicht an Bedeutung zu (ca. 13% in 2014)



Nach heutigen Erkenntnissen werden auch bis 2020 bzw. 2030 die Magnetanwendungen der entscheidende Wachstumstreiber für Neodym, Praseodym und Dysprosium bleiben*

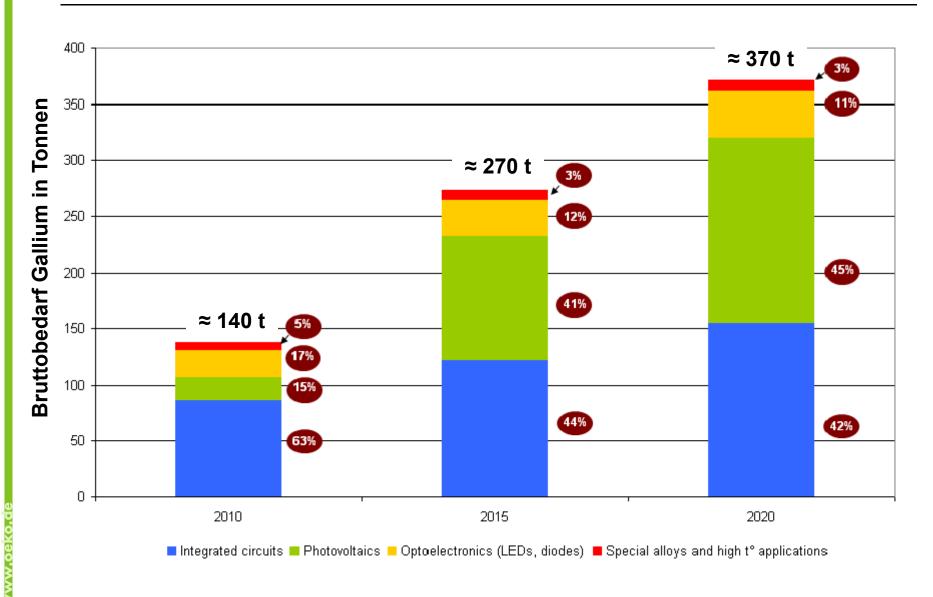
Anwendungen der Seltenen Erden: Diverse Magnetanwendungen

- Innerhalb der Magnetanwendungen können für das Jahr 2010 für die Elektromobilität (Pkw) nur sehr geringe Anteile festgestellt werden:
 - Bei Neodym und Praseodym liegt der Anteil bei ca. 0,25% bezogen auf alle Magnetanwendungen,
 - im Falle von Dysprosium bei ca. 1,4%,
 - bei Terbium bei ca. 5,7%
- Für die Zukunftstechnologie Windkraft beträgt der Anteil für Neodym (Praseodym) ca. 2 %; im Falle von Dysprosium ca. 5 %



Im Jahr 2010 dominieren bei den Magnetanwendungen noch zahlreiche klassische Anwendungen wie z.B. PC's, Notebooks, Medizin, Lautsprecher, Elektromotor für Industrie, sonstige industrielle Anwendungen u.v.m.

Anwendungen der Seltenen Erden: Diverse Magnetanwendungen


- Nach den Ergebnissen des Projektes OPTUM Ressourcen sowie weiteren Arbeiten des Öko-Instituts bezüglich Seltene Erden und Windenergie ist für beide Zukunftstechnologien von einem starken Anstieg des Anteils an allen Neodym-Magnetanwendungen auszugehen.
- Für Neodym und Praseodym könnte der Anteil der Elektromobilität bis 2020 auf bis zu 12% und bis 2030 auf 12-25% an den Neodym-Magnetanwendungen ansteigen.
- Für Dysprosium könnte der Anteil der Elektromobilität bis 2020 auf 60% und bis 2030 auf 65-90% steigen.

Die Elektromobilität wird über 2020 bis 2030 bedeutende Anteile an den Magnetanwendungen für Seltene Erden erreichen. Dies gilt insbesondere für Dysprosium. Auch die Windkraft wird zukünftig steigende Anteile benötigen: Beide Anwendungen sind starke Nachfragetreiber in der Zukunft

Ga-Bedarf nach Anwendung

Quelle: EU critical raw materials 2010

Ressourceneffizienz und ressourcenpolitische Aspekte des Systems Elektromobilität

- Schlussfolgerungen und Handlungsempfehlungen

Gefördert durch:

www.oeko.de

Schlussfolgerungen 1/2

- Die Versorgung mit Seltenen Erden (v.a. Dy, Tb, Nd, Pr) ist besonders kritisch. Recycling ist zukünftig eine wichtige Option zur Verringerung von Verknappungssituationen, allerdings nicht die alleinige Lösung für die zukünftige Bedarfsbefriedigung.
- Gallium wird in vielen Anwendungsbereichen (z.B. PV, LED) eingesetzt. Es ist mit starken Bedarfszuwächsen zu rechnen. Kurzfristig nicht, aber langfristig könnte die Versorgung mit Gallium kritisch werden bei starkem Nachfragewachstum.
- Indium besitzt keinen entscheidenden Beitrag für die Elektromobilität. ABER: Es gibt viele konkurrierende Anwendungsbereiche mit starken Wachstumsraten. Indium kommt nur als minor metal vor, muss daher stark im Auge behalten werden.
- Germanium besitzt keinen entscheidenden Beitrag für die Elektromobilität. ABER: Es könnten große Wachstumsraten in anderen Anwendungen (z.B. Glasfasertechnik, LED's) auftreten und es fehlen grundlegende Informationen zu Germanium (das "Phantom"-Element) und dessen Bedarfsentwicklung.

