

Mitigation potentials for emissions of nitrous oxide from chemical industry in industrialised countries world-wide

Study for the Nitric Acid Climate Action Group (NACAG)Berlin, March 2023on behalf of theFederal Ministry for Economic Affairs and Climate Action(BMWK)

Authors

Wolfram Jörß Sylvie Ludig Lambert Schneider Öko-Institut e.V. Contact info@oeko.de www.oeko.de

Office Berlin Borkumstraße 2 13189 Berlin Germany Phone +49 30 405085-0

This publication is funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK)

Author support: Enrico Rubertus (GIZ), Emilio Martin (GIZ), Volker Schmidt (GIZ)

Date: 27.03.2023 (edited 24.05.2023)

This paper has been commissioned by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH on behalf of the German Federal Ministry for Economic Affairs and Climate Action (BMWK)

Disclaimer

The analysis, results and recommendations in this paper, funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK), represent the opinion of the authors and are neither necessarily representative of the position of the funder nor of the Gesellschaft für Internationale Zusammenarbeit (GIZ GmbH).

Acknowledgements

The authors wish to thank the Federal Ministry for Economic Affairs and Climate Action (BMWK) and the Gesellschaft für Internationale Zusammenarbeit (GIZ) for their contribution in defining specific trends and topics of analysis and for sharing their insights and experiences. Needless to say, this does not imply that they endorse the analysis or recommendations included in the publication.

© 2023 Öko-Institut e.V.

Table of Contents

Table of C	Contents	3
List of Fig	gures	4
List of Tables		
List of Ab	breviations	7
Summary	,	9
1	Introduction	11
2	Country Briefs	13
2.1	Australia	13
2.2	Canada	19
2.3	Chile	24
2.4	European Union	28
2.5	Israel	34
2.6	Japan	39
2.7	Republic of Korea	45
2.8	Norway	50
2.9	Russia	52
2.10	Saudi Arabia	58
2.11	Singapore	60
2.12	Trinidad and Tobago	63
2.13	United Arab Emirates	65
2.14	United Kingdom	67
2.15	United States of America	69
3	Cross-country overview and conclusions	77
3.1	N₂O emission from chemical industry overview	77
3.2	Nitric acid production overview	79
3.3	Adipic acid production overview	83
3.4	Caprolactam production overview	85
List of Re	ferences	87
Annexes		100
Annex I.	Benchmark for N ₂ O Emissions from nitric acid production	100
Annex II.	Benchmark for N ₂ O Emissions from adipic acid production	102
Annex III.	Benchmark for N ₂ O Emissions from caprolactam production	104

List of Figures

Figure 1: GHG emission pricing in Canada	21
Figure 2: Overview on GHG reduction legislation in the USA	71
Figure 3: U.S. GHG emissions from Nitric acid, adipic acid and caprolactam production	72
Figure 4: N_2O process emissions 2020 from chemical industry in industrialised countries	77
Figure 5: Estimated 2020 N_2O emissions from nitric acid production in industrialised countries	79
Figure 6: 2020 N ₂ O emissions from nitric acid production in industrialised countries and mitigat potentials in unabated plants	ion 80
Figure 7: Estimated 2020 N_2O emissions from adipic acid production in industrialised countries	83
Figure 8: Estimated 2020 N_2O emissions from caprolactam production in industrialised countries	es 85
Figure 9: 2020 N_2O implied emission factors for nitric acid production in EU-ETS countries	101
Figure 10: N ₂ O implied emission factors for adipic acid production in Italy	102
Figure 11: N ₂ O implied emission factors for caprolactam production	104

List of Tables

Table 1:	Countries included in the analysis	11
Table 2:	Country Profile Australia	13
Table 3:	Nitric acid production sites in Australia	15
Table 4:	N ₂ O emissions from Australian nitric acid production	17
Table 5:	Country Profile Canada	19
Table 6:	Overview on current and decommissioned nitric acid facilities in Canada	20
Table 7:	N ₂ O emissions from Canadian nitric acid production	22
Table 8:	Country Profile Chile	24
Table 9:	Yearly nitric acid production capacities for the ENAEX Prillex Plant	25
Table 10:	N ₂ O emissions from Chilean nitric acid production	26
Table 11:	Country Profile European Union	28
Table 12:	Presence of N_2O -emitting chemical industries in EU Member States (2020)	29
Table 13:	N ₂ O emissions from nitric acid production in EU Member States	31
Table 14:	N_2O emissions from adipic acid production in the European Union	32
Table 15:	N_2O emissions from caprolactam production in the European Union	33
Table 16:	Country Profile Israel	34
Table 17:	Israel nitric acid plant data	35
Table 18:	Israeli plant-specific emission limit values for N_2O from nitric acid production	36
Table 19:	N ₂ O emissions from Israeli nitric acid production	37
Table 20:	Country Profile Japan	39
Table 21:	N ₂ O emissions from nitric acid production in Japan	42
Table 22:	N ₂ O emissions from adipic acid production in Japan	42
Table 23:	N ₂ O emissions from caprolactam production in Japan	43
Table 24:	Country Profile Republic of Korea	45
Table 25:	Approved CDM Projects for N_2O reduction in the chemical industry in the Republic of Korea	of 46
Table 26:	Registered CDM Projects in the Republic of Korea related to nitric acid production	47

Table 27:	N_2O emissions from chemical industry (CRF 2.B) in the Republic of Korea	48
Table 28:	Country Profile Norway	50
Table 29:	N ₂ O emissions from nitric acid production in Norway	51
Table 30:	Country Profile Russia	52
Table 31:	N ₂ O emissions from Russian nitric acid production	55
Table 32:	N ₂ O emissions from caprolactam production in Russia	56
Table 33:	Country Profile Saudi Arabia	58
Table 34:	Country Profile Singapore	60
Table 35:	Country Profile Trinidad and Tobago	63
Table 36:	N_2O emissions from Trinidad and Tobago nitric acid production	64
Table 37:	Country Profile UAE	65
Table 38:	Country Profile United Kingdom	67
Table 39:	N_2O emissions from nitric acid production in the United Kingdom	68
Table 40:	Country Profile USA	69
Table 41:	N ₂ O emissions from USA nitric acid production	73
Table 42:	N ₂ O emissions from USA adipic acid production	74
Table 43:	N ₂ O emissions from USA caprolactam production	75
Table 44:	Cross-country overview: climate policies affecting N_2O emissions from nitric acid, acid and caprolactam production	adipic 78
Table 45:	Cross-country overview nitric acid production	81
Table 46:	Cross-country overview adipic acid production	84
Table 47:	Cross-country overview caprolactam production	86
Table 48:	2020 production of nitric acid and related N_2O emissions in European countries participating in the EU-ETS	100
Table 49:	Italian production of adipic acid and related N_2O emissions	103

List of Abbreviations

ACCU	Australian Carbon Credit Units
AR4	4 th IPCC assessment report
AR5	5 th IPCC assessment report
BAT	Best available technique
BR	Biennial Report
BREF	BAT reference document
BUR	Biennial Update Report
CDM	Clean Development Mechanism
CO ₂	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
CRF	Common Reporting Framework
CSR	Corporate Social Responsibility
EF	Emission factor
ELV	Emission limit values
ELV ERF	Emission limit values Emissions Reductions Fund
ELV ERF ERU	Emission limit values Emissions Reductions Fund Emission Reduction Unit
ELV ERF ERU ETS	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System
ELV ERF ERU ETS EU	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System European Union
ELV ERF ERU ETS EU GHG	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System European Union Greenhouse gas
ELV ERF ERU ETS EU GHG GIZ	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System European Union Greenhouse gas Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
ELV ERF ERU ETS EU GHG GIZ GWP	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System European Union Greenhouse gas Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Global warming potential
ELV ERF ERU ETS EU GHG GIZ GWP IPCC	Emission limit valuesEmissions Reductions FundEmission Reduction UnitEmissions Trading SystemEuropean UnionGreenhouse gasDeutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbHGlobal warming potentialIntergovernmental Panel on Climate Change
ELV ERF ERU ETS EU GHG GIZ GWP IPCC JI	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System European Union Greenhouse gas Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Global warming potential Intergovernmental Panel on Climate Change
ELV ERF ERU ETS EU GHG GIZ GWP IPCC JI K-ETS	Emission limit values Emissions Reductions Fund Emission Reduction Unit Emissions Trading System European Union Greenhouse gas Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Global warming potential Intergovernmental Panel on Climate Change Joint Implementation Korean Emissions Trading Scheme
ELV ERF ERU ETS EU GHG GIZ GWP IPCC JI K-ETS KCU	Emission limit valuesEmissions Reductions FundEmission Reduction UnitEmissions Trading SystemEuropean UnionGreenhouse gasDeutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbHGlobal warming potentialIntergovernmental Panel on Climate ChangeJoint ImplementationKorean Emissions Trading SchemeKorean Credit Unit

NACAG	Nitric Acid Action Group
N ₂ O	Nitrous Oxide
NC	National Communication
NIR	National Inventory Report
NO	Nitrogen monoxide
NO ₂	Nitrogen dioxide
NO _X	Nitrogen Oxides (summary term for air pollutants NO and NO $_2$, not including the greenhouse gas N $_2$ O)
NSCR	Non-selective Catalytic Reduction
OECD	Organisation for Economic Co-operation and Development
ODA	Official development assistance
PDD	Project Design Document
PGCD	Process-gas catalytic decomposition
SCR	Selective Catalytic Reduction (for the abatement of NO_x emissions)
SNCR	Selective non-catalytic Reduction
tpd	tonnes per day
UAE	United Arab Emirates
UK	United Kingdom of Great Britain and Northern Ireland
UNFCCC	United nations Framework Convention on Climate Change
USA	United States of America

Summary

This study investigates mitigation potentials in industrialised countries for emissions of the greenhouse gas nitrous oxide (N_2O) from chemical industry, in particular from the production processes for nitric acid, adipic acid and caprolactam. For the purpose of this study, 'industrialised countries' are the countries not identified by the OECD as eligible for official development assistance (ODA). Based on that criterion, the covered countries and regions are Australia, Canada, Chile, the European Union, Israel, Japan, the Republic of Korea, Norway, Russia, Saudi-Arabia, Singapore, Trinidad and Tobago, United Arab Emirates, United Kingdom, United States of America but do not include 'emerging economies' like China.

For the study, information was collected in 15 country briefs covering the size of the respective industries, current regulatory framework conditions affecting N_2O emissions, N_2O abatement in place, and estimates of current N_2O emissions, emission intensities and mitigation potentials.

In total, 2020 process emissions of N₂O from chemical industry in industrialised countries world-wide are estimated at 47.4 Mt CO₂e (GWP AR5), thereof 76 % (36.1 Mt CO₂e) from nitric acid production, 17 % (8.0 Mt CO₂e) from adipic acid production and 7 % (3.3 Mt CO₂e) from caprolactam production. The investigated countries and regions contributing most to N₂O emissions are Russia, the USA, the EU, Australia and Trinidad and Tobago for nitric acid production, the USA for adipic acid production, and the EU, the USA and Russia for caprolactam production.

Climate policies affecting N_2O emissions from chemical industry for the key contributors are missing in particular for Russia, the USA and Trinidad & Tobago. The European Union, while covering N_2O from nitric and adipic acid production under the EU-ETS, employs no policies effectively addressing N_2O emissions from caprolactam production.

For *nitric acid production*, average emission intensities per country range from very high 8-9 kg N₂O/t HNO₃ (Trinidad and Tobago, Russia) to low 0.5 kg/t and less for Western European countries and Korea. While a comparison of national average emission intensities provides a benchmark-based top-down indication of N₂O mitigation potentials for ambitious climate policies, 'low-hanging fruit' mitigation potentials in presently unabated nitric acid plants were additionally estimated: These sum up to 63 % of total N₂O emissions from nitric acid production estimated for 2020 (22.5 Mt CO₂e mitigation potential out of 36.1 Mt CO₂e 2020 emissions). Such mitigation potentials are primarily allocated to Russia, the USA and Trinidad & Tobago. Single further nitric acid plants without abatement were identified for Australia and Japan. For Australia, however, a retrofit is reported to be underway.

Adipic acid production is taking place in only six of the industrialised countries studied, i.e. the USA, Japan, Korea and the EU Member States France, Germany and Italy. Emission intensities range from very high 40 kg N₂O/t adipic acid (USA) to as low as 2-4 kg/t and below for the EU and Korea. While ambitious mitigation is taking place in Japan, Korea and the EU, the mitigation efforts in the USA are insufficient, as available mitigation equipment appears to be operated poorly.

Caprolactam production is taking place in 10 of the industrialised countries studied, i.e. the USA, Russia, Japan, Korea and the six EU Member States Belgium, Czechia, Germany, Netherlands, Poland and Spain. Emission intensities range from very high 9 kg N₂O/t caprolactam (USA and Russia) to as low as 2 kg/t for Japan and Korea. Even lower emission rates were reported for EU Member States Poland (0.6 kg N₂O/t) and Germany (nearly complete elimination). While ambitious mitigation is taking place in Japan, Korea and some EU Member States, the mitigation efforts are

insufficient in the USA, Russia and other EU Member States. Unlike nitric acid and adipic acid production, N_2O emissions from caprolactam production are not covered by the EU-ETS.

1 Introduction

This study investigates mitigation potentials in industrialised countries for emissions of the greenhouse gas nitrous oxide (N_2O) from chemical industry, in particular from the production processes for nitric acid, adipic acid and caprolactam.

The study was launched by the Secretariat of the Nitric Acid Climate Action Group (NACAG¹), a global climate change initiative launched by the German Government with the objective to globally support the mitigation of N_2O emissions from nitric acid production in developing countries. The secretariat of NACAG initiative is implemented by the German Technical Cooperation (GIZ).

The geographic scope of the study covers industrialised countries world-wide where nitric acid production, adipic acid production and/or caprolactam production takes place. For the purpose of this study, 'industrialised countries' are the countries not identified by the OECD as eligible for official development assistance (ODA). Based on that criterion, the list of covered countries as spelled out in Table 1 does not include 'emerging economies' like China, India, South Africa, Mexico or Brazil.

Table 1:Countries included in the analysis

	Nitric acid	Adipic acid	Caprolactam
Australia	\checkmark		
Canada	\checkmark	\checkmark	
Chile	\checkmark		
European Union ^{(1), (2), (3)}	√ ⁽¹⁾	√ ⁽²⁾	√ ⁽³⁾
Israel	\checkmark		
Japan	\checkmark	\checkmark	\checkmark
Republic of Korea	\checkmark	\checkmark	\checkmark
Norway	\checkmark		
Russia	\checkmark		\checkmark
Saudi-Arabia	\checkmark		
Singapore	\checkmark	\checkmark	
Trinidad and Tobago	\checkmark		
United Arab Emirates	√ (?)		
United Kingdom	\checkmark		
United States of America	\checkmark	\checkmark	\checkmark

Present and / or historic production activities

⁽¹⁾ EU Member states with nitric acid production: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Finland, France, Germany, Greece, Hungary, Italy, Lithuania, Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Sweden

⁽²⁾ EU Member states with adipic acid production: France, Germany, Italy

⁽³⁾ EU Member states with caprolactam production: Belgium, Czech Republic, Germany, Netherlands, Poland, Spain Source: data collected in the study

Our investigation results related to the situation of N_2O emissions and mitigation potentials are presented in section 2 in the form of 15 country briefs for industrialised countries and regions around the globe. These profiles contain information on the size of the respective industry, technical information related to N_2O emissions as well as the current regulatory framework conditions for operators of nitric acid, adipic acid and caprolactam production facilities.

The quantification of N₂O mitigation potentials in the country briefs is based on the comparison of available country-specific information on specific N₂O emissions per ton of nitric acid, adipic acid or caprolactam against benchmarks for emission intensities which are proven to be achievable by means of ambitious policy instruments encouraging the employment of effective N₂O abatement techniques. The development of these benchmarks on national or EU level is documented in the Annex.

We acknowledge that the realisation of such benchmark-based mitigation potentials might possibly involve high-cost technological upgrades of abatement technology in facilities already equipped with secondary or tertiary abatement technology. We'd like to stress that the desk-based, remote analysis performed in the present study cannot replace in-depth plant-specific assessments for a sound assessment of mitigation potential and related cost. Where available plant-specific information appears sufficient, the 'national emission intensity benchmark'-based quantification approach discussed above is amended by an estimate of rather easily realisable, 'low-hanging fruit' mitigation potentials focussing on plants where no secondary or tertiary N_2O abatement technologies are being used so far.

In section 3, we summarise the results of our research and provide cross-country overviews, separately for nitric acid production, adipic acid production and caprolactam.

Given the lack of detailed information, any quantifications in our study, in particular for N₂O mitigation potentials, should be understood as rough estimates based on desk research rather than detailed technical potential analyses which would need to consider more plant-specific information than available for our study.

The Russian invasion into Ukraine of February 2022 and the subsequent war and international sanctions are likely to have immense consequences on international energy markets and energy prices. Those are likely to affect fuel and feedstock supplies and competitiveness of the chemical production facilities discussed in this study in different manners throughout the world. The present study does not attempt to assess potential consequences of these events on production patterns and related N_2O emissions or emission mitigation potentials.

2 Country Briefs

2.1 Australia

2.1.1 Australia summary

In Australia, approximately 1.8 million tonnes of nitric acid were produced in 2020. Key N₂O mitigation policies include a voluntary carbon credit scheme linked to an obligation to keep plant emissions below a business-as usual baseline. Secondary catalysts are partly being employed, latest upgrades involve tertiary catalysts. Average specific N₂O emissions in 2020 were at about 3 kg per tonne of nitric acid. Compared to emission intensity benchmarks achievable by ambitious mitigation policies as the EU ETS, Australian N₂O mitigation potentials are estimated at 80-90 %. An easy-to-achieve mitigation potential in so far unabated plants, however, amounts to ~1.1 Mt CO₂/a, or ~20 % of Australia's present emissions from nitric acid production.

	Nitric Acid	Adipic Acid	Caprolactam			
Number of facilities	12 lines / 6 locations	-	-			
	Emissions Reductions Fund (ERF): voluntary carbon credit scheme;					
Relevant climate policies	ERF safeguard mechanism: obligation for large emitters to keep GHG emissions below individual baseline, use of carbon credits for compliance is possible					
N₂O Abatement Technologies in Place	Secondary / tertiary catalysts installed in ~ 80 % of HNO ₃ production capacity	Not applicable Not applicable				
Annual Production (2020)	1.8 Mt [100% HNO ₃]	-	-			
Annual N ₂ O emissions	5.2 kt N ₂ O /					
(2020)	1.4 Mt CO ₂ e	-	-			
N ₂ O emissions uncertainty estimate	± 15 %					
Specific N ₂ O emissions (2020)	2.9 kg N ₂ O/t					
	Gap to emission intensity benchmark of ambitious mitigation policy:					
	~80-90 %					
	~ 4.5 kt N ₂ O / a					
	~1.2 Mt CO ₂ e / a					
N ₂ O mitigation potential	'Low-hanging fruit' potential in unabated plants:					
	~20 %					
	~ 1.1 kt N ₂ O / a					
	~0.3 Mt CO ₂ e / a					

Table 2: Country Profile Australia

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: Australia 2019; 2022a; 2022b; Klimadock 2020; Clean Energy Regulator 2022a; 2022b; Orica 2022, own calculations of Öko-Institut

2.1.2 Presence of N₂O-emitting chemical industries

In Australia, the production of nitric acid takes place, usually linked to the production of fertilisers or explosives. Production of adipic acid and caprolactam, however, does not occur. Nitric acid production levels have been on the rise in the last decades. Nitric acid production amounts reported

for 2020 are at about 1.8 million tonnes, which is approximately 40 % above 2010 levels (1.3 Mt) or 240 % above 2000 levels (0.5 Mt) (Australia 2022a), see Table 4.

In the Australian National GHG inventory report under the UNFCCC (NIR) (Australia 2022b), three companies producing nitric acid are mentioned: Wesfarmers, Orica and Queensland Nitrates. Research in the industry, however, concluded in five companies (including joint ventures) operating twelve production lines at six sites in Australia (Klimadock 2020):

Table 5.	Nitric acid production s	iles in Australia				
Company	Location	Year of construction	Capacity [t 100% HNO₃]	N₂O abatement	Comments	
		1996		yes	Abatement installed since 2012,	
/		2007		yes	abatement rates ≥ 80 %	
CSBP /	Kwinana, Western	2014		yes	Upgrade of abatement technology	
Westarmers	Australia	total CSBP Kwinana	720,000		by 2030 announced in decarbonisation roadmap. (Wesfarmers 2022)	
Incitec Pivot Limited / Dyno Nobel	Moranbah, Queensland	2012	265,000	yes	Secondary abatement with 50-60% abatement rate to be upgraded to tertiary abatement, resulting in 99 % abatement. Completion expected for 2024 (Incitec Pivot 2022)	
	Kooragang, New South Wales			yes	Upgrade to tertiary N ₂ O abatement	
				yes	announced in 2021 for 2022	
ORICA Limited				yes	N_2O abatement rate to be upgraded	
		total ORICA Kooragang	330,000		from ~ 92% to ~96%, expected emissions reduction 48% (Orica 2021)	
			105,000	ER	ERF project registered; final	
	Yarwun, Queensland		103,500	Under	investment decision pending,	
			231,000	development	awaiting Australian carbon market	
ORICA Limited		total ORICA Yarwun	409,500		reform (Orica 2022) 2020 GHG emissions reported at ~0.3 Mt CO ₂ e (Clean Energy Regulator 2022a)	
YARA Pilbara	Karratha, Western Australia	2003	264,000	yes	Joint Venture YARA / ORICA	
QNP / Queensland Nitrates	Moura, Queensland		173,250	Information not available	525 tpd / 405 tpd [100%]/; Joint venture DYNO Nobel (Incitec Pivot) / CSBP (Wesfarmers)	

Table 2 Nitrie sold production sites in Australia

Sources: (Klimadock 2020; Orica 2021; Yara 2022; Incitec Pivot 2022; Wesfarmers 2022; Orica 2022; Thyssenkrupp 2023; Clean Energy Regulator 2022a), Öko-Institut calculations

2.1.3 Policies affecting N₂O emission levels

The key policy instrument affecting N_2O emissions from Australian nitric acid plants is the Emission Reduction Fund (ERF)² in combination with the ERF safeguard mechanism³:

The ERF is basically a voluntary baseline & credit scheme. Under the ERF, eligible plant operators, including nitric acid plants, can register emission reduction projects where emission reductions are estimated using methods⁴ approved⁵ under the ERF. The ERF purchases abatement contributions through reverse auctions, following which the Government contracts with successful bidders for the delivery of abatement. The scheme involves the issuance of ACCUs (Australian Carbon Credit Units). An Australian Carbon Exchange is under development and is intended to make ACCU trade simpler (Australia 2019; Clean Energy Regulator 2022b). Beyond the crediting and purchasing element, the ERF is complemented by a safeguard mechanism which incentivise large emitters (above 100 kt CO_2e /year) to keep their GHG emissions below their business-as-usual baselines. For compliance with the safeguard mechanism, companies can either limit their emissions, or purchase ACCUs (Clean Energy Regulator 2019).

The methodology applicable to quantify ERF N_2O emission reductions from nitric acid production is the 'facility method'⁶. The Australian nitric acid producer Orica reports that their decarbonisation project for the Kooragang site (see Table 3) was approved to generate ACCUs under that method (Orica 2021). Furthermore, the ERF safeguard mechanism applies to Australian nitric acid producers, several nitric acid plants covered by the safeguard mechanism report respective baselines covering N₂O process emissions and other direct GHG emissions (Clean Energy Regulator 2022c). No information is publicly available, however, summarising the extent to which Australian nitric acid producers comply by limiting their own N₂O emissions or by means of purchasing ACCUs. Anecdotic information confirms, however, that at least Orica needs to rely on purchased ACCUs for their Yarwun site (Orica 2022).

2.1.4 N₂O abatement in place

Compared to Europe, Australian nitric acid industry had a rather slow history of deploying N_2O abatement before 2011 (EnerGreen Consulting 2011). This was linked to the Australian government's decision not to host JI projects in the first implementation period of the Kyoto protocol, 2008-2012 (Australia 2009).

By 2022, most Australian nitric acid plants have been equipped with N_2O abatement as spelled out in detail in Table 3. One production site, however, covering almost 20 % of Australia's nitric acid production capacity, is not yet equipped with N_2O abatement. Abatement rates of existing N_2O abatement facilities is reported in the range of 80 % to 92 %. Upgrades in abatement technology in order to reach 96%-99 % abatement rates are underway or planned for some installations (see Table 3).

² <u>https://www.cleanenergyregulator.gov.au/ERF/About-the-Emissions-Reduction-Fund</u>

³ <u>https://www.cleanenergyregulator.gov.au/ERF/About-the-Emissions-Reduction-Fund/the-safeguard-mechanism</u>

⁴ <u>https://www.cleanenergyregulator.gov.au/ERF/Pages/Method-development.aspx</u>

⁵ https://www.cleanenergyregulator.gov.au/ERF/method-development/developing-methods

⁶ <u>https://www.cleanenergyregulator.gov.au/ERF/Choosing-a-project-type/Opportunities-for-industry/facility-methods/facilities-method</u>

2.1.5 N₂O emissions

In the Australian GHG inventory submission to the UNFCCC (CRF Tables in Australia (2022a)), N_2O emissions from nitric acid production, which were calculated based on facility-specific monitoring data, have been merged with N_2O emissions from the 'other N_2O product use' category⁷, in order to protect the confidentiality of N_2O product use data (Australia 2022b).

The data reported in the Australian inventory thus do not allow to conclude directly on N_2O from nitric acid production. In order to estimate Australian N_2O emissions from nitric acid production, we have estimated Australian N_2O product use emissions on a per-capita basis, taking as the basis the average of New Zealand and USA per capita emissions for N_2O from 'other product use'. Using that approach we estimate that approx. 20 % of 2020 N_2O emissions reported by Australia for the joint *nitric acid production* and *other product use* categories can be attributed to 'other product use'.

Both the Australian reporting data and our estimates for the allocation of data to nitric acid production and other product use are given in Table 4. The average N₂O emission factor for nitric acid production excluding N₂O product use estimated by Öko-Institut is 2.8 kg/t and varies in the time series between 2.3 and 9.4 kg/t. That Öko-Institute estimate is reconfirmed by information on specific N₂O emissions from nitric acid production quoted in the Australian inventory report as 0.0028 t N₂O/ t nitric acid for 2020 and a range of 0.002 – 0.01 t/t for the time series.

