At other countries' expense?

Lithium-Ion Batteries as Backbone of the Mobility Transition

Dr. Johannes Betz
Jahrestagung des Öko-Instituts
22. Juni 2022 dbb forum berlin
Demand for lithium-ion batteries (LIBs)

- Share of LIBs in EU vehicles forecast to rise to over 85% by 2030

Sources: Eurostat; Figure: Oeko-Institut 2019

(2) Eurostat; Figure: Oeko-Institut 2019
Material demand in the EU for LIB cell and pack production

- Aluminium accounts for the largest share of the demand
- Almost all materials are extracted to a large extent by mining
- The battery sector dominates the demand for lithium and cobalt
- The growth of the nickel and flake graphite market is driven by LIBs

(1) Bittner, Andreas; Flegler, Andreas; Neef, Christoph; Rostek, Leon; Stijepic, Denis; Tercero Espinoza, Luis Alberto; Thielmann, Axel (2021): Quantifizierung Batterierecycling. Edited by Fraunhofer. Karlsruhe.
Country overview for lithium mining

Challenges of lithium mining

- Hard rock mining (mainly Australia):
 - Mining of spodumene in open pits
 - Extraction followed by roasting and acid treatment
 - Related problems are
 - Heavy metal pollution
 - Acid mine drainage
 - Energy intensive processing
- Lithium rich brines in the Andes region
 - Evaporating water out of a hyper-saline solution in arid region leading to
 - Water scarcity, leading to social tensions
 - Dust evolution
- Refining mostly takes place in China
Lithium mining in Germany

- In Germany, there is a large lithium deposit in the Upper Rhine Valley.
- Extraction from thermal water, with simultaneous use of electricity and heat
- Less water consumption, short transport distances
- Currently only pilot operation
- Planned production of over 4,000 t/a of Li in 2024, over 11,500 t/a in 2025
 - World lithium production in 2020 was 82,500 t/a
- Further deposit in Eastern Germany (Zinnwald) with over 1,500 t/a Li planned for the future
Sustainable Mining

• Minimizing the impact of mining by choosing the right spots and maximizing the sustainability during production

• Several important aspects to improve mining, for example:
 • Free prior and informed consent
 • Good working conditions
 • Minimizing ecological impact and circularize production
 • Use of renewable energy for mining and processing
 • Remediation of abandoned mines
 • Formalization of artisanal and small scale mining (ASM) sector (especially for cobalt)

Standards for the lithium-ion battery value chain

Mining & Mineral Processing
- IFC EHS Guidelines
- LME
- EITI
- Extractive Waste Directive
- TSM / TSM
- IRMA
- Global Tailings Review
- CTC
- China Responsible Mineral Supply Chain Due Diligence Management Guide

Production
- CIRAF
- OECD Due Diligence Guidelines
- ARM
- ICMM Mining Principles
- Responsible Minerals Initiative
- ERMA
- Fair Cobalt Alliance
- World Bank Climate-Smart Mining Initiative
- Responsible Cobalt Initiative

Disposal & Recycling
- ELV Directive
- Basel Convention
- WEEE European Standard

Mobility / Battery-Specific Standards and Initiatives

<table>
<thead>
<tr>
<th>Drive sustainability</th>
<th>EBA</th>
<th>GBA</th>
<th>Proposed EU regulation on (waste) batteries</th>
<th>EGV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Standards</td>
<td></td>
<td></td>
<td>UN Human Rights Principles; UN Global Compact</td>
<td></td>
</tr>
<tr>
<td>EU Directive on safety and health at work</td>
<td>ISO 50001; 20400; 26000</td>
<td>GRI</td>
<td>EBRD Guidance</td>
<td></td>
</tr>
<tr>
<td>ISO 14000-series</td>
<td>IFC EHS</td>
<td>OECD Multinational Enterprises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 45001/OHSAS 18001</td>
<td>ILO</td>
<td>SDGs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 9001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colour: **Mandatory regulation:** mandatory standard; voluntary standard: guiding principle; initiative

Johannes Betz | Berlin | 22.06.2022

Many standards - strong standards?

- Example IRMA (Initiative for Responsible Mining Assurance)
- Important points:
 - Covering all industrial mined materials
 - Governed equitably by a diverse set of stakeholders (NGOs have a seat at the table)
 - Developed through public consultation
 - Step by step improvement system
 - Independent audits including on-site visits
 - Audit reports are published

Johannes Betz │ Berlin │ 22.06.2022
Reduction of resource demand

• Sufficiency (behavioral change for sustainability)
 • Less individual transport with own car (car sharing instead)
 • More transport on foot, by bicycle or public transport
• Substitution
 • e.g., cobalt-free lithium-ion battery cells (LFP)
• Material efficiency + innovation
 • Less inactive materials, more energy per mass and volume
• Recycling
 • High collection rates
 • High recycling efficiency
Role of recycling to satisfy resource demand

Growing markets with long-life products (EVs) will take time before large volumes are recycled and resources are returned.

Forecast traction batteries PoM and EoL in the EU 27 in tonnes

- Traction batteries PoM
- Traction batteries EoL
Concluding remarks

• If motorized individual transport is desired, batteries for electromobility are needed
• Measures to flatten the demand for resources are important
• Recycling of batteries is crucial, but not sufficient
 • Mining will play a role for the foreseeable future
 • The impact of resource supply through recycling will increase over time
• High, mandatory standards (Mandatory Due Diligence).
 • Not only for battery raw materials, but also for crude oil!!!
 • Until then, support strong voluntary standards like IRMA
• Promote European mining, provided high environmental and social standards are met
• Compare resource requirements of electric vehicles and cars with combustion engines:
 • Crude oil cannot be recycled
 • Once the share of electric cars rises to 100%, the peak of resource consumption in this sector will be reached
Thank you very much!

Dr. Johannes Betz
Researcher
Resources & Transport
Darmstadt
+49 6151 8191-174
j.betz@oeko.de