Schlussfolgerungen 2/2

- Die Edelmetalle Silber, Gold, Palladium und Platin spielen ebenfalls eine Rolle in den Komponenten für die Elektromobilität; hier wäre vor allem Platin für Brennstoffzellenfahrzeuge wichtig. Umgekehrt kann durch die Entwicklung der Elektromobilität bzgl. vollelektrischer Fahrzeuge der Nachfragedruck auf Platin und Palladium durch den Entfall des Autoabgaskatalysators gemindert werden.
- Die aktuelle kritische Versorgungssituation bei einigen Seltenen Erden ist ein warnendes Beispiel dafür, dass Engpässe trotz global hoher geologischer Reserven zumindest temporär auftreten können, wenn geopolitische Faktoren (nahezu ausschließliche Förderung in einem Land) mit einem rasanten Nachfragewachstum korrelieren. Hieraus gilt es Lehren für die Zukunft zu ziehen, um proaktiv rechtzeitig Gegensteuern zu können (durch rechtzeitige Erkundung und Erschließung von Lagerstätten, Diversifizierung der Versorgung, Förderung des Recycling usw.)

Handlungsempfehlungen 1/4

- Hinsichtlich des drohenden "Flaschenhalses" bei Seltenen Erden müssen parallel verschiedene Entlastungsstrategien gefahren werden
 - F&E bzgl. Verminderung von SE (v.a. Dy) in Magneten für E-Motoren sowie bzgl. SE-freien E-Motoren
 → Zuständig: Bundesministerien für Förderprogramme sowie OEMs (Hersteller von Elektromotoren, Magnethersteller) und Wissenschaft hinsichtlich Innovation
 - Entwicklung von Recyclingtechnologien für Permanentmagnete aus verschiedenen Anwendungen
 Zuständig: Bundesministerien für Förderprogramme sowie
 - → Zuständig: Bundesministerien für Förderprogramme sowie Recyclingwirtschaft und Wissenschaft
 - Förderung von umweltfreundlicher Primärförderung von SE (Standards!)
 - → Zuständig: Bundesregierung und EU-Kommission im Rahmen internationaler Verhandlungen, Minenunternehmen im Bereich Seltener Erden

Handlungsempfehlungen 2/4

- Förderung eines umweltverträglicheren Bergbaus zur Gewinnung von kritischen Metallen
 - Große Potenziale zur besseren Ausschöpfung natürlicher Ressourcen bestehen in höheren Gewinnungsraten bei der Primärförderung und Aufbereitung vieler Metalle (z.B. Seltene Erden). Weiterhin bestehen für wichtige Minor Metals wie Indium Potenziale aus nicht genutzten Rückständen zum Teil stillgelegter Förderstandorte
 - → Zuständig: BGR und Institute im Bereich Bergbau und Aufbereitung für die Erkundung von Bergbaurückständen und technische Kooperation und Knowhow-Transfer zur optimierten Förderung

Handlungsempfehlungen 3/4

- Entwicklung von Recyclingstrategien und technologien für das Recycling von Leistungselektronik aus Alt-Elektrofahrzeugen
 - Rückgewinnung von Kupfer, Gallium, Edelmetallen usw.

 → Zuständig: Bundesministerien für Förderprogramme sowie
 Recyclingwirtschaft und Wissenschaft

Allgemeiner Forschungsbedarf:

- Potentialanalysen und Recyclingmöglichkeiten für die "normale" Elektronik und sonstige Magnetanwendungen in zukünftigen PKW aller Art bezüglich Edel- und Spezialmetallen inkl. Seltener Erden.
 - → Zuständig: Bundesministerien für Förderprogramme sowie Recyclingwirtschaft und OEMs (Hersteller von Autoelektronik und Magneten)

Handlungsempfehlungen 4/4

Bzgl. Gallium, Indium und Germanium werden auch aus anderen Anwendungen deutliche Zuwächse erwartet: unklar ist z.Zt. ob durch technologische Revolutionen wie LED-Technik oder PV (nach Fukushima) die Wachstumsraten und damit die Versorgungsrisiken noch unterschätzt werden:

Untersuchungsbedarf bzgl. der mittel- und langfristigen Effekte auf die E-Mobilität und Entwicklung von Lösungsstrategien!

→ Zuständig: Bundesministerien für Förderprogramme

Schlussbemerkung

- Bei allen Herausforderungen bzgl. der spezifischen Rohstoffversorgung für das System Elektromobilität dürfen die positiven Effekte auf der Umweltseite (u.a. Entlastung bei klassischen Komponenten und Materialien) und die anderen Dimensionen der Nachhaltigkeit (z.B. neue Wertschöpfung und Arbeitsplätze durch innovative Recyclingstrukturen) nicht unterschätzt werden!
- Die erheblichen Emissionsminderungspotentiale der Elektromobilität in der Nutzungsphase bei angemessenen Einsatz von grünem Strom dürfen in der Diskussion auf keinen Fall außer Acht gelassen werden!

Vielen Dank für Ihre Aufmerksamkeit!

www.oeko.de

www.resourcefever.org