Table 4:	4: N ₂ O emissions from Australian nitric acid production							
	nitric acidN2O emissionsproductionnitric acid production,millionincluding 'other N2O producttonnesuse'		N ₂ O emissions from 'other product use'	N2ON2O emissionsemissionsnitric acid production,from 'otherexcluding 'other N2O productproduct use'use'				
	(100% nitric acid)	kt N ₂ O	kg N₂O / t nitric acid	kt N ₂ O	kt N ₂ O	kg N ₂ O / t nitric acid		
	reported by Australia to UNFCCC			Öko-Institut estimate				
2000	0.54	5.8	10.9	1.0	4.8	8.9		
2005	0.86	8.9	10.4	0.8	8.1	9.4		
2010	1.29	10.5	8.2	1.0	9.6	7.4		
2015	1.55	5.2	3.4	1.1	4.1	2.7		
2016	1.63	4.7	2.9	1.0	3.7	2.3		
2017	1.63	5.1	3.1	1.1	4.0	2.5		
2018	1.71	6.1	3.6	1.3	4.8	2.8		
2019	1.70	7.5	4.4	1.3	6.2	3.6		
2020	1.82	6.5	3.6	1.4	5.1	2.8		

Sources: Australia 2022a United States of America 2022a New Zealand 2022, United Nations 2022, Öko-Institut calculations

The uncertainty of N₂O Emissions reported by Australia in CRF category 2.B Chemical Industry was estimated by Australia at \pm 5.8 % (95% confidence limits assuming normal distribution) in the NIR (Australia 2022b). For the Öko-Institute estimate of Australia's N₂O emissions from nitric acid production excluding emissions from 'other N₂O product use' (Table 4) we estimate an uncertainty of \pm 15 %.

⁷ The 'other N₂O product use' category covers N₂O emissions from use as anaesthetic or as propellant for whipped cream etc.

2.1.6 N₂O mitigation potentials

Australian specific emissions of ~ 3 kg N_2O / t nitric acid are very high compared to European levels.

Benchmarks for emission intensities achievable by ambitious mitigation policies can be derived from the EU-ETS in the range of 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see <u>Annex I</u>).

These EU-ETS benchmarks for emission intensities are at ~10-20% of present Australian emission intensities. Benchmark-based top-down mitigation potentials for N₂O from Australia's nitric acid production add up to ~4.5 kt N₂O/a or ~ 1.2 Mt CO₂e / a (GWP AR5).

In a bottom-up perspective focussing on plants without any present N₂O abatement we consider a ~95 % reduction of unabated N₂O emissions at the Orica Yarwun site and thus estimate a low-cost mitigation potential at approximately 1.1 kt N₂O/a or 0.3 Mt CO₂e / a (i.e. approximately 20 % of Australia's 2020 N₂O emissions from nitric acid production).

2.2 Canada

2.2.1 Canada summary

In Canada, approximately 0.8 million tonnes of nitric acid were produced in 2020. Key N₂O mitigation policies include a carbon tax. All plants are equipped with abatement technologies. Average specific N₂O emissions were at about 0.8 kg/ tonne of nitric acid. Compared to emission intensity benchmarks achievable by ambitious mitigation policies as the EU ETS, Canadian N₂O mitigation potentials are estimated at 20-65 %. A 2022 retrofit of existing abatement in one plant achieved a reduction of 25 % compared to 2020 emissions.

Table 5: Country Profile Canada

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	8	-	-
Relevant climate policies	Canadian Enviro Greenhouse Ga		
N₂O Abatement Technologies in Place	All plants are equipped with abatement technologies	-	-
Annual Production (2020)	0.8 Mt HNO ₃	None since 2009	-
Annual N₂O emissions (2020)	0.6 kt N₂O / 0.2 Mt CO2e	-	-
N ₂ O emissions uncertainty estimate	~1 %	-	-
Specific N₂O emissions (2020)	0.8 kg N ₂ O/t		
N₂O mitigation potential	Gap to emission intensity benchmark of ambitious mitigation policy: ~20-65% 0.15-0.4 kt N ₂ O/a ~0.05-0.1 Mt CO ₂ e/a Achieved mitigation by 2022 (upgrade of existing abatement technology): ~25 %	-	-
	0.15 kt №0/a ~0.04 Mt CO₂e/a		

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5^{th} IPCC Assessment Report (AR5) Sources: Canada 2022, Environment and Climate Change Canada 2022, own calculations of Öko-Institut

2.2.2 Presence of N₂O-emitting chemical industries

In Canada, nitric acid production is taking place at five locations with a total of eight production lines (Environment and Climate Change Canada 2022): Out of those eight facilities, seven are operating with a high-pressure technology design, one uses a dual pressure production process.

Six out of seven high-pressure production lines are equipped with tertiary NSCR abatement technology (Environment and Climate Change Canada 2022). Until 2022, the two remaining lines, one high-pressure, one dual pressure, both operated by Orica Canada Inc. used process-gas

catalytic reduction (PGCD). PGCD is a secondary abatement measure that consist of catalysts installed underneath the ammonia burner that catalyse the N_2O formed during the ammonia oxidation reaction. According to Orica (2022), one of those facilities was revamped with tertiary N_2O abatement in 2022, however, the report does not indicate which production line was retrofitted.

Table 6 provides a list on current and decommissioned nitric acid facilities in Canada, including their process type, abatement technology and operation years between 1990 and 2020.

Table 6:Overv	6: Overview on current and decommissioned nitric acid facilities in Canada				
Company	Production Lines	Process Type	Abatement Technology	Start of Operation	End of Operation
Agrium Inc.	1	HP	NSCR	Before 1990	-
Cominco Inc.	1	DP	None	Before 1990	1994
Cyanamid Canada	1	HP	NSCR	Before 1990	1990
Dyno Nobel Nitrogen Inc.	3	HP	NSCR	Before 1990	2010
Koch Fertilizer Canada, UL	c 3	HP	NSCR	1)Before 1990 2)1994 3)1997	-
Orica Canada Inc. (Carsela AB)	nd, 2	1) DP 2) HP	 PGCD since 2008 PGCD since 2012^a 	1) Before 1990 2) 1998	-
Orica Canada Inc. (Beloeil, QC)	1	HP	NSCR	Before 1990	1999
Terra International (Canad Inc.	la) 1	HP	NSCR	Before 1990	-
Yara Belle Plaine Inc.	1	HP	NSCR	2004	-

Notes: HP: High Pressure, DP: Dual Pressure, NSCR: Non-selective catalytic reduction, PGCD: Process-gas catalytic decomposition Facilities in italics are no longer in operation.

^a: According to Orica (2022), one of the lines at Carseland was retrofitted with tertiary N₂O abatement in 2022. The report does not indicate which line was retrofitted.

Source: Own representation after Environment and Climate Change Canada 2022; Orica 2022

There is one adipic acid facility in Ontario, but the plant has not produced adipic acid since the spring of 2009. No caprolactam production is taking place in Canada (Environment and Climate Change Canada 2022).

2.2.3 Policies affecting N₂O emission levels

 N_2O emissions were first targeted in Canada by the Canadian Environmental Protection Act, from 1999⁸, where N_2O is included in the list of toxic substances whose release should be controlled.

The Greenhouse Gas Pollution Pricing Act, from 2018⁹, has two parts: a fuel pricing system, and an output-based pricing system. The latter is targeting greenhouse gas emissions from the industry and is explicitly formulated to cover greenhouse gases in CO₂e. The exact implementation is differing

⁸ last amended in 2021, <u>https://laws-lois.justice.gc.ca/PDF/C-15.31.pdf</u>

⁹ last amended in 2022, <u>https://laws-lois.justice.gc.ca/PDF/G-11.55.pdf</u>

among Canadian provinces and territories, but the act implies that the federal policies apply if no regional policy is in place. Nitrous oxide is covered under most schemes (Sawyer et al. 2021).

Source: Canadian Government https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work.html

2.2.4 N₂O abatement in place

All eight currently operating nitric acid producing lines in Canada are equipped with abatement technologies. As Table 6 shows, six plants with a high-pressure design have a NSCR abatement technology in place. One high pressure plant uses a secondary process-gas catalytic decomposition (PGCD) abatement process, which has a higher N₂O emission factor than the NSCR technology, installed in 2012. One nitric acid plant in Canada has a dual pressure design and uses a PGCD abatement system for N₂O. This abatement system was installed in 2008 (Environment and Climate Change Canada 2022). According to company information (Orica 2022), one of the plants with a PGCD abatement system was upgraded to tertiary abatement in 2022, now achieving abatement rates of 95% compared to no abatement. The available information does not indicate, however, whether the upgraded facility was the high pressure or the dual-pressure plant.

2.2.5 N₂O emissions

Emissions from nitric acid production in Canada have seen a strong decline between 2000 and the early 2010 years. In 2008 and 2012, respectively, two lines were equipped with process-gas catalytic decomposition abatement technologies, effectively reducing the amounts of N_2O emissions (Environment and Climate Change Canada 2022). One of those lines was additionally retrofitted with tertiary NSCR abatement in 2022. Furthermore, one plant was decommissioned at the end of 2010, leading to a reduction of production and consequently emissions.

Table 7:	N ₂ O emissions fron	n Canadian ni	tric acid production		
	nitric acid production		N ₂ O emissions of nitric acid production		
	million tonnes (100% nitric acid)	kt N₂O	kg N₂O / t nitric acid		
		reported by Canada to UNFCCC			
2000	1.09	4.0	3.6		
2005	1.18	4.0	3.4		
2010	0.89	1.6	1.8		
2015	0.90	0.8	0.8		
2016	0.93	0.9	0.9		
2017	0.86	0.8	1.0		
2018	0.97	0.9	0.9		
2019	0.97	0.8	0.9		
2020	0.81	0.6	0.8		

Source: Canada (2022), own calculations of Öko-Institut

According to Environment and Climate Change Canada (2022), for the period of 2010-2020, mostly facility-level production data was used together with plant-specific emission factors or data from emission monitoring systems (Tier 3). Only for shorter time periods where a Tier 3 method could not be applied due to lack of data, technology-specific emission factors were applied. The uncertainty of N₂O emissions from nitric acid production in the Canadian Inventory is indicated with 0.8 % to 1 % for the period of 2012-2020 where the emission factors were the largest contributors to the uncertainty, while available information on production is considered to be of high data quality (Environment and Climate Change Canada 2022).

2.2.6 N₂O mitigation potentials

Canadian specific emissions in 2020 of ~ 0.8 kg N₂O/t nitric acid are in the range of European levels, albeit at the higher end.

Benchmarks for emission intensities achievable by ambitious mitigation policies can be derived from the EU-ETS in the range of 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see <u>Annex I</u>).

These EU-ETS benchmarks for emission intensities are at ~20-65% of present Canadian emission intensities. Benchmark-based top-down mitigation potentials for N₂O from Canada's nitric acid production add up to ~0.1 – 0.4 kt N₂O/a or ~ 0.05-0.1 Mt CO₂e/a (GWP AR5).

In a bottom-up perspective focussing on plants without any present N_2O abatement, however, there would be no additional mitigation potential as all plants are equipped with either secondary or tertiary N_2O abatement.

Nevertheless, there are two facilities which, according to Environment and Climate Change Canada (2022), were not equipped with NSCR abatement technologies in 2020 and thus the most probable candidates for further emission reductions. According to company communication (Orica 2022), one of those plants was retrofitted with a tertiary abatement in 2022, achieving emission reduction levels of 95 % compared to no abatement. We estimate the achieved additional emission reduction at ~0.15 kt N₂O/a or 0.04 Mt CO₂e/a or about 25 % of current Canadian N₂O emissions from nitric acid production.

There is thus only one nitric acid production line in Canada which is not equipped with tertiary N₂O abatement. However, this plant nonetheless has secondary PGCD, and the additional mitigation potential of retrofitting also that plant with tertiary abatement could possibly lead to additional emission reductions of approximately 0.1 kt N₂O/a or 0.03 Mt CO₂e/a or about 15 % of current Canadian N₂O emissions from nitric acid production.

2.3 Chile

2.3.1 Chile summary

In Chile, approximately 0.3 million tonnes of nitric acid were produced in 2020. No mitigation policies targeted at N₂O emissions from Chemical industry were identified for Chile. Secondary catalysts are partly installed at two out of three nitric acid facilities. Average specific N₂O emissions were at about 1.0 kg/tonne of nitric acid. Additional N₂O mitigation potentials are estimated at ~55 %.

Table 8: Country Profile Chile

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	3 lines / 1 location	-	-
Relevant climate policies	No active policies targeting N ₂ O fron Carbon tax targets NO _x on st	n the chemical ir ationary sources	ndustry.
N₂O Abatement Technologies in Place	Secondary catalysts partly installed, partly unclear	Not applicable	Not applicable
Annual Production (2020)	~0.3 Mt	-	-
Annual N₂O emissions (2020)	0.3 kt N ₂ O 0.1 Mt CO ₂ e	-	-
N ₂ O emissions uncertainty estimate	~3 %	-	-
Specific N ₂ O emissions (2020)	1.0 kg N₂O/t		
N₂O mitigation potential	Gap to emission intensity benchmark of ambitious mitigation policy $$\sim40-75\%$$0.1-0.2 kt N_2O/a$$\sim0.05 Mt CO_2e/a$ `Low-hanging-fruit' potential in unabated plants 10: $$\sim0.3 kt N_2O/a$$$\sim0.9 Mt CO_2e/a$$		

Note: N₂O amounts converted into CO_2 equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Source: Ministerio del Medio Ambiente (2022), Enaex (2022), New Climate Institute (2022)

2.3.2 Presence of N₂O-emitting chemical industries

In Chile, the production of nitric acid takes place, mostly linked to the production of explosives for the mining industry and fertilizers. Production of adipic acid and caprolactam, however, does not occur. While data for nitric acid production are not publicly available for Chile, numbers for emissions from nitric acid production in the 5th Chilean Biennial Update Report (Ministerio del Medio Ambiente 2022) show rising values until about 2009, which are sinking and remaining on a fairly constant level after that. These numbers suggest that production levels have been increasing, before consolidating

¹⁰ The potential determined here is for the installation of a tertiary abatement system at the Panna 1 facility of ENAEX. However, according to Enaex (2022), this facility was not in operation in 2021.

while abatement measures have been put in place. Information from UNFCCCs CDM registry¹¹ also supports these assumptions.

Available information from the company ENAEX S.A (Enaex 2022). lists plants at one location, with a total of three production lines¹². Two facilities, *Panna 3* and *Panna 4* at the *Prillex* plant, have abatement mechanisms in place which are registered as CDM projects (Republic of Chile 2014; CDM Executive Board 2014). Table 9 lists installed nitric acid production capacities for the three facilities of the Prillex plant. Another CDM project for catalytic N₂O destruction at the Panna 1 plant is listed in the CDM database. However, the report by the company only lists Panna 3 and 4 as facilities with an abatement mechanism and information in Ministerio del Medio Ambiente (2020) supports this information.

Table 9:	Yearly nitric acid production capacities for the ENAEX Prillex Plant		
	Insta	lled Production Capacity [kt HNO₃ per year]	
	Panna 1	47	
	Panna 3	338	
	Panna 4	328	
	Sum	713	

Source: CDM Executive Board (2006), CDM Executive Board (2014), Republic of Chile (2014)

2.3.3 Policies affecting N₂O emission levels

Chile has introduced a carbon tax in 2014¹³. This tax targets CO_2 emissions as well as local contaminants (PM, SO₂ and NO_x) on stationary sources and NO_x on new cars.

Chile however has no policies in place explicitly targeting N₂O emissions and according to official documents, none are currently planned¹⁴.

Private companies are nonetheless investing in climate friendly production facilities to participate for example in initiatives like the Dow Sustainability index. (Enaex 2022)

CDM measures are implemented at two facilities of one nitric acid production plant in Chile. (Source CDM database).

2.3.4 N₂O abatement in place

At the facilities Panna 3 and Panna 4 at the Prillex Location of the company ENAEX, there are N_2O abatement systems (secondary catalytic N_2O destruction) in place, which have been supported by CDM measures (Source: CDM database, Enaex (2022)). These abatement systems reduce, on

¹¹ <u>https://cdm.unfccc.int/Registry/index.html</u>

¹² The company lists more locations and facilities; however, the report does not explicitly detail the type of the facilities and their production types. For this report, they are thus not included in the list of nitric acid production sites.

¹³ <u>https://icapcarbonaction.com/en/news/chile-publishes-climate-change-framework-law-paving-way-market-based-policy</u>

¹⁴ Sources: New Climate Institute (2022), Ministerio del Medio Ambiente (2022), Ministerio del Medio Ambiente (2021), IEA - International Energy Agency (2018), Republic of Chile (2014), OECD Publishing (2018))

average, 90% of the potential emissions. Another CDM project for catalytic N₂O destruction at the Panna 1 plant is listed in the CDM database¹⁵. However, the report by the company only lists Panna 3 and 4 as facilities with an abatement mechanism and information in Ministerio del Medio Ambiente (2020) also supports the assumption that only two out of three production lines are equipped with abatement technologies.

2.3.5 N₂O emissions

Table 10 provides an overview on emissions from nitric acid production in Chile from different sources, mainly Ministerio del Medio Ambiente (2020) and Enaex (2022).

The most reliable data and the longest available time series on emissions from nitric acid production in Chile is provided in the Chilean GHG inventory in the 5th Biennial Report to the UNFCCC (Ministerio del Medio Ambiente 2022) and the National Inventory Report (Chile 2020; Ministerio del Medio Ambiente 2020). The emissions are provided in kt N₂O. The National Inventory Report lists Tier 3 as method for determination of emissions in CRF category 2.B.2. for projects under CDM (and thus starting in 2008) and use of a country specific emission factor for years without continuous monitoring and for the fraction of production not under CDM required monitoring. This means that the information on a substantial part of the nitric acid production after 2008 is of good quality. Ministerio del Medio Ambiente (2020) indicates that the uncertainty of N₂O emissions from nitric acid production in the Chilean Inventory is of ~ 3 % for this period.

The company ENAEX, which produces nitric acid in Chile, provides a GHG report (Enaex 2022) and lists emissions in CO₂e (based on AR4 GWP) for both direct and indirect emissions from their plants as well as information about emission reductions from N₂O abatement technologies. The report is certified by an independent auditor, providing a reasonable level of confidence about the data contained within. Unfortunately, the report does not give detailed information on the different types of direct emissions from the different facilities (not all of which actually produce nitric acid), so the exact level of emissions from nitric acid productions cannot be derived from the data. Furthermore, the company describes on their website¹⁶ that the emissions intensity rate for nitric acid production has been decreasing from 4.3 t CO₂e/t nitric acid in 1982 (~14.4 kg N₂O / t HNO₃¹⁷) to about 0.3 t CO2e/t nitric acid in 2020 (~1.0 kg N2O / t HNO3), due to the installation of abatement technologies and energy efficiency gains. These values are in line with those given in Ministerio del Medio Ambiente (2020).

lable	able 10: N ₂ O emissions from Unliean nitric acid production					
N ₂ O emissions from nitric acid production Chile						
	Reported UNF	by Chile to CCC	Reported by	/ ENAEX	Reported in Ministerio del Medio Ambiente (2020)	
	kt N₂O	kg N2O / t HNO3	kt N ₂ O	kg N2O / t HNO3	Mt HNO₃ (100%)	
2000	1.7	n.a.	n.a.	n.a.	0.2	
2005	2.8	n.a.	n.a.	n.a.	0.3	
2010	0.5	1.52	n.a.	n.a.	0.5	
2015	0.9	1.48	n.a.	n.a.	0.6	

¹⁵ The crediting period under the CDM for this project has expired. (CDM Executive Board 2006).

¹⁶ https://www.enaex.com/cl/us/environment/

¹⁷ Recalculation by Öko-Institut, assuming the GWP AR4 of 298, also used by ENAEX in Enaex (2022).

2016	0.6	1.10	n.a.	n.a.	0.6
2017	0.8	1.40	0.8	n.a.	0.5
2018	0.3	0.46	0.6	n.a.	0.6
2019	n.a.	n.a.	2.7	n.a.	n.a.
2020	n.a.	n.a.	0.3	1.0	0.3 ¹⁸

Notes: n.a.: not available; N₂O emissions were partly recalculated from CO₂e [GWP AR4] by Öko-Institut. Sources: Ministerio del Medio Ambiente (2022), Enaex (2022), own calculations of Öko-Institut

2.3.6 N₂O mitigation potentials

Benchmark

Chilean specific emissions of ~ 1.0 kg N₂O/t nitric acid are close to the range of European levels, albeit at the higher end. Benchmarks derived from the EU-ETS countries would be 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see Annex I).

These EU-ETS benchmarks are at ~40-75% of present Chilean emission intensities. Respective mitigation potentials for N₂O from Chile's nitric acid production add up to ~0.1 – 0.2 kt N₂O/a or ~ 0.03-0.0.06 Mt CO₂e/a (GWP AR5).

Specific analysis

From information in Ministerio del Medio Ambiente (2020) and Enaex (2022), it can be concluded, that the Panna 1 facility of the ENEAX Prillex nitric acid plant is the only one not using abatement technology for N₂O emissions. Under the CDM, a project description for an abatement system for this facility is listed (CDM Executive Board 2006). From the information in the CDM database, the planning and implementation status of this project remains unclear. Since, however, calculations and planning have already been established for this facility, the installation of an abatement system can be considered as having a low inhibition threshold. From CDM Executive Board (2006), the yearly emission reduction potential for the installation of a tertiary NSCR abatement at the Panna 1 facility is of 76 489 t CO₂e or about 0.3 kt N₂O. It has to be noted that, according to Enaex (2022), there was no nitric acid production at Panna 1 in 2021. From the available data, it cannot be concluded if this facility will be operating in the future, and under which conditions this operation will take place.

¹⁸Calculated based on emissions and emission factors in Enaex (2022).

2.4 European Union

2.4.1 European Union summary

After the United Kingdom's withdrawal from the European Union in 2020, the EU consists of 27 Member States: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain and Sweden.

Production of nitric acid, adipic acid and caprolactam takes place in the EU. Key N_2O mitigation policies include the cap-and -trade EU emissions trading scheme (EU-ETS) for both nitric and adipic acid production. No effective EU-wide mitigation policy applies to caprolactam production.

Approximately 18 million tonnes of *nitric acid* were produced in 2020. The use of N₂O abatement is widespread. Average specific N₂O emissions were at about 0.5 kg/ tonne of nitric acid. Additional N₂O mitigation potentials are estimated at ~30 %.

Approximately 0.25 million tonnes of *adipic acid* were produced in 2020. The use of N₂O abatement is widespread. Average specific N₂O emissions are available only for Italy at about 4 kg/ tonne of adipic acid. Given very high reductions already achieved, no additional N₂O mitigation potential is estimated for EU adipic acid production. Approximately 1 million tonnes of *caprolactam* were produced in 2020. The use of N₂O abatement differs strongly in type and effectiveness between plants. Average specific N₂O emissions are available only for Belgian and Polish plants at about 4 kg/ tonne of caprolactam. Additional N₂O mitigation potentials are at ~50%.

Nitric Acid Adipic Acid Caprolactam ~60 facilities in Number of facilities 5 ~10 **19 Member States Relevant climate** Inclusion in EU ETS None policies Partial application of N₂O Abatement Widespread application of secondary and/or tertiary primary or tertiary **Technologies in Place** abatement measures abatement measures **Annual Production** ~18 Mt [100% HNO₃] ~1 Mt ~0.25 Mt (2020)Annual N₂O emissions 9.4 kt N₂O / 0.9 kt N₂O / 4.5 kt N₂O / 2.5 Mt CO₂e 0.25 Mt CO2e 1.2 Mt CO₂e (2020)N₂O emissions ~9% uncertainty estimate Not available for EU27 Specific N₂O Not available for EU27 ~0.5 kg N₂O/t ~ 4 kg N₂O/t emissions (2020) ~ 4 kg N₂O /t (Italy) (Belgium/Poland) ~15-50% / ~20-80% / N₂O mitigation ~ 1.5-4.5- kt N₂O/a ~ 0.9-4.0- kt N₂O/a none potential ~0.4-1.2 Mt CO2e/a ~0.25-1 Mt CO₂e/a

 Table 11:
 Country Profile European Union

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: European Union 2022a; 2022b, EU Member States' 2022 National Inventory Reports and Common Reporting Format Inventory Tables, FutureCamp Climate GmbH 2022, Öko-Institut calculations

2.4.2 Presence of N₂O-emitting chemical industries

Production of nitric acid takes place in 19 EU Member States, adipic acid is produced in three Member States, Caprolactam in 6 Member States. In total, approximately 60 nitric acid plants, 5 adipic acid plant and 10 caprolactam plants are being operated in the EU (Table 12).

Table 12:	Presence of N ₂ O-emitting chemical industries in EU Member States (2020)					
	Nitric Acid Production	Adipic Acid Production	Caprolactam Production			
Austria	3 units in 1 plant	-	-			
Belgium	8 units in 2 plants	-	1 plant			
Bulgaria	2 plants	-	-			
Croatia	3 units in 2 plants	-	-			
Cyprus	-	-	-			
Czech Republic	4 units	-	1 plant			
Denmark	-	-	-			
Estonia	-	-	-			
Finland	3 plants	-	-			
France	9 plants	1 plant	-			
Germany	9 plants	3 plants	2 plants			
Greece	1 unit	-	-			
Hungary	2 plants	-	-			
Ireland	-	-	-			
Italy	2 plants	1 plant	-			
Latvia	-	-	-			
Lithuania	3 units	-	-			
Luxembourg	-	-	-			
Malta	-	-	-			
Netherlands	5 plants	-	1 plant			
Poland	5 plants	-	several units			
Portugal	3 plants	-	-			
Romania	4 units in 2 plants	-	-			
Slovakia	3 plants	-	-			
Slovenia	-	-	-			
Spain	4 plants	-	1 plant			
Sweden	1 plant	-	-			

Sources: Austria 2022b; Belgium 2022b; Bulgaria 2022b; Croatia 2022b; Cyprus 2022; Czechia 2022b; Denmark 2022b; Estonia 2022; Finland 2022b; France 2022b; Germany 2022b; Greece 2022b; Hungary 2022b; Ireland 2022b; Italy 2022b; Latvia 2022; Lithuania 2022b; Luxembourg 2022; Malta 2022; Netherlands 2022; Poland 2022b; Portugal 2022; Romania 2022; Slovakia 2023; Slovenia 2022b; Spain 2022b; Sweden 2022b

Note that information provided in the EU Member States' National Inventory Reports as summarised in Table 12 appears to provide a more complete picture than the Union Registry under the EU-ETS: For the EU-ETS only 34 operators in 12 EU Member States are registered in the 'nitric acid

production' activity under the EU-ETS (European Commission 2021). It can be concluded that a large share of EU nitric acid installations is probably covered under other EU-ETS activities which may plausibly be the case if nitric acid production facilities are operated under a joint environmental permit with other production facilities.

Nitric acid production levels in the EU Member States have remained rather constant since 1990 (see Table 13). For *adipic acid* and *caprolactam*, production statistics at EU level are not available.

2.4.3 Policies affecting N₂O emission levels

The EU's major instrument to limit N_2O emissions from *nitric acid production* and *adipic acid production* is the EU emissions trading scheme (ETS) where these emissions are included since 2013. In the years 2008 – 2012, emission reduction units (ERU) generated in N_2O abatement project under the UNFCCC Joint implementation (JI) scheme had been eligible to be converted into ETS emission certificates. For details related to the functioning of the EU-ETS, including monitoring, reporting and verification (MRV) of emissions and benchmarks for free allocation in order to prevent carbon leakage, see FutureCamp Climate GmbH (2022).

The inclusion in the EU-ETS featured a strong economic incentive for operators to deploy effective N_2O abatement, resulting in a steep decline of emissions, as visible in the GHG emission inventories (see Table 13 below).

N₂O emissions from *caprolactam production* are not covered by the EU-ETS.

Prior to the EU-ETS, the EU had implemented different legislation affecting all three chemical sectors by means of setting standards for plant licensing: Since 1996 ,best available techniques' (BAT) have been determined under the IPPC (integrated pollution, prevention and control) Directive which was replaced by the IED Industrial Emissions Directive) in 2010. BAT have been collected in sector-specific BAT reference documents (BREFs). BAT conclusions are to be considered by EU Member States' licensing authorities for operational permits.

However, the BREF exercise had little impact on N_2O emissions in chemical industry, as an assessment in FutureCamp Climate GmbH (2022) concludes:

"It is obvious that the adipic acid and caprolactam chapters of the BREFs don't put much importance on N_2O emissions. For adipic acid, this is partly explained by the fact that abatement technologies were already in place at that time. In the case of caprolactam, it seems that production techniques and processes and the resulting N_2O emission levels are so heterogenous that no common sense on adequate BAT was achievable.

In the case of nitric acid plants, the IPPC's effectiveness with respect to N_2O abatement seemed limited, too. One of the main reasons was that even the October 2007 deadline for existing installations to comply with BAT N_2O emission levels was in many cases not enforced, partly due to late implementation by member states. It turned out that JI [Joint Implementation] and (the expectation of the) inclusion into the EU ETS outpaced the IPPC regulation on the way to N_2O abatement." (FutureCamp Climate GmbH 2022).

2.4.4 N₂O abatement in place

Both in *nitric acid production* and in *adipic acid production*, the use of effective catalytic secondary and/or tertiary abatement is wide-spread in the EU.

For *caprolactam production*, little information related to employed N_2O abatement measures is available from EU Member States GHG inventories. While Belgium reports primary measures taken and Germany reports on highly effective thermal waste gas treatment, no information is available for plants in Czech Republic, Poland, Netherlands and Spain.

2.4.5 N₂O emissions

EU N₂O emissions from *nitric acid production* for 1990-2020 are given in Table 13. As nitric acid production amounts are confidential in some of the Member States, specific N₂O emissions per tonne of nitric acid are not available on EU level. However, production data is available for 17 out of 21 relevant Member states, representing 84 % of the EU's 2020 N₂O emissions from nitric acid production. Using that subset as a proxy, it can be concluded that EU specific N₂O emissions have declined by 93 % from 1990 to 2020, with the major reductions taking effect in the period 2005 – 2015. Total 2020 EU nitric acid production level is estimated at approx. 18 million tonnes.

Table 13:	N ₂ O emissions from nitric acid production in EU Member States				
	N₂O emissions nitric acid production	nitric acid production million tonnes (100% nitric acid)	N ₂ O emissions nitric acid production		
	kt N2O	million tonnes (100% nitric acid)	kt N ₂ O	kg N₂O / t nitric acid	
	reported by the EU to UNFCCC	reported by 17 out of 21 relevant EU Member States ^a to UNFCCC			
1990	166.6	15.38	114.3	7.4	
1995	146.7	14.05	102.0	7.3	
2000	154.1	15.10	108.5	7.2	
2005	137.0	15.31	97.4	6.4	
2010	40.1	14.05	28.8	2.0	
2015	14.8	15.11	11.7	0.8	
2016	13.2	14.74	10.6	0.7	
2017	12.2	15.70	9.8	0.6	
2018	11.4	15.00	9.1	0.6	
2019	10.5	15.12	8.6	0.6	
2020	9.4	15.09	7.9	0.5	

Notes:

a) 17 Member States with available production quantities for the 1990-2020 time series: Austria, Belgium, Croatia, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Poland, Slovakia, Slovenia, Spain, Sweden. Missing EU Member States with Nitric acid production: Bulgaria, Romania, Portugal, Netherlands

Sources: Austria 2022a; Belgium 2022a; Croatia 2022a; Czechia 2022a; Denmark 2022a; Finland 2022a; France 2022a; Germany 2022a; Greece 2022a; Hungary 2022a; Ireland 2022a; Italy 2022a; Lithuania 2022a; Poland 2022a; Slovakia 2022; Slovenia 2022a; Spain 2022a; Sweden 2022a; European Union 2022a, Öko-Institut calculations

In The EU's National Inventory Report (European Union 2022b) the uncertainty of aggregated EU N_2O emission estimates is given as 8.7 % the aggregation level the inventory category 2.B "Chemical Industry", thus combining N_2O emissions from nitric acid production, adipic acid production and caprolactam, glyoxal and glyoxylic acid production. Separate estimates for nitric acid, adipic acid and caprolactam production are not available.

EU N₂O emissions from *adipic acid production* for 1990-2020 are given in Table 14. Production levels responsible for the majority of EU emissions are not available in the GHG emission inventories due to confidentiality constraints. For Italy, representing about 30 % of EU's present N₂O emissions from adipic acid production, the time series of average N₂O emission factors is given in <u>Annex II</u>.

Today's emission levels are at below 1 % of 1990 levels, with a steep reduction happening between 1995 and 2010. As demonstrated by the Italian data in <u>Annex II</u>, this reduction pattern is likely to be mostly due to improvements in N_2O abatement rather than changes in production levels.

Total 2020 EU adipic acid production level is estimated at roughly 0.25 million tonnes by extrapolating Italian data.

Table 14:	N ₂ O emissions from adipic acid production in the European Union				
	adipic acid production million tonnes	N₂O emissions adipic acid production, kt N₂O kg N₂O / t adipic acid			
	reported by the European Union to UNFCCC				
1990	С	193.1	С		
1995	С	182.8	С		
2000	С	42.8	С		
2005	С	38.0	С		
2010	С	5.1	С		
2015	С	1.5	С		
2016	С	1.2	С		
2017	С	3.6	С		
2018	С	1.3	С		
2019	C	1.0	C		
2020	С	0.9	С		

Notes: C: confidential

Sources: (European Union 2022a)

EU N₂O emissions from *caprolactam production* for 1990-2020 are given in Table 15. Production levels responsible for the majority of EU emissions are not available in the GHG emission inventories due to confidentiality constraints. For Belgium and Poland, jointly representing about 30 % of EU's present N₂O emissions from adipic acid production, the time series of average N₂O emission factors are given in <u>Annex III</u>.

The EU emissions time series shows little systematic movement, emission levels are at the same order of magnitude as 1990 levels. As Germany reports emissions close to zero due to thermal waste gas treatment (Germany 2022b) and specific emissions given for Belgium and Poland in <u>Annex III</u>, it can be concluded that overall EU trends are largely determined by the emission characteristics of

plants in Czech Republic, Netherlands and Spain where information on production amounts and abatement measures is not available.

Total 2020 EU caprolactam production level is estimated at roughly 1 million tonnes by extrapolating Belgian and Polish data.

Table 15:	N ₂ O emissions from caprolactam production in the European Union					
	caprolactam production million tonnes	N₂O em caprolactam kt N₂O	issions production, kg №O / t caprolactam			
	reported by the European Union to UNFCCC					
1990	С	5.2	С			
1995	С	5.4	С			
2000	С	5.9	С			
2005	С	6.0	С			
2010	С	7.0	С			
2015	С	6.5	С			
2016	С	6.1	С			
2017	С	5.9	С			
2018	С	5.5	С			
2019	С	5.2	С			
2020	С	4.5	С			
Notes: C: confidential						

Sources: (European Union 2022a)

2.4.6 N₂O mitigation potentials

For *nitric acid production*, the weighted average emission factor available for the sum of 17 Member States representing 84 % of present EU N₂O emissions from that sector is 0.52 kg N₂O/t, which is approximately 15 % above the benchmark of 0.43 kg/t derived for the average EU-ETS members in <u>Annex I</u>. (The EU-ETS benchmark is lower than the available EU average, as the data for UK and Norwegian plants with particularly low specific emissions were considered for the EU-ETS benchmark, as well.) An alternative benchmark derived from the top 50% of EU-ETS plants is at 0.26 kg/t (see <u>Annex I</u>).

 N_2O mitigation potentials for EU nitric acid production can thus be estimated at 15 – 50 %, equivalent to ~1.5 – 4.5 kt N_2O/a or ~0.4 – 1.2 Mt CO_2e/a [GWP AR5].

For *adipic acid production*, N_2O emissions in the EU were drastically reduced in the past. No additional N_2O mitigation potential can be quantified for the European Union.

For *caprolactam production*, the N₂O mitigation potential is highly uncertain as present specific emissions are not available for the majority of EU caprolactam production. We estimate the mitigation potential for ambitious secondary or tertiary abatements at approximately 20-80% of present N₂O emissions, i.e. \sim 0.9 – 4.0 kt N₂O/a or \sim 0.25-1Mt CO₂e/a [GWP AR5].

2.5 Israel

2.5.1 Israel summary

In Israel, approximately 0.2 million tonnes of nitric acid were produced in 2019. N₂O mitigation policies focus on plant-specific emission limit values for N₂O exhaust concentrations. Secondary catalysts had been installed under the CDM in 2007/2008, information on present use is not available. Average specific N₂O emissions were at about 2.5 kg/ tonne of nitric acid. Compared to emission intensity benchmarks achievable by ambitious mitigation policies as the EU ETS, Israeli N₂O mitigation potentials are estimated at ~85 %.

Table 16:Country Profile Israel

Nitric Acid	Adipic Acid	Caprolactam
4 lines / 2 locations	-	-
Limits on N ₂ O exhaust concentrations as part	t of environment	al permits.
N ₂ O abatement was installed under the CDM before 2010. Present ambition of use of mitigation equipment is unclear.	-	-
Confidential roughly estimated at 0.18 Mt	-	-
~0.4 kt N ₂ O / ~ 0.12 Mt CO ₂ e	-	-
- 50 % / + 300 %		
~2.5 kg N ₂ O/t		
Gap to emission intensity benchmark of ambitious mitigation policy: ~85% / 0.35 kt N ₂ O/a		
	Nitric Acid 4 lines / 2 locations Limits on N ₂ O exhaust concentrations as par N ₂ O abatement was installed under the CDM before 2010. Present ambition of use of mitigation equipment is unclear. Confidential roughly estimated at 0.18 Mt ~0.4 kt N ₂ O / ~0.12 Mt CO ₂ e -50 % / + 300 % ~2.5 kg N ₂ O/t Gap to emission intensity benchmark of ambitious mitigation policy: ~85% / 0.35 kt N ₂ O/a ~0.1 Mt CO ₂ e/a	Nitric AcidAdipic Acid4 lines / 2 locations-Limits on N2O exhaust concentrations as part of environmentN2O abatement was installed under the CDM before 2010. Present ambition of use of mitigation equipment is unclear.Confidential roughly estimated at 0.18 Mt~0.4 kt N2O / ~ 0.12 Mt CO2e-50 % / + 300 %~2.5 kg N2O/tGap to emission intensity benchmark of ambitious mitigation policy: ~ 0.1 Mt CO2e/a

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: (Israel Ministry of Environmental Protection 2022; Israel 2021), Öko-Institut calculations

2.5.2 Presence of N₂O-emitting chemical industries

In Israel, two nitric acid factories operate four production units, see plant details in Table 17. Production of adipic acid and caprolactam does not take place.

Table 17:	Israel nitric acid plant data			
Operator	Dshanim ICL	Haifa Group	Haifa Group	Haifa Group
Location	Kiryat Ata	Mishor Rotem	Mishor Rotem	Mishor Rotem
unit name	unit 38	N3	N4	N5
Capacity [tonnes/	year] 60 000		147 000	
year of operation	~ 1987	~ 1994	~ 1994	~ 2020
date of permit	2016	2016	2016	2015
stack flow rate [Ni (limited by permit	m³/h] 28 000	28 000	18 000	51 000

Note: Previous Haifa Group plants N1 and N2 located in Haifa were closed down and replaced by the N5 facility of Mishor Rotem Sources: (Israel Ministry of Environmental Protection 2022), (Archipetrol 2022)

2.5.3 Policies affecting N₂O emission levels

The operation of nitric acid plants in Israel is subject to environmental permits to be issued by a centralised authority in the main office of the Israel Ministry of Environmental Protection (Israel Ministry of Environmental Protection 2022). Permits include limitation for the emissions of nitrous oxide (N₂O). The permits are issued individually, and emission limit values are given within the range of emissions limit values from the corresponding European Union reference document on Best Available Techniques (BREF)¹⁹: in the case of nitric acid the corresponding BREF is LVIC-AAF²⁰ (Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilisers). Plant-specific technical constraints are being considered for the permits. Emission limit values (ELVs) for N₂O are given as N₂O concentration limit values, expressed as mg N₂O / Nm³, averaged for the primary catalyst²¹ lifespan, but no more than 4 months. Such plant-specific ELVs range between 200 mg/Nm³ for the newest pant and 600 mg/Nm³ for the oldest. Some permits include an additional limitation of 800 mg/Nm³ for any half-hour (Israel Ministry of Environmental Protection 2022), furthermore stack flow rates are limited. 2022 N₂O emissions in line with the environmental permits can thus be calculated not to exceed a total of 0.47 kt N₂O (see Table 18) or 0.12 Mt CO₂e (GWP AR5).

²⁰ <u>https://eippcb.irc.ec.europa.eu/reference/large-volume-inorganic-chemicals-ammonia-acids-and-fertilisers</u>

¹⁹ For further information on EU policies, see section 2.4.

²¹ The primary catalyst used to produce NO as intermediate step in the nitric acid production is referred to for the ELV. There is no formal obligation to deploy a secondary catalyst especially for N₂O mitigation.

Operator	Dshanim ICL	Haifa Group	Haifa Group	Haifa Group
Location	Kiryat Ata	Mishor Rotem	Mishor Rotem	Mishor Rotem
unit name	unit 38	N3	N4	N5
ELV in force as of 2022 [mg №O / №³], average for primary catalyst lifespan (max 4 months)	600	580	580	200
stack flow rate [Nm ³ /h] (limited by permit)	28 000	28 000	18 000	51 000
Calculated limit to 2022 annual emissions [t N ₂ O] (ELV * stack flow rate * 8760 h/a)	147	142	91	89

Table 18:Israeli plant-specific emission limit values for N2O from nitric acid
production

Source: (Israel Ministry of Environmental Protection 2022), Öko-Institut calculations

Since 2004, Israel actively participated in the Clean Development Mechanism (CDM) under the UNFCCC. The majority of Certified Emission Reductions (CER) issued for Israeli projects were directed to projects that reduce N_2O emissions from nitric acid production. Due to the collapse in international CER prices, coupled with high costs associated with verification of emission reductions and issuance of CERs, the vast majority of Israeli CDM projects are not currently requesting issuance of credits, and CERs issued to Israeli projects pertain almost exclusively to the 2008 – 2012 Kyoto Protocol 1 period (Israel 2015). Since 2004, Israel actively participated in the Clean Development Mechanism (CDM) under the UNFCCC. (Israel 2015)

The latest available National Communication of Israel under the UNFCCC (3^{rd} NC, 2018) does not mention any further policies targeting N₂O emissions from industry (Israel 2018).

2.5.4 N₂O abatement in place

 N_2O ELVs in the permits are set based on N_2O exhaust concentration which can be obtained by primary measures, i.e. optimised operation of the main NO catalyst. The ELV oblige operators to exchange the main catalyst every 3-5 months. (Israel Ministry of Environmental Protection 2022)

Under the CDM, however, all Israeli nitric acid plants had been equipped with secondary N_2O catalysts in the 2007- 2013 period (see 2.5.3).

Little information is available to what extent secondary N_2O catalysts are still being used after the collapse of CER prices and after relocation of some of the nitric acid plants from Haifa Bay to Mishor Rotem²²: According to industry information, however, a refurbishment of two of the Mishor Rotem plants, including secondary catalytic N_2O abatement facilities, was commissioned in 2018 (KBR 2018).

²² The Haifa Bay plants had participated in the CDM (UNFCCC 2023). However, that plant was closed and replaced by the N5 plant (see Table 7) in Mishor Rotem in Negev desert.
2.5.5 N₂O emissions

Information on actual N₂O emissions from Israeli nitric acid plants is strongly diverging between two different sources, i.e. on one hand the Israeli Greenhouse Gas Emissions Inventory submitted to the UNFCCC (Israel 2021) and on the other hand the Israeli Pollutant Release and Transfer Register (PRTR)²³ data provided by the Israel Ministry of Environmental Protection (Israel Ministry of Environmental Protection 2022):

Respective data is given in Table 19. The Israeli GHG inventory is calculated by the Central Bureau of Statistics (CBS) according to IPCC default emission factors. However, for the Israeli GHG inventory, no documentation of applied estimation methodologies is available²⁴. The PRTR database is operated by the Ministry of Environmental Protection. In the context of this study, it has not been possible to fully clarify the diverging data sets and assess potential over- or underestimates in any of these data sources. It appears likely, however, that PRTR data are measurement-based and thus more accurate than the inventory data. Therefore, we base our conclusions in this study primarily on the PRTR data.

Table 19:	N ₂ O emissions from Israeli nitric acid production				
	Data source: PRTR kt N2O	Data source: GHG inventory kt №O	Deviation factor: GHG inventory / PRTR		
2012	0.51	2.70	5.3		
2013	0.46	2.59	5.7		
2014	0.46	2.73	5.9		
2015	0.45	2.53	5.6		
2016	0.55	2.56	4.7		
2017	0.20	0.85	4.1		
2018	0.42	1.32	3.1		
2019	0.42	1.31	3.1		
2020	0.44	not available	not applicable		

Sources: (Israel Ministry of Environmental Protection 2022; Israel 2021), Öko-Institut calculations

GHG inventory emission estimates since 2012 have been three to six times higher than PRTR estimates. If the emission factors applied by the CBS for the inventory calculation can be assumed to be constant over time, the declining trend in that deviation factor (right-hand column of Table 19) could be interpreted that the average emission intensity of Israeli nitric acid production has almost doubled between 2014 and 2019. This would be a plausible effect of less ambition in the operation of existing N₂O abatement facilities after the collapse of CER prices.

It should be noted that 2018-2020 PRTR emissions data (0.42 - 0.44 kt N₂O/a) are in the order of magnitude to the 2022 N₂O emission limit of the environmental permits (0.47 kt N₂O, see 2.5.3 / Table 18).

²³ <u>https://www.gov.il/en/departments/topics/prtr/govil-landing-page</u>

²⁴ The UNFCCC obligation to annually submit standardised GHG inventory datasets (CRF) and inventory reports (NIR) is limited to UNFCCC parties listed in Annex I of the convention. The 2021 Israeli GHG inventory submission (Israel 2021) was made on a voluntary basis.

Given the strongly diverging data source on N_2O emissions from Israel nitric acid production, we estimate the uncertainty of the emission estimate at -50% / + 300 %.

2.5.6 N₂O mitigation potentials

Given the deviating N₂O emission estimates (Table 19) and confidential nitric acid production amounts, mitigation potential can only very roughly be estimated, subject to high uncertainties: Assuming a nitric acid production capacity of approximately 0.2 million tonnes per year (Table 17), a 85% capacity use and N₂O emission estimates based on PRTR (Table 19), 2020 average specific N₂O emissions per ton of nitric acid are estimated at 2.5 kg/t.

Benchmarks for emission intensities achievable by ambitious mitigation policies can be derived from the EU-ETS in the range of 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see <u>Annex I</u>).

These EU-ETS benchmarks are at ~10-25% of present Israeli emission intensities as estimated above. Respective mitigation potentials for N₂O from Israel's nitric acid production add up to ~0.35 kt N₂O/a or ~ 0.1 Mt CO₂e / a (GWP AR5).

Data is not available to support a bottom-up estimate for N_2O mitigation from presently unabated plants.

2.6 Japan

2.6.1 Japan summary

Japan did achieve high abatement rates for *adipic acid* production, its historically most relevant N₂O emission source from chemical industry. N₂O emissions from *nitric acid* and *caprolactam* production add up to residual emissions from adipic acid production. Both nitric acid and caprolactam production industries appear to be incompletely equipped with N₂O abatement technologies. No specific mitigation policies targeted at N₂O emissions from Chemical industry were identified for Japan. Compared to emission intensity benchmarks achievable by ambitious mitigation policies as the EU ETS, Japanese N₂O mitigation potentials are estimated at 80-90 % for nitric acid and 70% for caprolactam production. Easy-to-achieve mitigation potentials in so far unabated nitric acid and caprolactam plants sum up to about 0.6 kt N₂O/a (~0.15 Mt CO₂/a) equivalent to ~30 % of Japan's 2020 N₂O emissions from chemical industry.

Table 20: Co	untry Profile Japan		
	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	10	1	3 (one of those announced to be closed in October 2022)
Relevant climate policies	No active policies targeting N ₂ O Under the "J-credits" baseline & available for N ₂ O abatement in c	emissions from chemic credit scheme, no appr hemical industry.	al industry. oved methodology is
N₂O Abatement Technologies in Place	Catalytic decomposition units at least partly in use (estimated at 75 % of capacity)	N ₂ O decomposition unit installed 1999	abatement units at least partly in use (estimated at 80 % of capacity)
Annual Production (2020)	0.23 Mt [100% HNO ₃]	not available (~0.17 Mt/a production capacity)	0.2 Mt
Annual N ₂ O emissions (2020)	0.7 kt N ₂ O / 0.2 Mt CO ₂ e	1.1 kt N ₂ O / 0.3 Mt CO ₂ e	0.4 kt N ₂ O / 0.1 Mt CO ₂ e
N₂O emissions uncertainty estimate	73 %	9 %	99 %
Specific N ₂ O emission (2020)	s 3.0 kg N ₂ O/t	Not available	2.0 kg N ₂ O/t
N₂O mitigation potenti	Gap to emission intensity benchmark of ambitious mitigation policy: ~80-90% / 0.5-0.6 kt N ₂ O/a al ~0.15 Mt CO ₂ e/a 'low-hanging fruit' potential in unabated plants: ~50% / 0.35 kt N ₂ O/a ~0.1 Mt CO ₂ e/a	Low - (high abatement achieved)	~70% 0.3 kt N₂O/a ~0.07 Mt CO₂e/a

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: (Japan 2022a; 2022b), (Sumitomo Chemical 2022; ICIS 2007; METI 2022a) own calculations of Öko-Institut

2.6.2 Presence of N₂O-emitting chemical industries

In Japan, the production of nitric acid, adipic acid and caprolactam takes place.

Nitric acid production levels in Japan have been declining in the last decades. Nitric acid production amounts reported for 2020 are at about 0.2 million tonnes, which is approximately 40 % below 2015 levels (0.4 Mt), 55 % below 2010 levels (0.5 Mt) or 65 % below 2000 levels (0.7 Mt), see Table 21). Ten nitric acid facilities are operated in Japan. The main processes used in nitric acid production are the New Fauser Process (medium pressure) and Chemico Process (high pressure), both based on the Ostwald chemical process (Japan 2022b).

Also, *caprolactam production* in Japan is declining. In 2020, production levels (0.2 million tonnes) were approximately at 50 % of 2010 levels, or at about one third of production levels in 2000 (see Table 23). In 2020, Caprolactam was produced in three facilities. However, Sumitomo have announced to close their Ehime plant in Oct 2022 and exit the business (Sumitomo Chemical 2022).

Japanese production capacities for *adipic acid* were reported to be 172 kt/a in 2007 in two plants (170 kt/a and 2 kt/a) (ICIS 2007; IPCC 2000). In 2020, however, only one adipic acid plant existed in Japan (Japan 2022b). Information on actual production levels is not publicly available.

2.6.3 Policies affecting N₂O emission levels

Japan does not deploy policies targeting N₂O emissions from chemical industry.

The Japanese Carbon Tax does not cover N_2O emissions (Gokhale 2021). Also the existing regional ETS schemes in Japan (Tokyo & Saitama) are limited in scope to CO_2 and do not cover N_2O emissions (ICAP 2022).

Among the climate-related policies and measures presented by Japan in its 4th Biennial Report to the UNFCCC (Japan 2019) as affecting N₂O emissions, the promotion "J-credit" scheme is the only one which could possibly apply to N₂O from chemical industry: J-credits are issued since 2013 under a baseline-and-credit scheme for domestic projects and can be sold to the voluntary market and for corporate social responsibility (CSR) activities. However, until January 2022, no specific methodology has been approved which would allow the generation of J-credits for N₂O abatement in chemical industry: approved methodologies in the industry sector have so far been limited to N₂O emission abatement in the anaesthetics sector and to emission abatement of fluorinated greenhouse gases (METI 2022a). The same limitation as to approved methodologies applies to the Japanese Domestic CDM scheme, the J-credits' predecessor until 2012 (METI 2012).

From 2022, the government is also working on the detailed design for the implementation of the Green Transformation (GX) League, a baseline-and-credit system for companies setting voluntary targets. This new mechanism will likely build upon existing carbon trading systems such as J-Credit scheme (ICAP). In February 2022, GX league basic concept was announced by the Japanese Ministry for Economy, Trade and Industry (METI) (METI 2022b), in April 2022 an endorsement by 440 companies representing 28% of Japan's emissions (38% of emissions in industrial, business and energy conversion sectors) were announced (METI 2022c). Details will still need to be clarified until full-scale operation which is planned for the 2023 fiscal year. Information relating to future participation of chemical industry with N_2O emissions is not yet publicly available.

2.6.4 N₂O abatement in place

For *nitric acid production*, *catalytic decomposition units are* reported to be *in operation* in the 2022 NIR (Japan 2022b) without giving details on completeness and the past schedule of deployment of N₂O abatement. The time series of average emission factors reported by Japan in the emissions inventory (see Table 21) shows little change since 1990, thus differing from e.g. EU Member States where the introduction of N₂O abatement is reflected by a steep decline in the emission factors. We thus consider it likely that the Japanese nitric acid industry is not fully equipped with N₂O abatement facilities. Considering the average emission intensity of ~ 3-3.5 kg N₂O/ t HNO₃ (Table 21) and approximated emission factors of 8 kg N₂O/t for unabated high or medium pressure plants and 1.5 kg N₂O/t for abated plants we estimate that approximately 25 % of Japanese nitric production capacities are not yet equipped with secondary or tertiary N₂O abatement technologies.

The single Japanese *adipic acid production* plant has been equipped with N_2O decomposition equipment in 1999 (Japan 2022b). Effects are clearly visible in the time series of N_2O emissions given in Table 22.

No information is available related to the use of N₂O abatement in the Japanese **Caprolactam production** facilities. Each of the three plant's emission factors are reported to fluctuate (Japan 2022b). Given the time series of specific N₂O emissions reported by Japan to the UNFCCC (Table 23), however, moving slowly from the IPCC default EF (assuming no N₂O abatement) of 9 kg N₂O / t caprolactam in the 1990s to levels of approximately 2-3 kg/t after 2015 gives rise to the assumption that secondary or tertiary N₂O abatement techniques may have been introduced in at least some of the plants. Considering the average emission intensity of ~ 2-2.5 kg N₂O/t caprolactam (Table 23) and approximated emission factors of 9 kg N₂O/t for unabated plants and 0.6 kg N₂O/t for abated plants we estimate that approximately 20 % of Japanese caprolactam capacities are not yet equipped with secondary or tertiary N₂O abatement technologies.

2.6.5 N₂O emissions

Table 21 presents data reported by Japan related to N_2O emissions from *nitric acid* production. There is no visible trend in specific emissions which would hint to a systematic introduction of N_2O abatement techniques.

	nitric acid production million tonnes (100% nitric	N₂O emis nitric acid pi	ssions roduction,
	acid)	kt N₂O	kg N₂O / t nitric acid
	report	ed by Japan to UNFCCC	
1990	0.71	2.5	3.5
1995	0.70	2.5	3.5
2000	0.66	2.6	3.9
2005	0.60	2.5	4.2
2010	0.51	1.8	3.6
2015	0.39	1.4	3.6
2016	0.36	1.3	3.6
2017	0.36	1.2	3.3
2018	0.33	1.1	3.3
2019	0.31	1.0	3.3
2020	0.23	0.7	3.0
Sources: Japan 2022a	· · · ·		

Table 21: N₂O emissions from nitric acid production in Japan

Table 22 presents data on N_2O from *adipic acid* production in Japan. As production amounts from the single Japanese adipic acid plant are confidential, no time series on specific emissions is available. However, the time series on N_2O emissions clearly shows the effect of the N_2O abatement equipment installed in 1999.

Table 22:	N ₂ O emissions from adipic acid production in Japan					
	adipic acid production million tonnes	N₂O em adipic acid kt N₂O	issions production, kg N₂O / t adipic acid			
	reported by Japan to UNFCCC					
1990	С	24.2	C			
1995	C	24.0	C			
2000	C	12.6	C			
2005	C	1.7	C			
2010	C	1.7	C			
2015	C	0.4	C			
2016	C	0.5	C			
2017	C	0.3	С			
2018	C	0.2	C			
2019	C	0.3	C			
2020	С	1.1	С			

Note: C: confidential; Japanese production capacities were reported to be 172 kt/a in 2007 (ICIS 2007). Assuming the use of the IPCC default emission factor of 300 kg/t (appropriate in case of absence of N_2O mitigation) for the 1990-1995 period, production amounts in those years would have been at approximately 80 kt adipic acid per year.

The N_2O decomposition unit installed in 1999 featured a low availability in the year 2000, leading to rather high emissions in that year. Sources: Japan 2022a; 2022b; ICIS 2007 Table 23 presents production and N_2O emissions data for caprolactam from Japan. Specific emissions reported for 2020 were at 23 % of specific emissions in the 1990s (which had been based on the IPCC default emission factor, assuming no N_2O abatement).

Table 23:	N ₂ O emissions from caprolactam production in Japan					
	caprolactam production million tonnes	N₂O emi nitric acid p kt N₂O	issions production, kg N₂O / t caprolactam			
	reported by Japan to UNFCCC					
1990	0.52	4.7	9.0			
1995	0.55	4.9	9.0			
2000	0.58	5.2	9.0			
2005	0.46	3.4	7.4			
2010	0.41	2.6	6.2			
2015	0.24	0.9	3.7			
2016	0.22	0.5	2.3			
2017	0.22	0.5	2.4			
2018	0.21	0.4	2.1			
2019	0.19	0.5	2.7			
2020	0.20	0.4	2.0			

The uncertainty of N₂O Emissions from Chemical Industry reported to the UNFCCC was estimated by Japan in the 2022 National Inventory Report (Japan 2022b) as follows:

- 73 % for N_2O from nitric acid production.
- 9 % for N_2O emissions from adipic acid production
- 99% for N₂O emissions from caprolactam

The methodology applied by Japan to conclude on the rather high uncertainties for N_2O emissions from nitric acid production and caprolactam production employs a calculation of the standard deviation from the emission factors and production amounts of each plant (Japan 2022b). This fact supports our conclusion that the availability and use of N_2O abatement equipment strongly differs between the single nitric acid and caprolactam production facilities.

2.6.6 N₂O mitigation potentials

Nitric Acid Production

Japanese specific emission of ~ 3 - 3.5 kg N₂O / t nitric acid are very high compared to European levels.

Benchmarks for emission intensities achievable by ambitious mitigation policies can be derived from the EU-ETS in the range of 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see <u>Annex I</u>).

These EU-ETS benchmarks are at ~10-20% of present Japanese emission intensities. Benchmarkbased top-down mitigation potentials for N₂O from Japan's nitric acid production add up to ~0.5 - 0.6 kt N₂O/a or ~ 0.15 Mt CO₂e / a (GWP AR5).

In a bottom-up perspective focussing on plants without any present N₂O abatement (estimated 25 % of Japanese production capacity, see 2.6.4) we estimate a low-cost mitigation potential at approximately 0.3 kt N₂O/a or 0.1 Mt CO₂e/a (i.e. approximately 50 % of Japan's 2020 N₂O emissions from nitric acid production).

Adipic Acid:

Adipic acid production used to be the most relevant N_2O emission source in Japanese Chemical industry. After the equipment of the single Japanese plant with a N_2O decomposition unit, only low mitigation potentials remain.

Caprolactam

In Japanese caprolactam production 75% mitigation has been reached compared to the 1990s, probably by equipping ~80 % of the production capacity with N₂O abatement technologies. Ambitious waste gas treatment in the complete set of Japanese caprolactam production facilities might lead to a ~95% reduction or more, equal to an abatement of approx. 70% of today's emission intensity, or 0.3 kt N₂O/a (0.07 Mt CO₂e [GWP AR5]).

However, as one of the three Japanese plants was announced to be closed in October 2022 (Sumitomo Chemical 2022), the factual mitigation potential may be lower.

2.7 Republic of Korea

2.7.1 Korea summary

Nitric acid, adipic acid and caprolactam production are taking place in the Republic of Korea.

For Korea, approximately 1.3 million tonnes of nitric acid were estimated as production in 2020. N₂O abatement technologies, installed under CDM projects, are in place at several facilities. Key N₂O mitigation policies include coverage under the Korean emissions trading scheme (K-ETS) since 2021. Previously, CDM projects were exempted from the K-ETS but CERs generated under the CDM could be sold to K-ETS participants. Average specific N₂O emissions are roughly estimated at about 0.6 kg N₂O/t of nitric acid, 1.7 kg N₂O/t of adipic acid and 2.3 kg N₂O/t of caprolactam. Additional N₂O mitigation potentials are thus very limited.

Country P	rofile Republic of Korea			
	Nitric Acid	Adipic Acid	Caprolactam	
S	6	1	1	
Relevant climate policies N ₂ O emissions from chemical industry are covere Emissions Trading Scheme since the 3 rd K-ETS phases 1 & 2 (2015-2017 / 2018-2020), exe approved under the CDM applie				
echnologies	Yes	Yes	Yes	
n	1.3 Mt in 2020 0.12-0.14 Mt (in 2012)		0.13 Mt (in 2010)	
ions (2020)	1.15 kt l	N ₂ O / 0.3 Mt CO ₂ e thereof		
· · ·	62 %	16 %	22 %	
certainty	Not available			
sions	~ 0.6 kg N ₂ O/ t ~ 1.7 kg N ₂ O/ t ~ 2.3 kg N ₂ O/			
tential	limited	limited	limited	
	Country Pl	Country Profile Republic of Korea Nitric Acid Ses 6 N2O emissions from chemical Emissions Trading Scheme sin K-ETS phases 1 & 2 (2015-20) approved un echnologies Yes 1.3 Mt in 2020 Sions (2020) 1.15 kt f Sions ~ 0.6 kg N2O/t tential limited	Country Profile Republic of KoreaNitric AcidAdipic AcidPolicies61N2O emissions from chemical industry are covere Emissions Trading Scheme since the 3rd K-ETS phases 1 & 2 (2015-2017 / 2018-2020), exe approved under the CDM appliedPoliciesYesYesYesPoliciesYesYesYesPoliciesYesYesYesPoliciesYesYesYesPoliciesYesYesYesPoliciesYesYesYesPoliciesYesYesYesPolicies0.12-0.14 Mt (in 2012)1.15 kt N2O / 0.3 Mt CO2e thereofSions16 %CertaintyNot availableSions~ 0.6 kg N2O/t~ 1.7 kg N2O/tItentiallimited	

Note: N_2O amounts converted into CO_2 equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Source: The Government of the Republic of Korea (2021), Korea IT Times (2021), ICAP (2023), Republic of Korea (2013), Republic of Korea (2011), own calculations of Öko-Institut

2.7.2 Presence of N₂O-emitting chemical industries

Nitric acid production is taking place in the Republic of Korea. According to international trade statistics, South Korea is the major exporter of nitric acid in Asia (OEC 2020). Table 25 provides an overview on CDM projects at nitric acid producing facilities in the Republic of Korea. Based on the information given in the PDDs (Republic of Korea 2012; 2020; 2021b; 2021a; 2010), the annual production amount of those facilities is at about 1.3 million tonnes nitric acid. All nitric acid production facilities in the Republic of Korea are equipped with N₂O abatement technologies installed under CDM projects.

According to press releases (Korea IT Times 2021; The Korea Economic Daily 21 Apr 2021), is set to increase, with expansions of about 0.8 kt additionally planned until 2024. 90 % of current nitric acid production is generated by Hu-Chems Co (The Korea Economic Daily 21 Apr 2021).

There is one plant by BASF²⁵ producing *adipic acid* in the Republic of Korea in Onsan (BASF 2021). The plant was originally constructed by Rhodia, which implemented N₂O abatement under a CDM project (Republic of Korea 2013). According to the CDM Project Description document, this facility produced 0.1 Mt adipic acid in the year 2012 (see also Table 25). It is possible that the production capacity was changed after the end of the CDM crediting period, however, no information is available on the current production levels or capacity of adipic acid in the Republic of Korea.

There is one facility (Capro Co) producing *caprolactam* in the Republic of Korea, with a current production capacity of 270kt/year²⁶. According to the CDM Project design document (Republic of Korea 2011), a nitrous oxide abatement technology was installed at 2 out of 3 plants at the site with a production capacity of 128 kt/year and a proposed reduction of N₂O emissions by >90 % (see also Table 25). It remains unclear, whether the third plant has any N₂O abatement technology installed and whether it is still in operation.

Table 25:Approved CDM Projects for N2O reduction in the chemical industry in the
Republic of Korea

CDM Ref #	Target	Company	Location	CERs issued	Estimated annual production [kt / a]
922	Nitric Acid	Hanwha Corporation	Ulsan	2007-2020	107
765	Nitric Acid	Hu-Chems Fine Chemical Corp	Yeosu (Plant 2,3,4)	2007-2020	701
6637	Nitric Acid	Hu-Chems Fine Chemical Corp	Yeosu (Plant 5)	2013-2020	397
1443	Nitric Acid	Dongbu Hannong Chemicals Ltd	Ulsan	2008-2013	90*
99	Adipic Acid	Rhodia Energy Korea Co, Ltd	Onsan	2006-2017	121
4665	Caprolactam	Capro Corporation	Ulsan	2011-2020	128

*Note: From the available information, it remains unclear whether the facility by Dongbu Hannong Chemicals Ltd in Ulsan is still in operation at the time of writing. Source: IGES (2022)

2.7.3 Policies affecting N₂O emission levels

The Korea emissions trading scheme (K-ETS) is in place since 2015 and covers all companies with annual average GHG emissions of 125,000 t CO_2e or more, and individual facilities with annual average GHG emissions of 25,000 t CO_2e or more. Next to other GHGs, N₂O emissions are considered in the K-ETS. The target under this scheme is to reduce Korean GHG emissions in 2030 by at least 35 % compared to 2018 and achieve carbon neutrality in 2050. Under the phases of the K-ETS, domestic and international offsets are allowed under different criteria. Domestic and international credits need to be transformed into Korean Credit Units (KCUs) to be used for

²⁵ BASF acquired the facility from Solvay Chemicals Korea in 2020 (BASF 2021), which is listed as one of the project participants in Republic of Korea (2013).

²⁶ <u>http://www.hcccapro.co.kr/en/product/capro_lactam/index.asp</u>

compliance. Under the current phase 3, up to 5 % of each entity's compliance obligation can be offset using credits. (ICAP 2023; IETA 2021)

While N₂O process emissions from nitric acid, adipic acid and caprolactam production would thus have been covered by the K-ETS since 2015 (if companies or facilities exceed the size thresholds), facilities covered under the CDM were exempted from the K-ETS²⁷. These exemptions were issued for the 1st and 2nd phases of the K-ETS, extending from 2015 to 2017 and from 2018 to 2020, respectively. As CERs will not be valid under the Paris Agreement after 2020, the K-ETS exemption for CDM projects was lifted for the 3rd K-ETS Phase starting 2021. (KEMCO 2023; KFQ 2020; TÜV Nord 2021).

It can thus be concluded that N_2O emissions from Korean nitric acid, adipic acid and caprolactam production facilities are fully covered by the K-ETS starting 2021.

There are further policies targeting N_2O emissions in the industry sector, however, those are not specifically targeted at nitric acid production (The Government of the Republic of Korea (2021)).

2.7.4 N₂O abatement in place

There are several CDM projects for N_2O abatement for N_2O from nitric acid, adipic acid and caprolactam production in the Republic of Korea.

Nitric Acid

Registered CDM Projects for N₂O abatement from nitric acid production are mostly tertiary catalyst technologies, with an abatement rate of >95 %. Table 26 gives an overview on the different projects as listed in the CDM database. From the available information, it is unclear whether the plant in Ulsan is still in operation today. Plant #6 in Yeosu by Hu-Chems Fine Chemical Corp. was registered under the CDM with the aim to start operation and crediting in 2023.

Table 26:Registered CDM Projects in the Republic of Korea related to nitric acid
production

Company	Location	Remaining emissions [kt CO₂e/a]	Estimated annual production [kt / a]	Emission Reduction
Hanwha Corporation	Ulsan	23	107	90%
Hu-Chems Fine Chemical Corp	Yeosu (Plant 2,3,4)	101	701	92%
Hu-Chems Fine Chemical Corp	Yeosu (Plant 5)	33	397	89%
Hu-Chems Fine Chemical Corp	Yeosu (Plant 6)	40*	440*	88%
Dongbu Hannong Chemicals Ltd	Ulsan	60*	90*	80%

*Note: Hu-Chem plant #6 was registered under the CDM with the aim to start operation & crediting in 2023. From the available information, it is unclear whether the plant of Dongbu Hannong in Ulsan is still in operation today

Source: Republic of Korea (2021a), Republic of Korea (2020), Republic of Korea (2012), Republic of Korea (2021b), Republic of Korea (2010), IGES (2022)

²⁷ For adipic acid production, however, N₂O emissions were not exempted from the K-ETS and CERs generated were not admitted in the K-ETS. (KEMCO (2023); ICCA (2023).)

One project describes a secondary catalyst with an estimated 80 % abatement efficiency, the other facilities are equipped with tertiary abatement with an efficiency that is given as about 90 % emission reduction.

Adipic Acid

There is one plant by BASF producing adipic acid in the Republic of Korea in Onsan (BASF 2021). The plant was originally constructed by Rhodia, which implemented N₂O abatement under a CDM project (Republic of Korea 2013). From the CDM project description, an emission reduction of 99 % of N₂O emissions is achieved.

Caprolactam

According to the CDM Project design document (PDD) (Republic of Korea 2011), a nitrous oxide abatement technology was installed at the caprolactam producing site of the company Capro Co with a proposed reduction of N₂O emissions by >90 %. However, the PDD only states that N₂O abatement is installed for 2 out of 3 plants. It remains unclear whether the third plant at the site is using N₂O abatement and whether it is operational.

2.7.5 N₂O emissions

 N_2O Emissions from the chemical industry (CRF category 2.B.) in the Republic of Korea are shown in Table 27. However, neither Korea's 4th Biennial Report (The Government of the Republic of Korea (2021)) not the National GHG Inventory (The Government of the Republic of Korea 2022) provide a breakdown of emissions for the different subcategories which would facilitate the distinction of emissions from nitric acid, adipic acid and caprolactam production.

Table 27:	N_2O emissions from chemical industry (CRF 2.B) in the Republic of Korea		
		Reported by the Republic of Korea to UNFCCC	
		kt N ₂ O	
	2000	22.8	
	2005	35.8	
	2010	0.7	
	2011	1.0	
	2012	1.4	
	2013	1.3	
	2014	1.0	
	2015	0.9	
	2016	1.1	
	2017	1.2	
	2018	1.2	
	2019	1.2	
	2020	1.2	

Source: 2000-2018: The Government of the Republic of Korea (2021), 2019-2020: The Government of the Republic of Korea (2022)

Default emission factors from the 2006 IPCC guidelines are applied for the determination of emissions from nitric acid production, whereas for adipic acid and caprolactam, default emission

factors from 1996 IPCC guidelines are applied (The Government of the Republic of Korea (2021)). No uncertainty estimate is provided.

From the emission data provided in the CDM Project description documents and The Government of the Republic of Korea (2022), we estimate that 2020 N_2O emissions from chemical industry can be allocated to nitric acid production at 62 %, to adipic acid production at 16 %, and to caprolactam production at 22 %.

2.7.6 N₂O mitigation potentials

A rough estimate of specific N₂O emissions from *nitric acid production* is conducted as follows:

Based on the emission split described above and based on a 2020 production estimate of 1.3 Mt nitric acid, we derive specific emissions of approximately 0.6 kg N₂O / t nitric acid. As explained in <u>Annex I</u>, benchmarks for N₂O emissions from nitric acid production derived from the EU-ETS are at \sim 0.25 – 0.6 kg N₂O/t.

Additional N₂O mitigation potentials for Korean nitric acid production are thus very limited and could only be achieved by improving the abatement percentages shown in Table 26. Abatement of 95 % and above is technically feasible with modern technologies and regular optimal maintenance. Without external incentive, either financial or legal, it might be improbable that these mitigation potentials will currently be realised. However, due to high incentives from the EU-ETS, upgrades of existing abatement technologies are currently being implemented in Europe to reduce emissions as low as possible, with combinations of secondary and tertiary abatement reaching abatement rates of more than 99 %. In the future, similar developments might be possible in Korea.

For *adipic acid production*, using the method described above for nitric acid, we derive specific emissions of about 1.7 kg N_2O / t adipic acid. This value is below the EU average for adipic acid production, which is at 3.4 kg N_2O / adipic acid. Additional mitigation potentials are thus not available.

For *caprolactam production*, using the method described above for nitric acid, we derive specific emissions of about 2.3 kg N_2O / t caprolactam. This value is above the specific emissions in Poland (used as a benchmark for the EU) of 0.6 kg N_2O /t caprolactam. According to Republic of Korea (2011), the abatement technology installed reaches an abatement of 89 %. Assuming that abatement rates of more than 95 % could be possible, it would thus be technically feasible to further reduce emissions from caprolactam production in the Republic of Korea. Without any external incentive, either financial or legal, it is however improbable that these mitigation potentials will be realised.

2.8 Norway

2.8.1 Norway summary

In Norway, approximately 2 million tonnes of nitric acid were produced in 2020. Key N₂O mitigation policies include coverage under the EU emissions trading scheme. Secondary catalytic N₂O abatement technologies are in place. Average specific N₂O emissions were at about 0.2 kg/tonne of nitric acid. Given the low emissions level, no additional N₂O mitigation potentials are estimated for Norway.

Table 28: Country Profile Norway

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	2	-	-
Relevant climate policies	Inclusion in EU ETS	-	-
N₂O Abatement Technologies in Place	complete application of secondary catalytic abatement measures	-	-
Annual Production (2020)	~2 Mt [100% HNO ₃]	-	-
Annual N ₂ O emissions (2020)	0.3 kt N ₂ O / 0.1 Mt CO ₂ e	-	-
N₂O emissions uncertainty estimate	Low ~1-7 %	-	-
Specific N ₂ O emissions (2020)	0.2 kg N ₂ O/t		
N ₂ O mitigation potential	none	-	-

Note: N_2O amounts converted into CO_2 equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: Norway 2022a; 2022b

2.8.2 Presence of N₂O-emitting chemical industries

In Norway, production of nitric acid takes place in six production lines in two plants while production of adipic acid and of caprolactam is absent (Norway 2022b).

Production levels have been increasing over the past decades. 2020 production levels (1.95 million tonnes) are 18 % above 2010, 30 % above 2000, and 47 % above 1990. (Norway 2022a)

2.8.3 Policies affecting N₂O emission levels

Despite not being a Member of the European Union, Norway takes part in the EU emissions trading scheme (EU-ETS) which covers N_2O emissions from nitric acid production.

For more details related to the EU-ETS, see section 2.4.2.

2.8.4 N₂O abatement in place

Catalytic secondary abatement is on all production lines in Norway (Norway 2022b).

2.8.5 N₂O emissions

Norwegian N_2O emissions from nitric acid production for 1990-2020 are given in Table 29. Emission intensities were drastically reduced in particular between 2005 and 2010. After 2010, specific emissions slowly continue to decline at very low levels.

Table 29:	N ₂ O emissions from nitric acid production in Norway					
	nitric acid production million tonnes (100% nitric acid)	N₂O emissions nitric acid production, kt N₂O kq N₂O / t nitrio				
	reported by Norway to UNFCCC					
1990	1.33	6.7	5.0			
1995	1.49	5.3	3.5			
2000	1.50	5.6	3.7			
2005	1.59	6.3	4.0			
2010	1.65	1.1	0.7			
2015	1.73	0.8	0.5			
2016	1.67	0.8	0.5			
2017	1.73	0.7	0.4			
2018	1.98	0.7	0.3			
2019	1.92	0.6	0.3			
2020	1.95	0.3	0.2			

In its GHG inventory submission, Norway reports uncertainties of the measurement-base emission estimates of 1-7 %.

2.8.6 N₂O mitigation potentials

Norwegian average specific N_2O emissions from nitric acid production are among the lowest reported from countries covered by the EU-ETS (see <u>Annex I</u>). No additional N_2O mitigation potential can be quantified.

2.9 Russia

2.9.1 Russia summary

In the Russian Federation, approximately 10 million tonnes of *nitric acid* and 0.36 million tonnes of *caprolactam* were produced in 2020. No mitigation policies targeted at N₂O emissions from Chemical industry were identified for Russia. While catalytic NOx abatement is generally applied in Russian nitric acid production, no targeted N₂O abatement takes place. According to recent research and analysis average specific N₂O emissions are assumed to range at about 8 kg/tonne of *nitric acid*, four times higher than the estimate in the Russian GHG inventory. Respective N₂O mitigation potential is estimated, compared to the IPCC default of 9 kg N₂O/tonne caprolactam, used for the Russian GHG inventory.

Table 30: Country Profile Russia

		Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	64 production line	es / 14 operators	-	3 operators
Relevant climate policies	No specific policies provides foundation 2030 GHG target in applied.	targeting N ₂ O fro for addressing N nplies little probat	m chemical ind l ₂ O emissions. I pility for addition	ustry. Framework legislation However, lack of ambition of al instruments to be
N₂O Abatement Technologies in Place	catalytic NO _x aba no targeted	tement in place, N₂O abatement		no N ₂ O abatement
Annual Production (2020)	10.2	Mt [100% HNO₃]		0.36 Mt
Annual N₂O emissions (2020)	GHG inventory: 20.3 kt N ₂ O / 5.4 Mt CO ₂ e	Own estimate: 81.3 kt N ₂ O / 21.7 Mt CO ₂ e		3.3 kt N ₂ O / 0.9 Mt CO ₂ e
N ₂ O emissions uncertainty estimate	Very high, I	argely diverging estimates	-	40%
Specific N ₂ O emissions (2020)	GHG inventory: 2 kg N ₂ O/t	Own estimate: 8.1 kg N ₂ O/t		9 kg N₂O/t (IPCC default estimate)
N₂O mitigation potential	Gap to emission int benchmark of ambi policy: ~95% ~2 'low-hanging fruit' p unabated plants: ~709	ensity tious mitigation / 75-80 kt N ₂ O/a 20-21 Mt CO ₂ e/a otential in % / ~58 kt N ₂ O/a ~15 Mt CO ₂ e/a	-	~93% / 3 kt N₂O/a ~0.8 Mt CO₂e/a

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: BNDT 2019; Gitarskiy 2021; Malyavin 2021; Russian Federation 2022a; 2022b; RCC 2005, own calculations of Öko-Institut

2.9.2 Presence of N₂O-emitting chemical industries

In Russia, the production of nitric acid and caprolactam takes place. According to the Russian GHG emission inventory, production of adipic acid does not take place in the Russian Federation (Russian Federation 2022b).

For *nitric acid production*, 64 production lines by 14 companies are in operation (BNDT 2019) cumulated capacity is at 12.4 million tonnes per year, split between basically three different types of installations (Malyavin 2021):

- Single pressure / high pressure plants (types "UKL-7" and "AK-500"): ~56 % of capacity
- Dual pressure (high/medium), type "AK-72": ~32 % of capacity
- Dual pressure (low/medium), type "1/3,5": ~12 % of capacity

Nitric acid production levels have been strongly increasing over the past decades. Production levels reported for 2020 (10.2 million tonnes), were approximately 140% above 2000 levels and 40% above 2010 levels (see Table 31). Key driver for the development of nitric acid production has been the use of the manufacture of mineral fertilisers, to large extents for export.

In Russia, three producers of *caprolactam* are active (RCC 2005): companies Kuybyshevazot, Shekinoazot and Azot (Kemerovo). Caprolactam production levels have. Caprolactam production levels have been rising over the past decades. Production levels reported for 2020 were approximately 50% above 2000 levels (see Table 32).

2.9.3 Policies affecting N₂O emission levels

Russia does not deploy (yet) policies targeting N₂O emissions from chemical industry.

For NO_x emissions, however, regulatory standards apply including ambient air quality standards, emission limits and emission taxes for NO and NO_2 . (Gitarskiy 2021)

N₂O emissions, as a part of the Kyoto Protocol Annex A 'basket of greenhouse gases' have been included in high-level Russian policy documents, including

- Russia's 2020 NDC with a 2030 target²⁸,
- Russia's 2021 low-carbon strategy until 2050²⁹,
- Russia's Federal law #296/2021 on greenhouse gas emission limitation³⁰ as well as
- the respective Presidential decree #666/2020³¹

As summarised by Gitarskiy (2021) the Federal law #296/2021

• establishes mandatory reporting requirements for all GHG emitters above certain thresholds;

²⁸ (Russian Federation 2020).

²⁹ <u>http://publication.pravo.gov.ru/Document/View/0001202111010022</u>

³⁰ <u>http://publication.pravo.gov.ru/Document/View/0001202107020031</u>

³¹ <u>http://www.kremlin.ru/acts/bank/45990</u>

- sets up national registers specifically designed for reporting and accounting of greenhouse gas emissions;
- creates the frameworks for GHG reduction projects and the generation of linked emission reduction units;
- empowers Russian Government to establish emission reduction targets for economy sectors and assess their achievement.

While the 2021 low-carbon strategy until 2050 explicitly mentions N_2O abatement for nitric acid production as one of the measures for the implementation of the strategy, no specific instruments targeted at N_2O emissions have yet been implemented.

Russia's 2030 target set out in its 2020 NDC aims at a 30% GHG reduction compared to 1990 levels, taking into account 'the maximum possible absorptive capacity of forests and other ecosystems' (Russian Federation 2020). It should be noted, however, that Russia's present GHG emission levels are far below that -30 % target, due to the plummeting of GHG emissions in the early 1990s after the break-up of the Soviet Union: Russia's 2020 GHG emissions were at only 48% of 1990 emissions including LULUCF, or at 65% without LULUCF (Russian Federation 2022b).

Given this lack of pressure for GHG abatement to meet Russia's NDC, it appears very uncertain whether Russia will actually deploy specific policy instruments targeting chemical industry's N_2O emissions in the coming years.

2.9.4 N₂O abatement in place

For *nitric acid production* in Russia, NO_x emission abatement measures are generally being applied, underpinned by stringent environment and health regulatory restrictions (Gitarskiy 2021). The Russian NIR (Russian Federation 2022b) claims that Russian nitric acid production capacities are fully equipped with NSCR abatement technology (primarily intended to mitigate NO_x emissions, but contributing to N₂O abatement, as well) and supports this with a source dated 2001 (OOO "Azotekon" 2001). However, as analysed by Malyavin 2021, the NO_x abatement of most Russian nitric acid plants has been upgraded to SCR, resulting in the loss of N₂O abatement.

Prior to the year 2010, plans had been developed for JI-financed N_2O abatement projects of seven Russian nitric acid producers, with the view of generating JI emission reduction units (ERUs) by 2008 or 2009. However, none of the projects was finally registered and no ERUs were issued (UNEP 2022). Thus, we estimate present Russian nitric acid production capacities to mostly lack N_2O abatement. For dual pressure (high/medium) plants of type AK-72, application of NSCR can possibly still be assumed (Malyavin 2021).

For Russian caprolactam production, no information on applied N₂O abatement was found. Given that a) the Russian GHG emission inventory uses the IPPC default emission factor implying no N₂O abatement (Russian Federation 2022b) and b) the lack of specific policy instrument addressing N₂O emissions in chemical industry (see 2.9.3) we conclude that no N₂O abatement is in place.

2.9.5 N₂O emissions

In the Russian GHG inventory, N₂O emission from *nitric acid production* are calculated using an emission factor of 2 kg N₂O / tonne of nitric acid, as proposed in the 2006 IPCC guidelines (IPCC 2006) for plants employing NSCR (non-specific catalytic reduction) (source: RUS NIR 2022). As discussed in section 2.9.4 above, the choice of that emission factor is likely to be adequate for the 1990s, before NO_x abatement was upgraded to SCR, resulting in the loss of N₂O abatement performance. Default emission factors in the 2006 IPCC guidelines for unabated low-, medium- or high pressure plants, applicable for SCR-equipped facilities in the absence of measurement data, range from 5-9 kg N₂O/t (IPCC 2006, Vol 3, Tab 3.3, p. 3.23).

The 2019 refinement to the 2006 IPCC guidelines, however, present a refined set of emission factors applicable for the N₂O emission calculation from nitric acid production (IPCC 2019, Vol 3, Tab 3.3 (Updated), p 3.9). Using the overview and technical classification of Russian nitric acid plants in BNDT (2019) and the set of emission factors proposed by the 2019 IPCC refinement, a range of alternative emission estimate for Russia has been calculated by Malyavin (2021) which are approximately three to six times higher than the estimate in the Russian GHG inventory. Expressed as specific emissions, the calculation concludes in a weighted average emission factor of 8.1 (range: 6.8 - 13.8).

Table 31 presents both data reported by Russia related to N_2O emissions from *nitric acid* production as well as an alternative estimate based on the calculations in Malyavin (2021).

Table 31: N ₂ O emissions from Russian nitric acid production						
	nitric acid production	N ₂ O emissions nitric acid production		N2O emissionsN2O emissionsnitric acid productionnitric acid production,		emissions id production,
	million tonnes (100% nitric acid)	kt N ₂ O	kg N₂O / t nitric acid	kt N₂O	kg N₂O / t nitric acid	
	reported by Russia to UNFCCC		Öko-Institut Maly	estimate based on avin (2021)		
2000	4.3	8.6	2.0			
2005	5.8	11.7	2.0			
2010	7.4	14.7	2.0			
2015	8.3	16.6	2.0			
2016	8.7	17.4	2.0			
2017	9.1	18.1	2.0			
2018	8.9	17.8	2.0			
2019	9.4	18.8	2.0			
2020	10.2	20.3	2.0	81.9 (69.0 – 140.2)	8.1 (6.8 – 13.8)	

Sources: Malyavin 2021; Russian Federation 2022a; Öko-Institut calculations

Table 32 presents production and N₂O emissions data for *caprolactam production* in Russia. Emissions were calculated using the IPCC default emission factor of 9 kg N₂O/ tonne caprolactam, assuming no N₂O abatement.

	caprolactam production	N₂O emissions nitric acid production,		
	Inition tornes	kt N₂O	kg N ₂ O / t caprolactam	
	reported by Russia to UNFCCC			
2000	0.25	2.2	9.0	
2005	0.31	2.8	9.0	
2010	0.33	3.0	9.0	
2015	0.33	2.9	9.0	
2016	0.36	3.2	9.0	
2017	0.37	3.3	9.0	
2018	0.39	3.5	9.0	
2019	0.39	3.5	9.0	
2020	0.36	3.3	9.0	

Table 32: N₂O emissions from caprolactam production in Russia

The uncertainty of N₂O emissions from nitric acid production reported to the UNFCCC was estimated by Russia at 11 % (Russian Federation 2022b): However, considering the alternative calculation by Malyavin (2021) presented above, we estimate the uncertainty of the N₂O emissions estimated for nitric acid production at 300-700%.

The uncertainty of N_2O emissions from caprolactam production reported to the UNFCCC was estimated by Russia at 40 % (Russian Federation 2022b):

2.9.6 N₂O mitigation potentials

Nitric Acid Production

As discussed in 2.9.5, central estimates for specific N_2O emissions from nitric acid production range from 2 kg N_2O / t nitric acid (Russian GHG inventory) to about 8 kg / t (based on Malyavin 2021) which we consider as more realistic. Both estimates are very high compared to European levels. Benchmarks for emission intensities achievable by ambitious mitigation policies can be derived from the EU-ETS in the range of 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see <u>Annex I</u>).

These EU-ETS benchmarks are at ~3-7% of the higher estimate of present Russian emission intensities, or at ~15-30% considering the estimate in the Russian GHG inventory. Benchmark-based top-down mitigation potentials for N₂O from Russia's nitric acid production add up to ~75 – 80 kt N₂O/a or ~ 20-21 Mt CO₂e / a (GWP AR5) for the higher emission estimate, or to ~3-6 kt N₂O/a or ~ 4-5 Mt CO₂e / a (GWP AR5) considering the Russian GHG inventory estimate.

In a bottom-up perspective focussing on plants without any present N₂O abatement (estimated as ~ two thirds of dual (high/medium) pressure capacities and all high pressure and dual (medium/low) pressure capacities, see 2.9.2) we estimate a low-cost mitigation potential at approximately 58 kt N₂O/a or 15 Mt CO₂e/a (i.e. approximately 70 % of the high estimate of Russia's 2020 N₂O emissions from nitric acid production).

Caprolactam

In Russian caprolactam production no N₂O mitigation has been applied so far. The benchmark for emission intensities achievable by ambitious waste gas treatment is at 0.6 kg N₂O / t caprolactam (see <u>Annex III</u>), i.e. 7% of the IPCC default of 9 kg/t used for Russia. Application of N₂O abatement thus might lead to a 93% reduction, equal to approx. 3 kt N₂O/a (0.8 Mt CO₂e).

2.10 Saudi Arabia

2.10.1 Saudi Arabia summary

For Saudi-Arabia, roughly 0.4 million tonnes of nitric acid were estimated as produced in 2020. No mitigation policies targeted at N_2O emissions from Chemical industry were identified for Saudi-Arabia. However, the single nitric acid plant of Saudi-Arabia is equipped with N_2O abatement. Information on specific N_2O emissions is not available. Therefore, N_2O mitigation potentials could not be estimated for Saudi-Arabia.

Table 33: Country Profile Saudi Arabia

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	1	-	-
Relevant climate policies	none		
N ₂ O Abatement Technologies in Place	Yes. No information on type of system	-	-
Annual Production (2020)	Actual production information not available Production capacity ~0.4 million tonnes	-	-
Annual N ₂ O emissions	inventory information not available rough estimate \sim 0.2 – 0-9 kt N ₂ O / \sim 0.05 – 0.25 Mt CO ₂ e	-	-
N ₂ O emissions uncertainty estimate	High due to limited data availability	-	-
Specific N ₂ O emissions (2020)	Not available 2019 IPCC refinement defaults: 1.5-2.5 kg N ₂ O/t		
N ₂ O mitigation potential	Not available		

Note: N_2O amounts converted into CO_2 equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Source: Espindesa (2017), IPCC (2019), own calculations of Öko-Institut

2.10.2 Presence of N₂O-emitting chemical industries

According to information provided by the company Espindesa (Manufacturer of the plant), there is one nitric acid plant in Al-Jubail in Saudi Arabia with a production capacity of 1 200 t per day (Espindesa 2017). The operator of the plant is the company Sadara (DowChemical/Saudi Aramco). The plant was completed in 2017.

InvestSaudi is actively promoting investments into adipic acid production facilities in Saudi Arabia (Invest Saudi 2021). It is thus likely that adipic acid production might be taking place in Saudi Arabia in the future.

2.10.3 Policies affecting N₂O emission levels

Saudi Arabia has no policies in place targeting N_2O emissions and according to official documents, none are currently planned (Sources: New Climate Institute (2021a), Saudi Arabia Designated National Authority (2022)).

• no CDM projects (Source GIZ NACAG³², CDM Database³³).

2.10.4 N₂O abatement in place

There are no CDM projects related to N_2O abatement in Saudi Arabia. Nevertheless, the nitric acid plant in Al-Jubail is equipped with a N_2O abatement system (Personal communication from the manufacturer of the nitric acid plant in Saudi Arabia). No information was shared on the type or efficiency of the system in place.

$2.10.5 \quad N_2O \ emissions$

The GHG inventory in the Fourth National communication by Saudi Arabia to the UNFCCC (Saudi Arabia Designated National Authority 2022) does not list any N_2O emissions for the industry sector for the year 2016, and there is no information on emissions from Saudi Arabia for more recent years. Since the facility in Al-Jubail was only completed in 2017, emissions from this plant are not yet captured in official GHG inventories by Saudi Arabia.

We roughly estimate annual N₂O emissions 2020 as follows:

Assuming an 80% capacity use, annual production levels would be approx. 0.35 million tonnes per year. IPCC (2019) proposes for modern plants with abatement emission factors of 1.5-2.5 kg N₂O / t nitric acid, resulting in emissions of approx. 0.5-0.9 kt N₂O/a. However, an ambitiously operated abatement system might result in specific emissions of less than 0.5 kg N₂O/t, or ~0.2 kt N₂O/a.

2.10.6 N₂O mitigation potentials

Due to the limited information available, a quantification of the N_2O mitigation potential is not possible.

³² https://www.nitricacidaction.org/

³³ <u>https://cdm.unfccc.int/Projects/projsearch.html</u>

2.11 Singapore

2.11.1 Singapore summary

For Singapore, little information on nitric acid production is available, the plant capacity is estimated at 0.1 million tonnes of nitric acid per year. No information is available related to present N₂O abatement equipment. However, given the key Singapore mitigation policy N₂O emissions from Chemical industry is the Singapore Carbon Tax since 2019, featuring a rising schedule of taxes per t CO_2e , should incentivise ambitious N₂O abatement within few years.

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	1	- (1 plant closed 2012)	-
Relevant climate policies	Since 2019: Singapore carbon tax of 5 to rise to 25 S $/$ t CO ₂ e by 2024, 45 S by 2030. No policies targeting industry	S\$/ t CO₂e (~ 0.7 EUR / S\$ ∫/ t CO₂e by 2026, and 50-8 N₂O emission before 2019.	6) scheduled 0 S\$/ t CO ₂ e
N₂O Abatement Technologies in Place	Uncertain 2012 CDM application for tertiary catalytic N ₂ O destruction was cancelled.	Plant was equipped with N ₂ O abatement	
Annual Production (2020)	Uncertain Plant capacity ~ 0.1 Mt HNO₃/a	-	-
Annual N₂O emissions (2020)	Uncertain If unabated, up to approx. 1 kt N ₂ O/a (0.27 Mt CO ₂ e)	-	-
N₂O emissions uncertainty estimate	Very high:	-	-
Specific N ₂ O emissions (2020)	Not available		
N₂O mitigation potential	~98% of unabated emission levels: Up to ~ 1kt N ₂ O/a / 0.25 Mt CO ₂ e/a Realisation of mitigation potential expected soon under rising schedule of Singapore Carbon Tax	-	-

Table 34: Country Profile Singapore

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Sources: Invista 2012; Singapore 2020; 2022; NCCS 2023; Chemmanager 2015; Schneider et al. 2010,own calculations of Öko-Institut

2.11.2 Presence of N₂O-emitting chemical industries

In Singapore, one nitric acid plant (a high pressure Weatherley plant) is in operation since 2009, operated by INVISTA; the plant's capacity is 320 tonnes of nitric acid per day (Invista 2012). The plant was built next to INVISTA's adjacent adipic acid plant (production capacity approx. 300 tonnes of adipic acid per day³⁴) which, however, was reported to be closed in 2012 (Chemmanager 2015).

³⁴ Source: Schneider et al. 2010

It appears, however, that the at least temporary presence of nitric and adipic acid production in Singapore³⁵ may not have been noted by the Singapore National Environment Agency in charge of the GHG inventory:

- In the GHG inventory for **2018**, published 2022 in the Singapore 5th Biennial Update Report to the UNFCCC (Singapore 2022) both nitric acid production and adipic acid production are reported as 'not occurring'. The same information ('not occurring') was given in the GHG inventory for 2016 in the Singapore 4th Biennial Update Report of 2020 (Singapore 2020).
- Inventory summaries published in Singapore (2020) and Singapore (2022) for the years 2000, 2010, 2012 and 2014 are given at the aggregation levels of the inventory category CRF 2 "industrial processes and product use" (IPPU) and do not specify chemical industry. IPPU total N₂O emissions given for those years, however, are in the order of magnitude of 0.1 kt N₂O/a, consistent with 2016 and 2018 N₂O emissions reported for category 2E 'electronics industry' and far below emission levels expected from nitric and adipic acid plants, if operating (see section 2.11.5).

2.11.3 Policies affecting N₂O emission levels

Before 2019, no Singapore policies addressed N_2O emissions from chemical industry.

Since 2019, however, Singapore has implemented a carbon tax, which is applied uniformly to all sectors including energy-intensive and trade-exposed sectors, without exemption (NCCS 2023). The carbon tax level is set for 2019 – 2023 at S\$ 5 /t CO₂e (approximately US\$ 3.5 / t CO₂e or EUR 3.5 / t CO₂e³⁶).

In the 2018 Carbon Pricing Act, the GWP to be used for the conversion of N₂O emissions into CO₂ equivalents is defined as 310, i.e. the GWP of the 2nd IPCC Assessment Report, thus about 15% higher than the GWPs for N₂O according to the 5th IPCC Assessment Report (265)³⁷. Recalculated to N₂O emissions, the 2019-2023 carbon tax is thus at S\$ 1.55 / kg N₂O (~ USD/EUR 1.1 / kg N₂O)

However, the Singapore carbon tax is scheduled to be raised to $25 / CO_2 e$ in 2024 and 2025, and $45 / CO_2 e$ in 2026 and 2027, with a view to reaching $50-80 / CO_2 e$ by 2030 (NCCS 2023). Given a stringent enforcement, this will be a strong incentive for Singapore chemical industry to abate N₂O emissions as far as technically possible.

2.11.4 N₂O abatement in place

For the *nitric acid plant*, a CDM process design document (PDD) was published in 2012 proposing to install a tertiary catalytic N_2O decomposition unit at the plant (Invista 2012). In the PDD it was stated that, prior to the PDD, no N_2O had taken place although NO_x emissions were being abated by SCR in order to comply with Singapore clean air standards. However, the validation of the CDM project was terminated, no CER (certified emission reductions under the CDM) were ever issued

³⁵ In a global assessment of non-CO₂ GHG emissions in EPA (2019), Singapore ranked as world-wide third largest emitter of N₂O from nitric and adipic acid production after China and the USA. As clarified in US EPA (2023), however, that assessment had primarily been based on 2011 information on Singapore adipic acid production capacities and ignorant of the 2012 plant closure reported in Chemmanager (2015).

³⁶ In September 2022, one Singapore Dollar was exchanged into approximately 0.7 US Dollars or 0.7 Euros.

³⁷ Under the 4th IPCC Assessment Report, the GWP₁₀₀ was 298.

(IGES 2022). No information is available, however, whether the nitric acid plant was nevertheless equipped with N_2O abatement technology.

For the *adipic acid plant*, the 2012 PDD for the nitric acid plant stated that N_2O emissions from the adipic acid plant have been abated since start-up (Invista 2012).

$2.11.5 \quad N_2O \ emissions$

 N_2O emissions from nitric acid production are estimated as follows: Given a capacity of 320 t/d and about 330 operating days per year (Invista 2012), production levels might reach up to 105 kt nitric acid per year. Given emission factors for an unabated high-pressure plant of 9 kg/t (IPCC default for high pressure) up to 10.56 kg/t (quoted from Stockholm Environment Institute 2010 in Invista 2012) emissions in the case of no N_2O abatement and full capacity use could be at about 0.9 – 1.1 kt N_2O/a .

In case effective N_2O abatement was installed in the Singapore facility despite the cancellation of the attempt to receive CERs under the CDM, emissions could be at 1-5% of those emissions levels, or lower in case of less use of the production capacity.

The uncertainty of the emissions estimate is thus very high.

2.11.6 mitigation potentials

Nitric Acid Production

Singapore emission levels, if confirmed unabated, would be very high at approx. 9-10 kg N₂O / t nitric acid, compared to benchmarks derived from the EU-ETS countries at approx. 0.43 kg/t +/- 50% (see <u>Annex I</u>). Mitigation potentials could be at about 95% - 98% and, at full production capacity use, amount to about 1 kt N₂O/a (+/- 10%) equivalent to approximately 0.25 Mt CO₂e/a.

However, given the strong abatement incentive originating from the tax rate schedule of the Singapore Carbon Tax starting 2019 (see 2.11.3), the Singapore nitric acid plant's full equipment with N_2O abatement should be expected rather soon.

2.12 Trinidad and Tobago

2.12.1 Trinidad and Tobago summary

For Trinidad and Tobago, roughly 0.5 million tonnes of nitric acid were estimated as produced in 2020. No mitigation policies targeted at N_2O emissions from Chemical industry were identified for Trinidad and Tobago. The single nitric acid plant of Trinidad and Tobago is not equipped with N_2O abatement. Average specific N_2O emissions were estimated at about 10 kg/tonne of nitric acid. N_2O mitigation potentials are estimated at ~98%.

Table 35: Country Profile Trinidad and Tobago

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	1	-	-
Relevant climate policies	None		
N₂O Abatement Technologies in Place	none	-	-
Annual Production	production amounts not available plant capacity: ~0.5 million t/a	-	-
Annual N ₂ O emissions (2018)	3.9 kt №0 ~1 Mt CO2e	-	-
N ₂ O emissions uncertainty estimate	High	-	-
Specific N ₂ O emissions (2020)	Possibly ~ 9 kg N₂O/t for an unabated plant	-	-
	'Low-hanging-fruit' potential in unabated plants:		
N ₂ O mitigation potential	~98 % ~ 3.8 kt N₂O/a ~1 Mt CO₂e/a		

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Source: Proman (2023), New Climate Institute (2021b), Ministry of Planning and Development (2021), personal communication

2.12.2 Presence of N₂O-emitting chemical industries

In Trinidad and Tobago, there is one facility which produces nitric acid for further transformation into urea ammonium nitrate, a fertilizer. The facility is operated by the company Methanol Holdings (Trinidad) Limited (part of Proman, Switzerland) and situated in Point Lisas (Proman 2023). The plant capacity for the final product is given with 1520 t/day by the plant manufacturing company³⁸.

2.12.3 Policies affecting N₂O emission levels

Trinidad and Tobago has no policies in place targeting N_2O emissions and according to official documents, none are currently planned (Sources: New Climate Institute (2021b), Ministry of Planning and Development (2021)).

³⁸ <u>https://www.ferrostaal.com/en/top-references-ferrostaal/construction-of-a-petrochemical-plant-in-trinidad-aum-complex/</u>

There are no CDM projects in Trinidad and Tobago concerning nitric acid production (IGES 2022).

2.12.4 N₂O abatement in place

There are no CDM projects in Trinidad and Tobago. Currently, the MHTL nitric acid plant is not equipped with abatement technologies. However, the operator is planning to retrofit a tertiary catalytic N_2O abatement in the future³⁹ and is looking for funding.

2.12.5 N₂O emissions

The most reliable data and the longest available time series on emissions from nitric acid production in Trinidad and Tobago is provided in the GHG inventory in the Third National communication by Trinidad and Tobago to the UNFCCC. The emissions are provided in Gg N₂O. BR lists Tier 1 as method for determination of emissions in CRF category 2.B. and use of default emission factors. This means that only a simplified approach is used for the determination of the emissions, introducing an uncertainty about the actual emission levels. Table 36 provides an overview on emissions from nitric acid production in Trinidad and Tobago.

	Reported by Trinidad and Tobago to UNFCCC
	kt N ₂ O
2000	0
2005	0
2010	3.9
2011	4.2
2012	4.0
2013	3.0
2014	3.7
2015	4.1
2016	3.7
2017	3.8
2018	3.9

Source: Ministry of Planning and Development (2021)

2.12.6 N₂O mitigation potentials

 N_2O mitigation potentials are high, since currently there are no N_2O abatement technologies in place in for nitric acid production in Trinidad and Tobago. Available information on the planned tertiary catalyst technology lists N_2O removal rates of 98 % to over 99 %⁴⁰. This would imply an almost complete N_2O mitigation potential of the 2018 emissions of ~ 4 kt N_2O or ~ 1 Mt CO₂e respectively.

³⁹ Source: Personal Communication from industry sources

⁴⁰ Source: Personal Communication from industry sources

2.13 United Arab Emirates

2.13.1 UAE summary

For the United Arab Emirates, little information on nitric acid production is available. Annual production is roughly estimated at levels below 0.15 million tonnes of nitric acid per year. No mitigation policies targeted at N₂O emissions from Chemical industry were identified for the UAE. No information is available related to present N₂O abatement equipment. Information on specific N₂O emissions is not available. Thus, N₂O mitigation potentials could not be estimated for the UAE.

Table 37: Country Profile UAE

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	Unclear, possibly 1 or 2	-	-
Relevant climate policies	none		
N ₂ O Abatement Technologies in Place	No information available	-	-
Annual Production (2020)	Not available possibly in the range 0.04 – 0.15 Mt	-	-
Annual N₂O emissions (2020)	Not available Possibly in the range: ~0.02 - 1.5 kt N ₂ O / ~0.01 - 0.4 Mt CO ₂ e	-	-
N ₂ O emissions uncertainty estimate	Very high		
Specific N ₂ O emissions (2020)	Not available		
N ₂ O mitigation potential	Not available		

Note: N₂O amounts converted into CO_2 equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Source: own calculations Öko-Institut

UAE nitric acid production capacities are estimated in the range of 100 - 500 t/a, resulting in annual production amounts of 0.03 - 0.15 million tonnes nitric acid per year. Assuming emission factors ranging between 0.5 kg N₂O/t (well maintained N₂O abatement) and 10 kg N₂O/t no abatement, annual N₂O emission from UAE nitric acid production could plausibly range between 0.015 and 1.5 kt N₂O/a or 0.01 - 0.4 Mt CO₂e/a [GWP AR5].

2.13.2 Presence of N₂O-emitting chemical industries

Little information is available related to the production of *nitric acid* in the UAE.

In the UAE's 1st National Communication under the UNFCCC (United Arab Emirates 2007), nitric acid production was reported to take place in that country. However, in our desk research no individual production facility could positively be identified.

Possibly, companies DubiChem and / or Adfert could be operators of a nitric acid plant in the UAE:

• DubiChem identify themselves on their website as "Nitric acid manufacturer, exporter, producer and supplier... in UAE" (DubiChem 2022)

• Adfert is an UAE producer of fertilizers. However, the description of production facilities do not explicitly mention any (intermediate) production of nitric acid. (Adfert 2017)

According to international trade statistics, the UAE did export relatively small volumes of nitric acid, approximately 0.07 % of total Asian nitric acid exports (OEC 2020)

There are no indications that *adipic acid* or *caprolactam* would be produced in the UAE.

2.13.3 Policies affecting N₂O emission levels

In 1999, the UAE have passed a law⁴¹ which forms the basis for the Environment Agency or Ministry to set conditions for operating licenses for a variety of activities, including chemical industry. However, it is unclear whether greenhouse gases are considered to be environmental pollutants under that law. Respective executive orders spelling out conditions e.g. related to NOx or N₂O emissions from nitric acid production or fertilizer production could not be identified in our research.

2.13.4 N₂O abatement in place

No information could be collected.

$2.13.5 \quad N_2O \ emissions$

The UAE did not report on any N₂O emissions from industrial processes in their GHG emission inventories contained in their 1^{st} , 2^{nd} , 3^{rd} and 4^{th} National Communications to the UNFCCC (United Arab Emirates 2007; 2010; 2013; 2018).

However, as potential plausible range of N₂O emissions from UAE nitric acid production is estimated as follows:

UAE nitric acid production capacities are estimated in the range of 150 - 500 t/a, resulting in annual production amounts of 0.04 - 0.15 million tonnes nitric acid per year. Assuming emission factors ranging between 0.5 kg N₂O/t (well maintained N₂O abatement) and 10 kg N₂O/t no abatement, annual N₂O emission from UAE nitric acid production could plausibly range between 0.02 and 1.5 kt N₂O/a or 0.01 - 0.4 Mt CO₂e/a [GWP AR5].

2.13.6 N₂O mitigation potentials

Due to the limited information available, a quantification of the N_2O mitigation potential is not possible.

⁴¹ Federal Law No. 24 of 1999 for the protection and development of the environment

2.14 United Kingdom

2.14.1 United Kingdom summary

The United Kingdom used to be a Member State of the European Union until its withdrawal which took effect in 2020.

In the UK, approximately 1.1 million tonnes of nitric were produced in 2020. Key N_2O mitigation policies include coverage under the EU emissions trading scheme (until 2020) and the new UK emissions trading scheme (since 2021). Secondary catalytic N_2O abatement technologies are in place. Average specific N_2O emissions are estimated at about 0.1 kg/tonne of nitric acid. Given the low emissions level, no additional N_2O mitigation potentials are estimated for the UK.

Table 38: Country Profile United Kingdom

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	4 production lines at two sites	-	-
Relevant climate policies	Inclusion in EU ETS until 2020; since 2021: UK-ETS	-	-
N₂O Abatement Technologies in Place	Full coverage with secondary catalytic abatement measures	-	-
Annual Production (2020)	~1.1 Mt [100% HNO ₃]	-	-
Annual N₂O emissions (2020)	0.2 kt N ₂ O / 0.04 Mt CO ₂ e	-	-
N₂O emissions uncertainty estimate	low	-	-
Specific N ₂ O emissions (2020)	0.1 kg №0/t		
N ₂ O mitigation potential	none	-	-

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5^{th} IPCC Assessment Report (AR5) Source: (United Kingdom 2022b; 2022d)

2.14.2 Presence of N₂O-emitting chemical industries

In the United Kingdom, production of nitric acid takes place in 4 production facilities at two sites while production of adipic acid and of caprolactam is absent (United Kingdom 2022d).

UK production levels of nitric acid have been rather constant in the past ten years at approximately 1.1 million tonnes per year (see Table 39).

2.14.3 Policies affecting N₂O emission levels

As a Member of the EU, the UK until 2020 took part in the EU emissions trading scheme (EU-ETS) which covers N_2O emissions from nitric acid production. For more details related to the EU-ETS, see

section 2.4.2. Since the UK's withdrawal from the EU coming into effect on 1st January 2021, the UK operates its own emission trading scheme (United Kingdom 2022a) (UK ETS⁴²)

2.14.4 N₂O abatement in place

The UK reports in its GHG inventory, that since 2011 all of the UK nitric acid production facilities are fitted with EnviNOx SCR abatement which includes heating of the tail gases from the production vessels, followed by NOx and N₂O destruction in a catalyst bed using ammonia gas and hydrocarbon inputs to mitigate the NO_X and N₂O. The UK installations apply the technology in process variant 2 design, which achieves N₂O mitigation performance of around 99.5%.

2.14.5 N₂O emissions

UK N₂O emissions from nitric acid production for 2000-2020 are given in Table 39. Emission intensities were drastically reduced in particular between 2005 and 2011. Since then 2010, specific emissions are rather at very low levels of approximately 0.1 kg N₂O/tonne nitric acid.

Table 39:	N ₂ O emissions from nitric acid production in the United Kingdom				
	nitric acid production million tonnes (100% nitric acid)	N ₂ O emissions nitric acid production, kt N ₂ O kg N ₂ O / t nitric acid			
	reported by the United Kingdom to UNFCCC				
2000	2.03	14.1	6.9		
2005	1.71	6.5	3.8		
2010	1.21	4.2	3.5		
2015	1.13	0.1	0.1		
2016	1.17	0.1	0.1		
2017	1.22	0.1	0.1		
2018	1.08	0.1	0.1		
2019	1.19	0.1	0.1		
2020	1.14	0.2	0.1		

Source: (United Kingdom 2022b)

UK reports the uncertainty of N_2O emission estimates, based on continuous monitoring systems, at 5-10% (United Kingdom 2022d).

2.14.6 N₂O mitigation potentials

UK average specific N_2O emissions from nitric acid production are among the lowest reported from countries covered by the EU-ETS (see <u>Annex I</u>). No additional N_2O mitigation potential can be quantified.

⁴² https://www.gov.uk/government/publications/participating-in-the-uk-ets/participating-in-the-uk-ets.

2.15 United States of America

2.15.1 USA summary

Production of nitric acid, adipic acid and caprolactam takes place in the USA. No mitigation policies targeted at N_2O emissions from Chemical industry were identified for the USA beyond NO_x performance standards.

Approximately 8 million tonnes of *nitric acid* were produced in 2020. Approximately half of the 32 US nitric acid plants is equipped with N_2O abatement. Average specific N_2O emissions were at 3.9 kg/ tonne of nitric acid. Additional N_2O mitigation potentials are estimated at ~90 %.

Approximately 0.7 million tonnes of *adipic acid* were produced in 2020. The two plants are equipped with N₂O abatement. However, low reduction rates are reported. Average specific N₂O emissions were at about 40 kg/ tonne of adipic acid. Additional N₂O mitigation potentials are estimated at ~90 %.

Approximately 0.45 million tonnes of *caprolactam* were produced in 2020. No N₂O abatement has been reported. A ~95% N₂O mitigation potential is estimated, compared to the IPCC default of 9 kg N₂O/tonne caprolactam, used for the US GHG inventory.

	Nitric Acid	Adipic Acid	Caprolactam
Number of facilities	32 facilities, 52 lines	2	2
Relevant climate policies	Performance standards requiri modified plants No federal GHG reduction targ include N ₂ O. N ₂ O from nitric ac and-trade system	ng the reduction of NO _x on et but several states hav bid production is included	emissions for new or ve reduction targets which I in the California Cap-
N₂O Abatement Technologies in Place	Abatement technologies at 15 of 32 facilities	Yes, partly of poor quality	n.a.
Annual Production (2020)	8.0 Mt	~0.7 Mt	0.45 Mt
Annual N ₂ O emissions (2020)	31.2 kt №0	27.9 kt N ₂ O	4.1 kt N ₂ O
N ₂ O emissions uncertainty estimate	±5 %	±5 %	~±30 %
Specific N₂O emissions (2020)	3.9 kg N ₂ O/t	~40 kg N ₂ O/t	9 kg N₂O/t (IPCC default estimate)
N₂O mitigation potential	Gap to emission intensity benchmark of ambitious mitigation policy: ~ 90% / ~26 – 29 kt N ₂ O/a ~7-8 Mt CO ₂ e/a 'Low-hanging fruit' potential in unabated plants: ~71% /~22 kt N ₂ O/a ~5.9 Mt CO ₂ e/a	~ 90% / ~25 t N₂O/a ~6.75 Mt CO₂e/a	~ 93% / ~3.8 t N₂O/a ~1.0 Mt CO₂e/a

Table 40:Country Profile USA

Note: N_2O amounts converted into CO_2 equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) Source: Number of facilities and information on abatement technologies from EPA (2022b), Annual production and N_2O emissions from United States of America (2022a), EPA (2022a), own calculation of Öko-Institut

2.15.2 Presence of N₂O-emitting chemical industries

In the USA, there is production of nitric acid, adipic acid and caprolactam.

Nitric Acid

In 2020, there were 32 facilities in the US producing nitric acid, with an annual production of 7970 kt. Less than half of those plants (15 out of 32) have N_2O abatement technologies installed (EPA 2022b).

Adipic Acid

There were 2 facilities producing adipic acid in the US in 2020, Ascend Performance Materials in Florida and INV Nylon Chemicals Americas in Texas, both of which have abatement technologies in place. Both plants are also producing nitric acid (EPA 2022b). However, according to Phil McKenna (2022), the abatement facility at the plant in Florida only abated 70 % of its N₂O emissions and while the company announced to improve their N₂O destruction, it remained unclear whether those efforts were met at the time of writing of this report.

Caprolactam

As of 2020, two companies in the United States produce caprolactam at two facilities: AdvanSix in Virginia and BASF in Texas (EPA 2022a). There were three facilities in operation until 2018 and one additional one operating 2000-2001 and 2007-2005.

2.15.3 Policies affecting N₂O emission levels

In 2014, U.S. EPA revised the New Source Performance Standards (NSPS) emissions standards for nitric acid facilities. The standards limit emissions of NO_x from new, modified, and reconstructed nitric acid plants, which will need to meet a NO_x emission limit of 0.5 lb NO_x per ton of nitric acid produced, as a 30-day average emission rate. This emission limit always applies, including periods of start-up, shutdown and malfunction⁴³.

Currently, there is no federal reduction target for GHG emissions in effect.

The state of California has a cap-and-trade program, and nitric acid facilities are covered entities under that system⁴⁴. Adipic acid and caprolactam producing facilities are not covered but there is no production of either taking place in California. Other cap-and-trade programs in the US are only targeting emissions from power generation.

Further states have GHG targets or are considering GHG targets: 16 states and Puerto Rico have introduced legislation on GHG emission reductions. These targets mostly include emissions from N_2O . Others have no binding targets but require GHG reduction trough executive action⁴⁵.

⁴³ <u>https://www.epa.gov/stationary-sources-air-pollution/nitric-acid-plants-new-source-performance-standards-nsps#rule-summary</u>

⁴⁴ https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program

⁴⁵ <u>https://www.ncsl.org/research/energy/greenhouse-gas-emissions-reduction-targets-and-market-based-policies.aspx</u>

Figure 2: Overview on GHG reduction legislation in the USA

Source: National Conference of State legislatures, <u>https://www.ncsl.org/research/energy/greenhouse-gas-emissions-reduction-targets-and-market-based-policies.aspx</u>

2.15.4 N₂O abatement in place

Nitric Acid

According to the data available in the US EPA's FLIGHT database (EPA 2022b), 15 out of 32 facilities producing nitric acid are equipped with N₂O abatement technologies. The majority of those are indicated to be NSCR (10). Furthermore, the list contains one SCR installation, 3 non-specified secondary N₂O abatement catalysts and 2 tertiary catalysts (one of which is installed in combination with a secondary abatement catalyst).

Adipic Acid

Both of the adipic acid production facilities have abatement technologies in place (EPA 2022b). According to EPA (2022a), Pollution control measures in the late 1990s lead to the installation of abatement technologies, after which the emissions from adipic acid production decreased by 45 %. However, according to Phil McKenna (2022), one of the plants which is the world's largest adipic acid plant did abate N_2O emissions by only 70 % while other operators achieve 95 % or more emission abatement.

Caprolactam

No detailed information on abatement technologies available. The operator of the caprolactam plant in Virginia indicates the installation of a system reducing NO_x emissions from the site by

~80 %/year⁴⁶. In the US GHG inventory N₂O emissions from caprolactam are calculated using the IPCC default emission factor of 9 kg N₂O/t caprolactam, assuming no N₂O abatement.

2.15.5 N₂O emissions

Figure 3 shows emissions from nitric acid, adipic acid and caprolactam production for the years 1990 to 2020 (in CO₂e).

Figure 3: U.S. GHG emissions from Nitric acid, adipic acid and caprolactam production

Source: EPA (2022a)

⁴⁶ <u>https://www.advansix.com/hopewell/about-us/</u>
Nitric acid production

 N_2O emissions from nitric acid production in the USA have decreased from about 44 kt N_2O/a in 2000 to about 31-33 kt N_2O/a in 2017-2020 (see Table 41). Since the production of nitric acid remained fairly constant at ~7-8 million tonnes of nitric acid, this indicates the installation of abatement technologies within this time period.

Table 41: N₂O emissions from USA nitric acid production Nitric acid N₂O emissions of production nitric acid production million tonnes (100% kt N₂O kg N₂O / t nitric acid nitric acid) reported by USA to UNFCCC 2000 7.90 44.7 5.7 2005 38.0 5.7 6.71 2010 7.45 38.7 5.2 2015 7.21 38.8 5.4 2016 7.81 34.0 4.4 2017 7.78 31.3 4.0 2018 32.1 3.9 8.21 2019 4.1 8.08 33.5 2020 7.97 31.2 3.9 Source: United States of America (2022a), own calculations Öko-Institut

The uncertainty of N₂O emissions from nitric acid production in the US Inventory is indicated with ± 5 % for the period after 2010, while uncertainty on production data is estimated to be at ± 2 % (EPA 2022a).

Adipic acid production

 N_2O emissions from US adipic acid production (Table 42) occur in the same order of magnitude as N_2O from nitric acid production (Table 41).

Adipic acid production in the USA has decreased by approximately 7 % over the period of 1990-2020, and was at about 0.7 Mt in 2020, according to EPA (2022a). The exact value for adipic acid production between 2010 and 2020 are considered confidential in the US GHG inventory since there currently are only two active facilities. However, production quantities for many years considered confidential in the GHG inventory have been published by the American Chemistry Council (cited in EPA (2022a)). N₂O emissions from adipic acid production were estimated to be about 28 kt N₂O in 2020. Over the period 1990 through 2020, facilities have reduced emissions by about 45 % due to pollution control measures enforced starting in the late 1990s. Operation of the N₂O abatement installation at one adipic acid facility was not continuous, leading to significant fluctuations in emissions over the period from 2016-2020 (EPA 2022a).

l able 42:	N ₂ O emissions from USA adipic acid production						
	adipic acid production		N ₂ O emissions of adipic acid production				
	million tonnes (100% adipic acid)		kt N₂O	kg N_2O / t adipic acid			
	reported by USA to UNFCCC	American Chemistry Council	reported by USA to UNFCCC	Calculated here from emissions and production data			
1990	0.76	0.76	51.0	67.6			
1995	0.80	-	56.6	70.8			
2000	0.89	-	17.6	19.8			
2005	0.87	0.87	24.0	27.7			
2010	C	-	14.2	С			
2015	C	-	14.3	C			
2016	C	0,86	23.9	27.8			
2017	C	0.83	25.0	30.2			
2018	C	0.83	35.2	42.7			
2019	C	0.81	17.6	21.8			
2020	C	~0.7	27.9	~40			

Table 42 dini id ducti . -: .

Note: C: confidential

Source: United States of America (2022a), EPA (2022a); own calculations Öko-Institut

The uncertainty of N₂O emissions from nitric acid production in the US Inventory is indicated with ±5 % for 2020 (EPA 2022a).

Caprolactam production

Trends in N_2O emissions from US caprolactam production are mostly influenced by the operation of less facilities over the years (see section 2.15.5). Production has been declining since 2013 (EPA 2022a).

N ₂ O emissions from USA caprolactam production				
caprolactam production	N ₂ O emissions of caprolactam production			
million tonnes (100% caprolactam)	Kt N ₂ O	kg N ₂ O / t caprolactam		
	reported b	by USA to UNFCCC		
0.76	6.8	9.0		
0.80	7.2	9.0		
0.84	7.5	9.0		
0.70	6.3	9.0		
0.64	5.8	9.0		
0.55	4.9	9.0		
0.53	4.8	9.0		
0.52	4.6	9.0		
0.45	4.1	9.0		
	caprolactam production million tonnes (100% caprolactam) 0.76 0.80 0.84 0.70 0.64 0.55 0.53 0.52 0.45	caprolactam production Kt N ₂ O million tonnes (100% caprolactam) Kt N ₂ O reported to 0.76 6.8 0.80 7.2 0.84 7.5 0.70 6.3 0.64 5.8 0.55 4.9 0.52 4.6 0.45 4.1		

Source: United States of America (2022a), own calculations Öko-Institut

EPA (2022a) indicates the uncertainty for N₂O emissions from caprolactam production in 2020 to be at ~ \pm 31-32 %.

2.15.6 N₂O mitigation potentials

Nitric acid

US specific emissions of ~ 4 kg N_2O/t nitric acid are very high compared to European levels.

Benchmarks derived from the EU-ETS countries would be 0.43 kg/t as EU-ETS average, 0.26 kg/t as average of the top half of EU-ETS or 0.6 kg/t for the bottom half of EU-ETS participants (see Annex I).

These EU-ETS benchmarks are at ~7-15% of present US emission intensities. Respective mitigation potentials for N₂O from the US's nitric acid production add up to ~26 – 29 kt N₂O/a or ~ 7-8 Mt CO₂e/a (GWP AR5).

From data retrieved from EPA (2022b), 17 out of 32 facilities producing nitric acid in 2020 did not have N_2O abatement technologies installed. Retrofitting some or all of those plants with abatement systems could thus substantially reduce US N_2O emissions from nitric acid production.

In a bottom-up perspective focussing on nitric acid plants without any present N_2O abatement we consider a ~95 % reduction of unabated N_2O emissions at all sites presently without abatement and

thus estimate a low-cost mitigation potential at approximately 22 kt N₂O/a or 5.9 Mt CO₂e / a (i.e. approximately 71 % of the U.S.'s 2020 N₂O emissions from nitric acid production).

Adipic Acid

One of the adipic acid plants in the US only abated 70% of its emissions in 2020 (Phil McKenna 2022). Since state-of-the-art abatement technologies for adipic acid plants should achieve higher abatement rates, the mitigation potential for N_2O emissions from adipic acid production in the US is substantial.

Compared to the benchmark for N₂O from adipic acid production developed from EU data in <u>Annex</u> <u>II</u>, the potential for additional N₂O mitigation in US plants is ~90%, or ~25 kt N₂O/a (6.75 Mt CO₂e/a [GWP AR5]).

Caprolactam

In US caprolactam production no N₂O mitigation appears to be in application so far (beyond NO_x abatement). The benchmark for emission intensities achievable by ambitious waste gas treatment is at 0.6 kg N₂O / t caprolactam (see <u>Annex III</u>), i.e. 7% of the IPCC default of 9 kg/t used for the USA. Application of N₂O abatement thus might lead to a 93% reduction, equal to approx. 3.8 kt N₂O/a (1.0 Mt CO₂e [GWP AR5]).

3 Cross-country overview and conclusions

3.1 N₂O emission from chemical industry overview

2020 process emissions of N₂O from chemical industry in industrialised countries world-wide are estimated at 47.4 Mt CO₂e (GWP AR5), thereof 76 % (36.1 Mt CO₂e) from nitric acid production, 17 % (8.0 Mt CO₂e) from adipic acid production and 7 % (3.3 Mt CO₂e) from caprolactam production (Figure 4).

Note: 'Other' countries: Canada, Chile, Israel, Norway, Saudi Arabia, Singapore, United Arab Emirates, United Kingdom Source: own representation of study results

The countries and regions contributing most to N_2O emissions are Russia, the USA, the EU, Australia and Trinidad and Tobago for nitric acid production, the USA for adipic acid production, and the EU, the USA and Russia for caprolactam production.

Climate policies affecting N_2O emissions from chemical industry for the key contributors are missing in particular for Russia, the USA, Trinidad and Tobago, and, albeit only for caprolactam production, in the EU. An overview on relevant climate policies identified for the studied countries and regions is given in Table 44:

Table 44:Cross-country overview: climate policies affecting N2O emissions from
nitric acid, adipic acid and caprolactam production

	Present production processes	Climate policies affecting N_2O process emissions from chemical industry	
Australia	Nitric acid	Emissions Reductions Fund (ERF): voluntary carbon credit scheme; ERF safeguard mechanism: obligation for large emitters to keep GHG emissions below individual baseline, use of carbon credits for compliance is possible	
Canada	Nitric acid	Canadian Environmental Protection Act Greenhouse Gas Pollution Pricing Act	
Chile	Nitric acid	No active policies targeting N_2O from the chemical industry. Carbon tax targets NO_x on stationary sources	
European Union	Nitric acid Adipic acid Caprolactam	Inclusion in EU ETS (nitric acid & adipic acid); none for caprolactam production	
Israel	Nitric acid	Limits on N ₂ O exhaust concentrations as part of environmental permits	
Japan	Nitric acid Adipic acid Caprolactam	No active policies targeting N_2O emissions from chemical industry. Under the "J-credits" baseline & credit scheme, no approved methodology is available for N_2O abatement in chemical industry.	
Republic of Korea	Nitric acid Adipic acid Caprolactam	N_2O emissions from chemical industry are covered under the Korea Emissions Trading Scheme since the 3 rd K-ETS phase starting 2021. In K-ETS phases 1 & 2 (2015-2017 / 2018-2020), exemptions for facilities approved under the CDM applied.	
Norway	Nitric acid	Inclusion in EU-ETS	
Russia	Nitric acid Caprolactam	No specific policies targeting N ₂ O from chemical industry. Framework legislation provides foundation for addressing N ₂ O emissions. However, lack of ambition of 2030 GHG target implies little probability for additional instruments to be applied.	
Saudi- Arabia	Nitric acid	None identified	
Singapore	Nitric acid	Since 2019: Singapore carbon tax of 5 S\$/ t CO ₂ e (~ 0.7 EUR / S\$) scheduled to rise to 25 S\$/ t CO ₂ e by 2024, 45 S\$/ t CO ₂ e by 2026, and 50-80 S\$/ t CO ₂ e by 2030. No policies targeting industry N ₂ O emission before 2019.	
Trinidad and Tobago	Nitric acid	None identified	
United Arab Emirates	Nitric acid	None identified	
United Kingdom	Nitric acid	Inclusion in EU ETS until 2020; since 2021: UK-ETS	
United States of America	Nitric acid Adipic acid Caprolactam	Performance standards requiring the reduction of NO _x emissions for new or modified plants No federal GHG reduction target but several states have reduction targets which include N ₂ O. N ₂ O from nitric acid production is included in the California Cap-and-trade system	

3.2 Nitric acid production overview

For nitric acid production, Figure 5 depicts estimated 2020 N_2O emissions per country as the area of the respective rectangles. Nitric acid production amounts per country are represented by the width of the rectangles while the height represents the emission intensity (specific emissions) of nitric acid production. Estimated emission intensities range from very high 8-9 kg N_2O / t HNO₃ (Trinidad and Tobago, Russia) to low 0.5 kg/t and less for Western European countries and Korea.

Emission intensities identified for countries can be compared to a set of different benchmarks given as horizontal lines:

- The weighted average of countries participating in the EU-ETS in 2020 (27 EU Member States, Norway, and the United Kingdom) of 0.43 kg N₂O/ t HNO₃ can be considered a benchmark for emission intensities achievable by the means of ambitious climate policies like the EU-ETS. However, the technical effort needed to achieve very low emission intensities is influenced by plant pressure characteristics, and such low emission intensities may be more costly to achieve in countries where predominantly high-pressure plants are operated.
- Thus, 1.5 or 2.5 kg N_2O / t HNO₃ are given by the IPCC as default emission factors assumed realistic for abated nitric acid plants, depending on pressure characteristics of the respective plants.

Notes: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) TTO: Trinidad and Tobago; RUS: Russian Federation; JPN: Japan; AUS: Australia; ISR: Israel; SAU: Saudi-Arabia; SGP: Singapore; CHL: Chile; CAN: Canada; KOR: Republic of Korea; EU: European Union (27 member states after Brexit); NOR: Norway; UK: United Kingdom; United Arab Emirates not displayed due to high uncertainty EF: Emission factor

Sources: IPCC (2019), own representation of study results

While Figure 5 visualises benchmark-based N_2O mitigation potentials the realisation of which could possibly involve additional measures to be taken in plants already equipped with N_2O abatement equipment, Figure 6 summarises the results of the identification of rather easily realisable 'low-hanging fruit' mitigation potentials in production plants not yet equipped with any secondary or tertiary N_2O abatement:

Note: 'Other' countries: Chile, Israel, Republic of Korea, Norway, Saudi Arabia, Singapore, United Arab Emirates, United Kingdom Source: own representation of study results

Such low-hanging fruit N₂O mitigation potentials in nitric acid production of industrialised countries sum up to 63 % of total N₂O emissions from nitric acid production estimated for 2020 (22.5 Mt CO₂e mitigation potential out of 36.1 Mt CO₂e 2020 emissions). These mitigation potentials are primarily located in Russia, the USA and Trinidad & Tobago. Additional single plants without abatement were identified for Australia and Japan. For Australia, however, a retrofit project was reported to be underway, for Canada an abatement upgrade was reported as completed in 2022, reducing Canadian emissions by 25 % or 0.04 Mt CO₂e/a.

A full cross-country overview of key information collected for N_2O from nitric acid production is given in Table 45:

Οko-Institut e.V.

Table 45:	Cross-country	overview	nitric ac	id production
	oross-country		mune ac	in production

	Number of facilities	N₂O Abatement Technologies in Place	Annual Production (2020)	Annual N₂O emissions (2020)	Specific N ₂ O emissions (2020)	'low-hanging fruit' N₂O mitigation potential in unabated plants
Australia	12 lines / 6 locations	Secondary / tertiary catalysts installed in ~ 80 % of HNO ₃ production capacity	1.8 Mt [100% HNO₃]	1.4 Mt CO₂e Uncertainty ± 15 %	2.9 kg N ₂ O/t	~20 %
Canada	8 lines / 5 locations	All plants are equipped with abatement technologies, mostly tertiary catalysts	0.8 Mt [100% HNO₃]	0.6 Mt CO₂e Uncertainty ~1 %	0.8 kg N₂O/t	No unabated plants. However, emission reduction of ~25 % achieved by upgrade of abatement system
Chile	3 lines/ 1 location	Secondary catalysts partly installed, partly unclear	~0.3 Mt [100% HNO₃]	0.1 Mt CO ₂ e Uncertainty: ~3 %	1.0 kg N₂O/t	Unclear. One Plant has no abatement installed but has unclear operational status
European Union	~60 facilities in 19 Member States	Widespread application of secondary and/or tertiary abatement measures	~18 Mt [100% HNO₃]	2.5 Mt CO₂e Uncertainty ~ 9 %	~0.5 kg N₂O/t	Not estimated
Israel	4 lines / 2 locations	N ₂ O abatement was installed under the CDM before 2010. Present ambition of use of mitigation equipment is unclear.	~ 0.2 Mt [100% HNO₃]	~ 0.12 Mt CO ₂ e Uncertainty: - 50 % / + 300 %	~2.5 kg N₂O/t	Not estimated
Japan	10	Catalytic decomposition units at least partly in use (estimated at 75 % of capacity)	0.23 Mt [100% HNO₃]	0.2 Mt CO ₂ e Uncertainty: 73 %	3.0 kg N₂O/t	~50%
Republic of Korea	6	All plants are equipped with abatement technologies	1.3 Mt [100% HNO₃]	0.2 Mt CO ₂ e Uncertainty estimate not available	∼ 0.6 kg N₂O/ t	none

	Number of facilities	N₂O Abatement Technologies in Place	Annual Production (2020)	Annual N₂O emissions (2020)	Specific N ₂ O emissions (2020)	'low-hanging fruit' N₂O mitigation potential in unabated plants
Norway	2	complete application of secondary catalytic abatement measures	~2 Mt [100% HNO ₃]	0.1 Mt CO ₂ e Uncertainty: low (~1-7 %)	0.2 kg N ₂ O/t	none
Russia	64 production lines / 14 operators	catalytic NO _x abatement in place, no targeted N ₂ O abatement	10.2 Mt [100% HNO₃]	GHG inventory: 5.4 Mt CO ₂ e Own estimate: 21.7 Mt CO ₂ e Uncertainty: very high	GHG inventory: 2 kg N₂O/t Own estimate: 8.1 kg N₂O/t	~70 %
Saudi-Arabia	1	Yes. No information on type of system	Plant capacity ~0.4 Mt HNO₃ /a	∼0.05 – 0.25 Mt CO₂e Uncertainty very high	Not available 2019 IPCC refinement defaults: 1.5-2.5 kg N ₂ O/t1	Not estimated
Singapore	1	Uncertain: 2012 CDM application for tertiary catalytic N ₂ O destruction was cancelled.	Plant capacity ∼ 0.1 Mt HNO₃/a	Uncertain If unabated, up to ~0.27 Mt CO ₂ e	Not available	Not estimated
Trinidad and Tobago	1	None	Plant capacity: ~0.5 Mt HNO₃ /a	∼1 Mt CO₂e Uncertainty: high	Possibly ~ 9 kg N ₂ O/t for an unabated plant	~98%
United Arab Emirates	Unclear, possibly 1 or 2	No information available	Not available possibly in the range 0.04 – 0.15 Mt	Not available Possibly in the range ~0.01 - 0.4 Mt CO ₂ e	Not available	Not estimated
United Kingdom	4 production lines at two sites	Full coverage with secondary catalytic abatement measures	~1.1 Mt [100% HNO₃]	0.04 Mt CO₂e Uncertainty: low	0.1 kg N ₂ O/t	none
United States of America	32 facilities, 52 lines	Abatement technologies at 15 of 32 facilities	8.0 Mt	8.3 Mt CO₂e Uncertainty: ±5 %	3.9 kg N ₂ O/t	~71%
Note: N ₂ O amounts	converted into CO ₂ equiva	alents using the GWP of 265 as set out	in the 5 th IPCC Assessment	Report (AR5)		

3.3 Adipic acid production overview

For adipic acid production, Figure 7 depicts estimated 2020 N_2O emissions per country in comparable representation used for nitric acid in Figure 5. Estimated emission intensities range from a very high 40 kg N_2O/t (USA) to as low as 2-4 kg/t and less for the EU and Korea.

Adipic acid production is taking place in only six of the industrialised countries studied, i.e., the USA, Japan, Korea and the EU Member States France, Germany and Italy. While ambitious mitigation is taking place in Japan, Korea and the EU, the mitigation efforts in the USA are insufficient, as available mitigation equipment appears to be operated poorly.

Figure 7: Estimated 2020 N₂O emissions from adipic acid production in industrialised countries

Notes: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) JPN: Japan; EU: European Union (27 member states after Brexit); KOR: Republic of Korea EF: Emission factor

Sources: IPCC (2006), own calculations of Öko-Institut, own representation of study results

A full cross-country overview of key information collected for N₂O from adipic acid production is given in Table 46:

Table 46:Cross-country overview adipic acid production

	Number of facilities	N₂O Abatement Technologies in Place	Annual Production (2020)	Annual N₂O emissions (2020)	Specific N₂O emissions (2020)	'low-hanging fruit' N₂O mitigation potential in unabated plants
Canada	None active (plant closed 2009)	-	-	-	-	-
European Union	5	Widespread application of secondary and/or tertiary abatement measures	~0.25 Mt	0.25 Mt CO ₂ e Uncertainty: ~9 %	Not available for EU27 ~ 4 kg N ₂ O /t (Italy)	none
Japan	1	N ₂ O decomposition unit installed 1999	not available (~0.17 Mt/a production capacity)	0.3 Mt CO₂e Uncertainty: 9 %	Not available	none
Republic of Korea	1	Yes	0.12-0.14 Mt (in 2012)	~0.1 Mt CO ₂ e Uncertainty estimate not available	~ 1.7 kg N ₂ O/ t	none
Singapore	None active (1 plant closed 2012)	Plant was equipped with N ₂ O abatement	-	-	-	-
United States of America	2	Yes, but partly of poor quality	~0.7 Mt	7.4 Mt CO ₂ e Uncertainty: ±5 %	~40 kg N ₂ O/t	Not estimated

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5)

3.4 Caprolactam production overview

For caprolactam production, Figure 8 depicts estimated 2020 N_2O emissions per country in a comparable representation used for nitric acid in Figure 5 and for adipic acid in Figure 7. Estimated emission intensities range from a very high 9 kg N_2O/t (IPCC (2006) default emission factor applied for the USA and Russia) to as low as 2 kg/t for Japan and Korea. Even lower emission rates were reported for some EU Member States such as Poland (0.6 kg N_2O/t) and Germany (nearly complete elimination).

Caprolactam production is taking place in ten of the industrialised countries studied, i.e. the USA, Russia, Japan, Korea and the six EU Member States Belgium, Czechia, Germany, Netherlands, Poland and Spain. While ambitious mitigation is taking place in Japan, Korea and some EU countries, the mitigation efforts are insufficient in the USA, Russia and other EU countries (unlike nitric acid and adipic acid production, N_2O emissions from caprolactam production are not covered by the EU-ETS).

Figure 8: Estimated 2020 N₂O emissions from caprolactam production in industrialised countries

Notes: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5) RUS: Russian Federation; EU: European Union (27 member states after Brexit); KOR: Republic of Korea, JPN: Japan EF: Emission factor Sources: IPCC (2006), own representation of study results

A full cross-country overview of key information collected for N_2O from caprolactam production is given in Table 47:

	Number of facilities	N ₂ O Abatement Technologies in Place	Annual Production (2020)	Annual №0 emissions (2020)	Specific N₂O emissions (2020)	'low-hanging fruit' N₂O mitigation potential from unabated plants
European Union	~10	Partial application of primary or tertiary abatement measures	~1 Mt	1.2 Mt CO₂e Uncertainty: ~9 %	Not available for EU27 ∼ 4 kg N₂O/t (Belgium/Poland)	Not estimated
Japan	3 (one of those announced to be closed in October 2022)	abatement units at least partly in use (estimated at 80 % of capacity)	0.2 Mt	0.1 Mt CO₂e Uncertainty: 99 %	2.0 kg N ₂ O/t	Not estimated
Republic of Korea	1	Yes	0.13 Mt (in 2010), production capacity in 2020: 0.27 Mt	~0.1 Mt CO ₂ e Uncertainty estimate not available	~ 2.3 kg N ₂ O/ t	None
Russia	3 operators	no N₂O abatement		0.9 Mt CO₂e Uncertainty: ±40 %	9 kg N₂O/t (IPCC default estimate)	Not estimated
United States of America	2	No information available	0.45 Mt	1.1 Mt CO₂e Uncertainty: ±30 %	9 kg N₂O/t (IPCC default estimate)	Not estimated

 Table 47:
 Cross-country overview caprolactam production

Note: N₂O amounts converted into CO₂ equivalents using the GWP of 265 as set out in the 5th IPCC Assessment Report (AR5)

List of References

- Adfert (2017): Abu Dhabi Fertilizer Industries Co. Online available at http://www.adfert.com/production/index.html.
- Archipetrol (2022): Mishor Rotem Chemical Industrial Complex. Online available at https://archipetrol.com/media/projects/Mishor%20Rotem%20Chemical%20Industrial%20Comple x.pdf, last accessed on 2 Feb 2023.
- Australia (2009): Australia's National Guidelines and Procedures for Approving Participation in Joint Implementation Projects. Online available at https://ji.unfccc.int/UserManagement/FileStorage/VRD1NYBSZCMF7JP5GOUEWX6809IT3Q.
- Australia (2019): Australia. 2019 Biennial report. Online available at https://unfccc.int/documents/208374.
- Australia (2022a): Australia. 2022 Common Reporting Format (CRF) Table. UNFCCC (ed.). Online available at https://unfccc.int/documents/478998, last accessed on 27 Jan 2023.
- Australia (2022b): Australia. 2022 National Inventory Report (NIR). Online available at https://unfccc.int/documents/478957, last accessed on 27 Jan 2023.
- Austria (2022a): Austria. Common Reporting Format. Online available at https://unfccc.int/documents/461936, last accessed on 7 Feb 2023.
- Austria (2022b): Austria. National Inventory Report (NIR). Online available at https://unfccc.int/documents/461938, last accessed on 2 Feb 2023.
- BASF (2021): BASF in Korea, Report 2021. Online available at https://www.basf.com/kr/documents/publications/2022/BASF%20in%20Korea%20Report%2020 21.pdf, last accessed on 10 Feb 2023.
- Belarus (2022): Belarus. National Inventory Report. Online available at https://unfccc.int/documents/461960.
- Belgium (2022a): Belgium. Common Reporting Format. Online available at https://unfccc.int/documents/461912.
- Belgium (2022b): Belgium. National Inventory Report. Online available at https://unfccc.int/documents/461915, last accessed on 2 Feb 2023.

BNDT (ed.) (2019). Information and technology manual on best available technologies., Production of ammonia, mineral fertilizers and inorganic acids. ITS 2- 2019 (in Russian language); Federal Agency for Technical Regulation and Meteorology - Bureau for best available technologies. (ITS, 2 - 2019). Moscow. Online available at https://rupec.ru/download.php?url=%2Fupload%2Fiblock%2Fe54%2Fe542aac213, last accessed on 23 Sep 2022.

- Bulgaria (2022a): Bulgaria. Common Reporting Format. Online available at https://unfccc.int/documents/461951.
- Bulgaria (2022b): Bulgaria. National Inventory Report, last accessed on 2 Feb 2023.
- Canada (2022): 2022 Common Reporting Format (CRF) Table. Online available at https://unfccc.int/documents/461923.
- CDM Executive Board (ed.) (2006): Republic of Chile. PANNA 1 N2O Abatement Project, PROJECT DESIGN DOCUMENT FORM (CDM PDD). Online available at https://cdm.unfccc.int/UserManagement/FileStorage/L643NOAKWFTMQ1PCYESI9D287R0JHX , last accessed on 3 Feb 2023.
- CDM Executive Board (ed.) (2014): Republic of Chile. Catalytic N2O destruction project in the tail gas of the nitric acid plant PANNA 3 of Enaex S.A., PROJECT DESIGN DOCUMENT (PDD), last accessed on 3 Feb 2023.
- Chemmanager (2015): Invista Closing Texas Adipic Acid Unit, Chemmanager. Chemmanager (ed.). Online available at https://www.chemanager-online.com/en/news/invista-closing-texas-adipic-acid-unit, last accessed on 8 Feb 2023.
- Chile (2020): Informe del Inventario Nacional de Chile 2020: Inventario nacional de gases de efecto invernadero y otros contaminantes climáticos 1990-2018. Online available at https://unfccc.int/documents/268469, last accessed on 9 Jun 2021.
- Clean Energy Regulator (2019): The safeguard mechanism, Emission Reduction Fund, Clean Energy Regulator. Online available at https://www.cleanenergyregulator.gov.au/ERF/About-the-Emissions-Reduction-Fund/the-safeguard-mechanism, last accessed on 2 Feb 2023.
- Clean Energy Regulator (2022a): 2019-20 Safeguard facility data. Version 1/07/2022, Clean Energy Regulator. Online available at https://www.cleanenergyregulator.gov.au/DocumentAssets/Pages/2019-20-Safeguard-facilitydata.aspx, last accessed on 30 Jan 2023.
- Clean Energy Regulator (2022b): About the Emissions Reduction Fund, Clean Energy Regulator. Online available at https://www.cleanenergyregulator.gov.au/ERF/About-the-Emissions-Reduction-Fund, last accessed on 20 Oct 2022.
- Clean Energy Regulator (2022c): Calculated baseline, The safeguard mechanism Baselines, Clean Energy Regulator. Online available at https://www.cleanenergyregulator.gov.au/NGER/The-safeguardmechanism/Baselines/Calculated-baseline, last accessed on 3 Feb 2023.
- Croatia (2022a): Croatia. Common Reporting Format. Online available at https://unfccc.int/documents/461821.
- Croatia (2022b): Croatia. National Inventory Report. Online available at https://unfccc.int/documents/461772, last accessed on 2 Feb 2023.

- Cyprus (2022): Cyprus. National Inventory Report. Online available at https://unfccc.int/documents/461671.
- Czechia (2022a): Czechia. Common Reporting Format. Online available at https://unfccc.int/documents/461886.
- Czechia (2022b): Czechia. National Inventory Report. Online available at https://unfccc.int/documents/461895, last accessed on 2 Feb 2023.
- Denmark (2022a): Denmark. Common Reporting Format. Online available at https://unfccc.int/documents/461946.
- Denmark (2022b): Denmark. National Inventory Report. Online available at https://unfccc.int/documents/461943, last accessed on 2 Feb 2023.
- DubiChem (2022): Nitric acid manufacturers, exporters, producers, and suppliers in Fujairah, Sharjah, Kuwait, Muscat, Dubai UAE. Online available at http://www.dubichem.com/blog/nitricacid-hno3manufacturers-exporters-producers-and-suppliers-fujairah-sharjahkuwait-muscat, last accessed on 8 Feb 2023.
- Enaex (2022): Greenhouse Gas Emissions Inventory 2021. Online available at https://www.enaex.com/cl/content/uploads/sites/2/2021/05/Greenhouse-Gas-Emissions-Inventory-2021.pdf, last accessed on 31 Jan 2023.
- EnerGreen Consulting (2011): Nitrous Oxide Emissions from Nitric Acid Production: A Review of Emissions Abatement Technology. Report prepared for DCCEE.
- Environment and Climate Change Canada (2022): National Inventory Report 1990-2020: Greenhouse Gas Sources and Sinks in Canada, Canada's Submission to the United Nations Framework Convention on Climate Change. Online available at https://unfccc.int/documents/461919, last accessed on 31 Jan 2023.
- EPA U.S. Environmental Protection Agency (2022a): EPA U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020 (EPA 430-R-22-003). U.S. Environmental Protection Agency. Online available at https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks, last accessed on 3 Feb 2023.
- EPA United States Environmental Protection Agency (2022b): FLIGHT Facility Level Information on Greenhouse Gases Tool, Greenhouse Gas Emissions from Large Facilities. Online available at https://ghgdata.epa.gov/ghgp/main.do, last accessed on 9 Feb 2023.
- EPA (2019): EPA. Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation 2015-2050, 2015–2050 United States Environmental Protection Agency Office of Atmospheric Programs (6207A). EPA-430-R-19-010 October 2019. In collaboration with Abt Associates, I.; ICF International and RTI International. EPA. Online available at https://www.epa.gov/sites/default/files/2019-09/documents/epa_nonco2_greenhouse_gases_rpt-epa430r19010.pdf, last accessed on 8 Feb 2023.

Espindesa (2017): NITRIC ACID PROJECT, INTEGRATED COMPLEX FOR MDI AND TDI PRODUCTS, SAUDI ARABIA. Online available at https://espindesa.es/en/projects/6/nitric-acid-project/.

Estonia (2022): Estonia. National Inventory Report. Online available at https://unfccc.int/documents/461808, last accessed on 2 Feb 2023.

European Commission (2021): List of operators in the EU-ETS. Online available at https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/union-registry_en // https://climate.ec.europa.eu/document/download/ab2c1214-decb-40bc-bb0dd37f080bdebd_en?filename=operators_ets_en.xlsx, last updated on 04 / 2021, last accessed on 8 Feb 2023.

European Union (2022a): European Union (KP). 2022 Common Reporting Format (CRF) Table, UNFCCC. Online available at https://unfccc.int/documents/461929.

- European Union (2022b): European Union. 2022 National Inventory Report (NIR). Online available at https://unfccc.int/documents/461931, last accessed on 8 Feb 2023.
- Finland (2022a): Finland. Common Reporting Format. Online available at https://unfccc.int/documents/461946.
- Finland (2022b): Finland. National Inventory Report. Online available at https://unfccc.int/documents/461893, last accessed on 2 Feb 2023.
- France (2022a): France. Common Reporting Format. Online available at https://unfccc.int/documents/461810.
- France (2022b): France. National Inventory Report. Online available at https://unfccc.int/documents/461899, last accessed on 2 Feb 2023.

FutureCamp Climate GmbH (2022): Scholz, D.;Nickel, F. Handbook on N2O Mitigation Experience in Germany/Europe. Version: November 2022. FutureCamp Climate GmbH. GIZ (ed.).

Germany (2022a): Germany. 2022 Common Reporting Format (CRF) Tables. UNFCCC (ed.). Online available at https://unfccc.int/documents/461716, last accessed on 5 Jan 2023.

Germany (2022b): National Inventory Report for the German Greenhouse Gas Inventory 1990 - 2020. Federal Environment Agency. Online available at https://unfccc.int/documents/461930.

- Gitarskiy, M. (2021): Report on provision of service on assessment of guiding, strategic and regulatory documents currently in place in the Russian Federation for nitrogen and nitrous oxides accounting and abatement within nitric acid production and the prospects for their inclusion in national strategic documents on climate change. GIZ / NACAG.
- Gokhale, H. (2021): Japan's carbon tax policy: Limitations and policy suggestions. Online available at https://www.sciencedirect.com/science/article/pii/S266604902100058X.
- Greece (2022a): Greece. Common Reporting Format. Online available at https://unfccc.int/documents/613728.

- Greece (2022b): Greece. National Inventory Report. Online available at https://unfccc.int/documents/461961.
- Hungary (2022a): Hungary. Common Reporting Format. Online available at https://unfccc.int/documents/461956.
- Hungary (2022b): Hungary. National Inventory Report. Online available at https://unfccc.int/documents/461959, last accessed on 2 Feb 2023.
- ICAP International Carbon Action Partnership (2023): Korea Emissions Trading Scheme. Online available at https://icapcarbonaction.com/en/ets/korea-emissions-trading-scheme, last accessed on 9 Feb 2023.
- ICAP International Carbon Action Partnership: Japan. Online available at https://icapcarbonaction.com/system/files/ets_pdfs/icap-etsmap-factsheet-69.pdf.
- ICAP (2022): ICAP ETS Map. Online available at https://icapcarbonaction.com/en/ets, last accessed on 25 Sep 2022.
- ICCA Park, H.Y. (2023): Personal Communication related to coverage of N2O emissions under K-ETS and Korean CDM projects. E-mail 22 feb 2023 with L. Schneider, 2023.
- ICIS (2007): Chemical Profile Adipic Acid, ICIS Chemical Business, 26 March-1 April 2007.
- IEA International Energy Agency (2018): Energy Policies Beyond IEA Countries Chile Review 2018. Online available at https://www.iea.org/reports/energy-policies-beyond-iea-countries-chile-2018-review, last accessed on 31 Jan 2023.
- IETA (2021): Clara, S. de;Lee, M. Carbon Market Business Brief Korea, Korea ETS at a glance. IETA. Online available at https://ieta.org/resources/Resources/CarbonMarketBusinessBrief/2021/CarbonMarketBusiness Brief Korea2021.pdf, last accessed on 10 Feb 2023.
- IGES (2022): IGES CDM Project Database, Version: 13.2, October 2022. Online available at https://www.iges.or.jp/en/pub/iges-cdm-project-database/en // https://www.iges.or.jp/en/publication_documents/pub/data/en/643/IGES_CDM_DB_v13.2_2022 1007.xlsx, last accessed on 20 Feb 2023.
- Incitec Pivot (2022): Press release: Incitec Pivot Limited Releases 2022 Climate Change Report. 30 Nov 2022. Online available at https://www.incitecpivot.com.au/about-us/about-incitec-pivot-limited/media/2022-11-30-ipl-releases-2022-climate-change-report, last accessed on 30 Jan 2023.

Invest Saudi (2021): Nitric Acid (HNO3) Investment Opportunity Scorecard. Online available at https://investsaudi.sa/medias/Nitric-Acid-HNO3-.pdf?context=bWFzdGVyfHBvcnRhbC1tZWRpYXw1MDczNDV8YXBwbGljYXRpb24vcGRmfHB vcnRhbC1tZWRpYS9oMDgvaDllLzg5MDk1OTM5MzU5MDIucGRmfDkxZTlkYmUyYzU1ODMw MjU3NWNkMWY1ZjdhM2I5NDdkNTk1NjE2YTRkYzRmNTkzYjE0NDQxN2IwOWFmNTIzOTI, last accessed on 9 Feb 2023.

- Invista (2012): Tertiary Catalytic Reduction of N2O at INVISTA (Singapore) Pte. Ltd.'s Nitric Acid Plant in Singapore. PDD (Project Design Document) under the CDM, Invista. Online available at https://cdm.unfccc.int/Projects/Validation/DB/63Q1XOK40FPARH2MRNZMKI4A52X6B7/view.ht ml, last accessed on 8 Feb 2023.
- IPCC (2000): Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, N2O emissions from adipic acid and nitric acid production. Online available at https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/3_2_Adipic_Acid_Nitric_Acid_Production.pdf.
- IPCC (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). IGES, Japan. Online available at http://www.ipccnggip.iges.or.jp/public/2006gl/index.html, last accessed on 9 Jun 2021.
- IPCC (2019): IPCC. 2019 Refinement to the 2006 Guidelines for National Greenhouse Gas Inventories. IPCC. Intergovernmental Panel on Climate Change (ed.). Online available at https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-nationalgreenhouse-gas-inventories/, last accessed on 9 Mar 2022.
- Ireland (2022a): Ireland. Common Reporting Format. Online available at https://unfccc.int/documents/611860.
- Ireland (2022b): Ireland. National Inventory Report. Online available at https://unfccc.int/documents/461723, last accessed on 2 Feb 2023.
- Israel (2015): Israel. Biennial update report (BUR). BUR 1., Israel. UNFCCC (ed.). Online available at https://unfccc.int/documents/180652.
- Israel (2018): Israel. National Communication (NC). NC 3., Israel. Online available at https://unfccc.int/documents/181387.
- Israel (2021): Israel National GHG Inventory 2021. Online available at https://unfccc.int/documents/370343.
- Israel Ministry of Environmental Protection (2022): Exchange of information related to N2O emissions from nitric acid production in Israel. E-Mail with Wolfram Jörß, Oeko-Institut, 2022.
- Italy (2022a): Italy. Common Reporting Format. Online available at https://unfccc.int/documents/461710.
- Italy (2022b): Italy. National Inventory Report. Online available at https://unfccc.int/documents/461788, last accessed on 2 Feb 2023.
- Japan (2019): Japan. Biennial Report (BR). BR4. Online available at https://unfccc.int/documents/209247.
- Japan (2022a): Japan. 2022 Common Reporting Format (CRF) Table. Online available at https://unfccc.int/documents/461932.

Japan (2022b): Japan. 2022 National Inventory Report (NIR). Online available at https://unfccc.int/documents/461933.

KBR (2018): KBR Awarded Contract to Revamp Haifa Chemicals Nitric Acid Plant in Israel, KBR. Online available at https://investors.kbr.com/news-and-events/news/news-details/2018/KBR-Awarded-Contract-to-Revamp-Haifa-Chemicals-Nitric-Acid-Plant-in-Israel/default.aspx.

KEMCO - Oh, Daegyun (2023): Personal communication related to coverage of N2O emissions from chemical industry under the CDM and K-ETS. E-mail of 21 Feb 2023 with Wolfram Jörß, Oeko-Institut, 2023.

KFQ (2020): Verification and certification report for CDM project #6637: Reduction of N2O emissions from the new nitric acid plant #5 of Hu-Chems Fine Chemical Corp. Online available at

https://cdm.unfccc.int/UserManagement/FileStorage/FQCL24YWVDPZ1980765BAMSUXOTRI N accessed through https://cdm.unfccc.int/Projects/DB/TUEV-SUED1341912725.05/view and https://cdm.unfccc.int/Projects/DB/TUEV-

SUED1341912725.05/iProcess/KFQ1581314219.38/view.

- Klimadock (2020): Klimadock. Nitric Acid Production Facilities in Australia. Klimadock. GIZ / NACAG (ed.).
- Korea IT Times (2021): Press release: Hanwha Corp. invests 190 billion won in nitric acid factory to produce 520,000 tons by 2023, 22 Apr 2021: Jung Jun-ho. Online available at http://www.koreaittimes.com/news/articleView.html?idxno=105313, last accessed on 9 Feb 2023.
- Latvia (2022): Latvia. National Inventory Report. Online available at https://unfccc.int/documents/461908, last accessed on 2 Feb 2023.
- Lithuania (2022a): Lithuania. Common Reporting Format. Online available at https://unfccc.int/documents/461769.
- Lithuania (2022b): Lithuania. National Inventory Report. Online available at https://unfccc.int/documents/461952, last accessed on 2 Feb 2023.
- Luxembourg (2022): Luxembourg. National Inventory Report. Online available at https://unfccc.int/documents/461887, last accessed on 2 Feb 2023.
- Malta (2022): Malta. National Inventory Report. Online available at https://unfccc.int/documents/461748, last accessed on 2 Feb 2023.
- Malyavin, A. (2021): Unterstützung bei der Umsetzung der NACAG Initiative in der Russischen Föderation. GIZ / NACAG.
- METI Japanese Ministry of Economy, Trade and Industry (2012): METI. Japan's Domestic Clean Development Mechanism. Japanese Ministry of Economy, Trade and Industry. Online available at https://japancredit.go.jp/pdf/jdcdm.pdf.

- METI Japanese Ministry of Economy, Trade and Industry (2022a): METI. J-Credit Scheme, March 2022. Japanese Ministry of Economy, Trade and Industry. Online available at https://japancredit.go.jp/english/pdf/credit_english_001_41.pdf, last accessed on 13 Sep 2022.
- METI (2022b): Ministry of Economy, Trade and Industry. GX League Basic Concept Announced, Call for Endorsing Companies Starts. METI. Online available at https://www.meti.go.jp/english/press/2022/0201_001.html.
- METI (2022c): Ministry of Economy, Trade and Industry. Making Progress toward Social Transformation and New Market Creation for Carbon Neutrality with the 440 Companies Endorsing the GX League!- Second Segment Held. METI. Online available at https://www.meti.go.jp/english/press/2022/0401_001.html.
- Ministerio del Medio Ambiente (2020): Informe del Inventario Nacional de Chile 2020, Inventario nacional de gases de efecto invernadero y otros contaminantes climáticos 1990-2018. Online available at https://snichile.mma.gob.cl/wp-content/uploads/2022/06/Informe_del_Inventario_Nacional_de_GEI_serie_1990-2018.pdf, last accessed on 31 Jan 2023.
- Ministerio del Medio Ambiente (2021): Cuarta Comunicación Nacional de Chile ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. Online available at https://unfccc.int/documents/278442, last accessed on 31 Jan 2023.
- Ministerio del Medio Ambiente (2022): 5to Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre Cambio Climático, last accessed on 31 Jan 2023.
- Ministry of Planning and Development (2021): Third National Communication of the Republic of Trinidad and Tobago to the United Nations Framework Convention on Climate Change. Online available at https://unfccc.int/documents/416026, last accessed on 3 Feb 2023.
- NCCS (2023): Carbon Tax, Website of the National Climate Change Secretariat Singapore, NCCS. Online available at https://www.nccs.gov.sg/singapores-climate-action/carbon-tax/, last accessed on 8 Feb 2023.
- Netherlands (2022): Netherlands. National Inventory Report. Online available at https://unfccc.int/documents/461906, last accessed on 2 Feb 2023.
- New Climate Institute (2021a): Climate Policy Database Saudi Arabia. Online available at https://www.climatepolicydatabase.org/countries/saudi-arabia, last accessed on 9 Feb 2023.
- New Climate Institute (2021b): Climate Policy Database Trinidad and Tobago. Online available at https://www.climatepolicydatabase.org/countries/trinidad-and-tobago, last accessed on 9 Feb 2023.
- New Climate Institute (2022): Climate Policy Database Chile. Online available at https://www.climatepolicydatabase.org/countries/chile, last accessed on 9 Feb 2023.
- New Zealand (2022): New Zealand Common Reporting Format, 1990 2020, New Zealand. Online available at https://unfccc.int/documents/461877, last accessed on 2 Feb 2023.

- Norway (2022a): Norway. Common Reporting Format. Online available at https://unfccc.int/documents/614131.
- Norway (2022b): Norway. National Inventory Report. Online available at https://unfccc.int/documents/461706.
- OEC (2020): Nitric Aids. Online available at https://oec.world/en/profile/hs/nitric-acids.
- OECD Publishing (ed.) (2018): OECD/UN. Production Transformation Policy Review of Chile, Reaping the Benefits of New Frontiers (OECD Development Pathways). Paris. Online available at https://www.oecd.org/publications/production-transformation-policy-review-of-chile-9789264288379-en.htm, last accessed on 2 Feb 2023.
- OOO "Azotekon" (2001): Piskoppel, L. A. Global production of nitric acid and the place of Russia, Report at the scientific-practical conference "Production of Nitric Acid"; OAO "Kirovo-Chepetsk Holding Company", November 27-28, 2001. quoted in: 2022 National Inventory Report of the Russian Federation, https://unfccc.int/documents/461970. OOO "Azotekon". Kirovo-Chepetsk.
- Orica (2021): Press release: Orica partners with Government to reduce Kooragang Island site GHG emissions by 48%, 08 Nov 2021. Online available at https://www.orica.com/news-media/2021/orica-partners-with-government-to-reduce-kooragang-island-site-ghg-emissions-by-48, last accessed on 30 Jan 2023.
- Orica (2022): Orica Climate Action Report 2022. Online available at https://www.orica.com/ArticleDocuments/311/2022%20Orica%20Climate%20Action%20Report. pdf.aspx, last accessed on 30 Jan 2023.
- Phil McKenna (2022): A Florida Chemical Plant Has Fallen Behind in Its Pledge to Cut Emissions of a Potent Greenhouse Gas. Inside Climate News (ed.). Online available at https://insideclimatenews.org/news/18022022/florida-ascend-plant-super-pollutants/, last accessed on 3 Feb 2023.
- Poland (2022a): Poland. Common Reporting Format. Online available at https://unfccc.int/documents/461817.
- Poland (2022b): Poland. National Inventory Report. Online available at https://unfccc.int/documents/461818, last accessed on 2 Feb 2023.
- Portugal (2022): Portugal. National Inventory Report. Online available at https://unfccc.int/documents/461818, last accessed on 2 Feb 2023.
- Proman (2023): Methanol Holdings (Trinidad) Limited. Online available at https://www.proman.org/companies/mhtl/, last accessed on 9 Feb 2023.
- RCC (2005): Caprolactam producers in Russia and the CIS survive on exports. (in Russian language), RCC. Online available at http://rcc.ru/article/proizvoditeli-kaprolaktama-v-rossii-i-sng-vyzhivayut-za-schet-eksporta-801, last accessed on 3 Feb 2023.
- Republic of Chile (2014): Catalytic N2O destruction project at the new nitric acid plant PANNA 4 of Enaex S.A. PROJECT DESIGN DOCUMENT (PDD), PROJECT DESIGN DOCUMENT (PDD),

UNFCCC. CDM - executive board (ed.). Online available at https://cdm.unfccc.int/UserManagement/FileStorage/XZULPYFNQTG2HJDR1AE57K304WV9B O, last accessed on 2 Feb 2023.

- Republic of Korea (2010): Project for the catalytic reduction of N2O emissions with a secondary catalyst inside the ammonia reactor of the nitric acid plant at Dongbu Hannong Chemicals Ltd., Ulsan, Korea ("Dongbu")., CDM Project Design Document (PDD). Online available at https://cdm.unfccc.int/Projects/DB/SGS-UKL1195730526.46/view, last accessed on 10 Feb 2023.
- Republic of Korea (2011): N2O Abatement Project of Capro Corporation, CDM Project Description Document (PDD). Online available at https://cdm.unfccc.int/Projects/DB/TUEV-SUED1302245900.58/view, last accessed on 8 Feb 2023.
- Republic of Korea (2012): Reduction of N2O emissions from the new nitric acid plant #5 of Hu-Chems Fine Chemical Corp., CDM Project Design Document (PDD). Online available at https://cdm.unfccc.int/Projects/DB/TUEV-SUED1341912725.05/view, last accessed on 8 Feb 2023.
- Republic of Korea (2013): N2O Emission Reduction in Onsan, Republic of Korea, CDM PROJECT DESIGN DOCUMENT (PDD). Online available at https://cdm.unfccc.int/UserManagement/FileStorage/9MN8ZDTYP3UQK02XR1BHJG4A6EL57F , last accessed on 8 Feb 2023.
- Republic of Korea (2020): Catalytic N2O destruction project in the tail gas of three Nitric Acid Plants at Hu-Chems Fine Chemical Corp., CDM Project Design Document (PDD). Online available at https://cdm.unfccc.int/Projects/DB/TUEV-SUED1163081212.47/view, last accessed on 8 Feb 2023.
- Republic of Korea (2021a): Catalytic N2O Abatement Project in the Tail Gas of the Nitric Acid Plant of the Hanwha Corporation (HWC) in Ulsan, Republic of Korea, CDM Project Design Document Form (PDD). Online available at https://cdm.unfccc.int/Projects/DB/TUEV-SUED1170949600.29/view, last accessed on 8 Feb 2023.
- Republic of Korea (2021b): Reduction of N2O emissions from the new NA plant 6 of Hu-Chems Fine Chemical Corp, CDM Project Design Document (PDD). Online available at https://cdm.unfccc.int/Projects/DB/RWTUV1590853435.24/view, last accessed on 8 Feb 2023.
- Romania (2022): Romania. National Inventory Report. Online available at https://unfccc.int/documents/461892, last accessed on 2 Feb 2023.
- Russian Federation (2020): NATIONALLY DETERMINED CONTRIBUTION of the RUSSIAN FEDERATION, as part of the implementation of the Paris Agreement of December 12, 2015. Online available at https://unfccc.int/documents/497862, last accessed on 3 Feb 2022.
- Russian Federation (2022a): Russian Federation. 2022 Common Reporting Format (CRF) Table. UNFCCC (ed.). Online available at https://unfccc.int/documents/461969.

- Russian Federation (2022b): Russian Federation. Russian Federation. 2022 National Inventory Report (NIR). Russian Federation. UNFCCC (ed.). Online available at https://unfccc.int/documents/461970, last accessed on 2 Feb 2023.
- Saudi Arabia Designated National Authority (2022): Fourth National Communication Kingdom of Saudi Arabia, Submitted to: The United Nations Framework Convention on Climate Change (UNFCCC). Online available at https://unfccc.int/documents/461529, last accessed on 3 Feb 2023.
- Sawyer, D.; Stiebert, S.; Gignac, R.; Campney, A.; Beugin, D. (2021): 2020 Expert Assessment of Carbon Pricing Systems., Canadian Institute for Climate Choices. Online available at https://publications.gc.ca/collections/collection_2021/eccc/En4-434-2021-eng.pdf, last accessed on 31 Jan 2023.
- Schneider, L.; Lazarus, M.; Kollmuss, A. (2010): Industrial N2O Projects Under the CDM: Adipic Acid - A Case of Carbon Leakage? Somerville. Stockholm Environment Institute. Online available at https://www.sei.org/publications/industrial-n2o-projects-cdm-adipic-acid-casecarbon-leakage/.
- Singapore (2020): Singapore. Singapore's Fourth Biennial Update Report, under the United Nations Framework Convention on Climate Change. 2020. Singapore. Singapore National Environment Agency (ed.). Online available at https://unfccc.int/documents/267632, last accessed on 8 Feb 2023.
- Singapore (2022): Singapore. Singapore's Fifth National Communication and Fifth Biennial Update Report, under the United Nations Framework Convention on Climate Change. 2022. Singapore. Singapore National Environment Agency (ed.). Online available at https://unfccc.int/documents/621650, last accessed on 8 Feb 2023.
- Slovakia (2022): Slovakia. Common Reporting Format. Online available at https://unfccc.int/documents/461849.
- Slovakia (2023): Slovakia. National Inventory Report. Online available at https://unfccc.int/documents/461882, last accessed on 2 Feb 2023.
- Slovenia (2022a): Slovenia. Common Reporting Format. Online available at https://unfccc.int/documents/461867.
- Slovenia (2022b): Slovenia. National Inventory Report. Online available at https://unfccc.int/documents/461953, last accessed on 2 Feb 2023.
- Spain (2022a): Spain. Common Reporting Format. Online available at https://unfccc.int/documents/461783.
- Spain (2022b): Spain. National Inventory Report. Online available at https://unfccc.int/documents/461784, last accessed on 2 Feb 2023.
- Stockholm Environment Institute (2010): Kollmuss, A.;Lazarus, M. Industrial N2O Projects Under the CDM. The Case of Nitric Acid Production, Stockholm Environment Institute Working Paper WP-US-1007. Stockholm Environment Institute.

- Sumitomo Chemical (2022). Sumitomo Chemical to Exit the Caprolactam Business. Sumitomo Chemical. Online available at https://www.sumitomo-chem.co.jp/english/news/detail/20220415e.
- Sweden (2022a): Sweden. Common Reporting Format. Online available at https://unfccc.int/documents/461782.
- Sweden (2022b): Sweden. National Inventory Report. Online available at https://unfccc.int/documents/461776, last accessed on 2 Feb 2023.
- The Government of the Republic of Korea (2021): Fourth Biennial Update Report of the Republic of Korea, under the United Nations Framework Convention on Climate Change. Online available at https://unfccc.int/documents/418616, last accessed on 3 Feb 2023.
- The Government of the Republic of Korea (2022): National Greenhouse Gas Inventory 1990-2020. Online available at http://www.gir.go.kr/home/file/readDownloadFile.do?fileId=5810&fileSeq=2, last accessed on 8 Feb 2023.
- The Korea Economic Daily (21 Apr 2021): Press release: Hanwha challenges monopoly in S.Korea's nitric acid sector: Kyung-Ming Kang. Online available at https://www.kedglobal.com/chemical-industry/newsView/ked202104210011, last accessed on 9 Feb 2023.
- Thyssenkrupp (2023): References: Nitrate Plants, Queensland Nitrates Pty. Ltd. Moura, Australia (Completion 1999/2000), Thyssenkrupp. Online available at https://www.thyssenkrupp-uhde.com/en/references/nitrates, last accessed on 30 Jan 2023.
- TÜV Nord (2021): Validation report for CDM project #10574: Reduction of N2O emissions from the new NA plant 6 of Hu-Chems Fine Chemical Corp. Online available at https://cdm.unfccc.int/UserManagement/FileStorage/MXWR4QIOV85PC2S1F0G6ZHY7NEDUB 9 accessed through https://cdm.unfccc.int/Projects/DB/RWTUV1590853435.24/view, last accessed on 16 Feb 2023.
- UNEP (2022): JI Pipeline spreadsheet, UNEP Copenhagen Climate Centre. Online available at https://www.cdmpipeline.org/publications/JiPipeline.xlsx downloaded from https://www.cdmpipeline.org/ji-projects.htm on 25 Sep 2022.
- UNFCCC (2023): Project 1369 : Project for the catalytic reduction of N2O emissions with a secondary catalyst inside the ammonia reactor of the N1 & N2 nitric acid plants at Haifa Chemicals Ltd., Israel, UNFCCC CDM Project Database. UNFCCC (ed.). Online available at https://cdm.unfccc.int/Projects/DB/SGS-UKL1191241778.72/view, last accessed on 8 Feb 2023.
- United Arab Emirates (2007): The United Arab Emirates. Initial National Communication to the United Nations Framework Convention on Climate Change. Ministry of Energy, United Arab Emirates. Online available at https://unfccc.int/documents/144887, last accessed on 8 Feb 2023.
- United Arab Emirates (2010): The United Arab Emirates. Second National Communications to the Conference of the Parties of United Nations Framework Convention on Climate Change. Online available at https://unfccc.int/documents/144889.

- United Arab Emirates (2013): United Arab Emirates. 3rd National Communications to the Conference of the Parties of United Nations Framework Convention on Climate Change. Ministry of Energy. Online available at https://unfccc.int/documents/144890.
- United Arab Emirates (2018): United Arab Emirates 4rth National Communication Report. Ministry of Energy & Industry. Online available at https://unfccc.int/documents/192549.
- United Kingdom (2022a): Participating in the UK ETS. Online available at https://www.gov.uk/government/publications/participating-in-the-uk-ets/participating-in-the-uk-ets.
- United Kingdom (2022b): United Kingdom. 2022 Convention Common Reporting Format (CRF) Table. UNFCCC (ed.). Online available at https://unfccc.int/documents/461920, last accessed on 8 Feb 2023.
- United Kingdom (2022c): United Kingdom. Common Reporting Format. Online available at https://unfccc.int/documents/461920.
- United Kingdom (2022d): United Kingdom. UK Greenhouse Gas Inventory, 1990 to 2020, Annual Report for Submission under the Framework Convention on Climate Change (978-0-9933975-8-5). United Kingdom. UNFCCC (ed.). Online available at https://unfccc.int/documents/461922, last accessed on 8 Feb 2023.
- United Nations (2022): World Population Prospects 2022: Online Edition., United Nations, Department of Economic and Social Affairs, Population Division. Last update in UNdata: 2022/10/07. Online available at https://data.un.org/Data.aspx?d=PopDiv&f=variableID%3A12, last accessed on 8 Feb 2023.
- United States of America (2022a): United States of America Common Reporting Format, 1990-2020, United States of America. Online available at https://unfccc.int/documents/461947, last accessed on 2 Feb 2023.
- United States of America (2022b): United States of America. National Inventory Report. Online available at https://unfccc.int/documents/461948.
- US EPA Alsalam, J. (2023): Personal communication related to data sources used to model Singapore N2O emissions from nitric and adipic acid production for the 2019 EPA report on global non-CO2 GHG emissions. E-mail of 26 Jan 2023 with W. Jörß, 2023.
- Wesfarmers (2022). Wesfarmers Chemicals, Energy and Fertilisers' Decarbonisation Journey. April 2022. Wesfarmers. Online available at https://wescef.com.au/wpcontent/uploads/2022/07/220613-WesCEF-Decarbonisation-Journey.pdf, last accessed on 30 Jan 2023.
- Yara (2022): About Yara Pilbara Fertilizers, Yara. Online available at https://www.yara.com.au/about-yara/about-yara-australia/pilbara/yara-pilbara-fertilisers, last accessed on 7 Jul 2022.

Annexes

Annex I. Benchmark for N₂O Emissions from nitric acid production

2020 emissions and production data from countries participating in the EU-ETS were used to derive a benchmark for the quantification of N_2O mitigation potentials in this study. Considered countries (Table 48) include Norway and the United Kingdom which are/were participating in the EU-ETS. The United Kingdom has left the EU-ETS after Brexit, the UK ETS is operational since 2021.

Table 48:2020 production of nitric acid and related N2O emissions in European
countries participating in the EU-ETS

Considered ETS participants	2020 Nitric acid production <i>kt Nitric acid (100% HNO</i> 3)	2020 N ₂ O Emissions <i>kt N</i> 2O	2020 implied emission factor <i>kg N</i> ₂ O /t HNO ₃
Sweden	280	0.02	0.07
Hungary	900	0.11	0.12
United Kingdom	1141	0.17	0.15
Norway	1951	0.33	0.17
Italy	447	0.13	0.30
Austria	557	0.18	0.32
Greece	189	0.06	0.34
Belgium	2209	0.93	0.42
Slovakia	580	0.25	0.44
Czechia	492	0.24	0.49
Germany	2535	1.27	0.50
Poland	2413	1.30	0.54
Spain	692	0.46	0.66
Croatia	294	0.22	0.74
France	1731	1.45	0.84
Total considered EU-ETS	16412	7.1	0.43
Not considered ETS participants with nitric acid production			
Finland (reported emissions data include integrated fertiliser production)	659	0.76	1.15
Bulgaria	confidential	0.27	confidential
Netherlands	confidential	0.67	confidential
Portugal	confidential	0.11	confidential
Romania	confidential	0.31	confidential

Source: (Sweden 2022a; Hungary 2022a; Norway 2022a; Italy 2022a; Austria 2022a; Greece 2022a; Belgium 2022a; Slovakia 2022; Czechia 2022a; Germany 2022a; Poland 2022a; Spain 2022a; Croatia 2022a; France 2022a; United Kingdom 2022c); own calculations

Finnish data were not used for the analysis as Finland reports in CRF category 2.B.2 N_2O -Emissions from fertiliser production jointly with N_2O emissions from nitric acid production (Finland 2022b). Data from Bulgaria, the Netherlands, Portugal and Romania could not be used as nitric acid production levels were not publicly reported for confidentiality reasons. EU Member States not included in Table 48 do not host nitric acid production. Figure 9 presents the distribution of respective national implied emission factors and weighted averages:

Figure 9: 2020 N₂O implied emission factors for nitric acid production in EU-ETS countries

Sources: (Sweden 2022a; Hungary 2022a; Norway 2022a; Italy 2022a; Austria 2022a; Greece 2022a; Belgium 2022a; Slovakia 2022; Czechia 2022a; Germany 2022a; Poland 2022a; Spain 2022a; Croatia 2022a; France 2022a; United Kingdom 2022c); own calculations

Benchmarks derived from this analysis range around the 2020 EU ETS weighted average of 0.43 kg N₂O/t HNO₃, between 0.15 kg N₂O/t HNO3 (25 % best performing HNO₃ production in EU ETS countries) and 0.6 kg N₂O/t HNO₃ (bottom 50 %). We acknowledge that the technical feasibility of specific N₂O emission and related costs do depend on plant specifics, in particular single pressure / dual pressure and low/medium /high pressure characteristics of individual plants. However specific emissions in the range well below 1 kg N₂O/t HNO₃ can be considered achievable if incentives to plant operators are accordingly set with ambitious climate policies targeting N₂O emissions.

Annex II. Benchmark for N₂O Emissions from adipic acid production

Italy is the only country which so far reported under the UNFCCC a non-confidential time series of adipic acid production and related N_2O emissions, thus allowing to calculate a time series of implied emission factors (Table 49).

Figure 10 displays the development of the average Italian emission factor for N_2O from adipic acid production (Table 49), reflecting the introduction of abatement measures under the influence of the EU-ETS: As reported by Italy with its inventory submission to the UNFCCC (Italy 2022b) pilot operation of catalytic decomposition facilities started 2005, full scale deployment was reached 2007 which led to an emission factor of approximately 30 kg N_2O / t adipic acid, compared to the IPCC default EF of 300 kg/t (assuming no N_2O abatement) used for the first years of the time series. After 2011 further technical improvements were introduced leading to less frequent downtimes of the abatement equipment. Since 2011, the emission factor has been rather stable at levels between 2.5 and 4.5 kg/t.

Source: (Italy 2022a), own calculations

The weighted 2011-2020 average of $3.45 \text{ kg } N_2\text{O}$ / t adipic acid can thus be considered a benchmark for emission levels reflecting the application of ambitious policy instruments for N₂O abatement.

Table 49:	Italian production of adipic acid and related N ₂ O emissions					
	adipic acid production	N ₂ O Emissions	implied emission factor			
	ĸ					
1990	49.2	14.8	300			
2000	71.4	21.4	300			
2001	75.3	22.6	300			
2002	74.0	22.2	300			
2003	69.0	20.7	300			
2004	77.9	21.4	275			
2005	75.1	19.6	260.8			
2006	84.0	4.6	54.5			
2007	84.1	2.5	30.0			
2008	76.0	2.3	30.0			
2009	78.2	2.4	30.9			
2010	85.4	1.6	18.5			
2011	82.6	0.4	4.5			
2012	78.8	0.3	3.5			
2013	80.3	0.4	4.6			
2014	84.2	0.2	2.4			
2015	81.8	0.4	4.5			
2016	83.3	0.2	2.7			
2017	86.8	0.2	2.9			
2018	86.4	0.2	2.5			
2019	76.3	0.3	3.4			
2020	72.9	0.3	3.7			

Source: (Italy 2022a)

Annex III. Benchmark for N₂O Emissions from caprolactam production

Under the UNFCCC, six countries have been reporting a non-confidential time series of caprolactam production and related N_2O emissions, thus allowing to calculate a time series of implied emission factors: Belarus, Belgium, Japan, Poland, Russia and the USA.

While Belarus, Russia and the USA use the IPCC default emission factor (assuming no N_2O abatement) of 9 kg N_2O / t caprolactam for their emission calculations (Belarus 2022; Russian Federation 2022b; United States of America 2022b), the emissions reported by Belgium, Japan and Poland are based on measurements (Belarus 2022; Japan 2022b; Poland 2022b). The respective time series from 2010 to 2020 are displayed in Figure 11:

Source: (Bulgaria 2022a; Belgium 2022a; Japan 2022a; Poland 2022a; Russian Federation 2022a; United States of America 2022a), own presentation

Belgium explains the declining trend in the emission factor by primary measures taken after 2010 in the single Belgian caprolactam production facility, leading to an IEF of 6.7 kg/t in 2020, compared to 12.1 kg/t in 2011 (Belgium 2022b). Both Japan and Poland report measurement-based emission factors significantly below the IPCC default emission factor of 9 kg N_2O / t caprolactam: Japan's average emission factor has declined from 6.3 kg/t in 2011 to 2.0 kg/t in 2020. However, no explanation e.g. with respect to N_2O abatement measures possibly taken are given in the inventory report (Japan 2022b).

Poland's average emission factor declined from 2.7 kg/t (2015) to 0.6 kg/t (2020) based on measurements (Poland 2022b) the emission factor of 4.7 kg/t used until 2014 had been based on a technical study dated 2001. However, the Polish inventory report (Poland 2022b)does not give any information with respect to N_2O abatement measures possibly taken which would possibly explain the trend observed 2014-2020.

It should be noted, however, that specific emissions close to zero are technically possibly as reported by Germany for a plant equipped with a thermal waste-gas treatment system to destroy nitrous oxide in redundant design: Detailed information available to the German single national entity in charge of the GHG inventory indicates that the pertinent post-combustion system can be assumed to completely eliminate the nitrous oxide quantities involved (Germany 2022b). However, a quantified N₂O emission factor for caprolactam production is not reported in the German GHG inventory.

The performance of a redundant thermal waste-gas treatment system can be estimated as follows in accordance with calculations performed by Germany, subject to approval by independent technical inventory review (Germany 2022b): 98.5 % reduction rate for the primary waste-gas treatment system, 97 % utilisation rate for the primary system, 97 % reduction rate for the redundant waste-gas treatment system, resulting in an overall reduction rate of 98.455 %. Applied to the 9 kg/t IPCC default EF assuming no abatement, such a reduction rate would be equivalent to an emission factor of 0.14 kg N₂O / t caprolactam.

Thus, we consider an emission factor of about 0.6 kg/t, as reported by Poland, as a conservative benchmark for N_2O emission levels from caprolactam production achievable by ambitious policy instruments.