

# P2X: Erforschung, Validierung und Implementierung von "Power-to-X" Konzepten.

Ökobilanz der Herstellung und Nutzung von Oxymethylenether (OME)

Darmstadt, September 2019

#### Autorinnen und Autoren

Jürgen Sutter Cornelia Merz Geschäftsstelle Freiburg

Postfach 17 71 79017 Freiburg Hausadresse Merzhauser Straße 173 79100 Freiburg Telefon +49 761 45295-0

Büro Berlin Schicklerstraße 5-7 10179 Berlin Telefon +49 30 405085-0

**Büro Darmstadt** Rheinstraße 95 64295 Darmstadt Telefon +49 6151 8191-0

info@oeko.de www.oeko.de

Bundesministerium für Bildung und Forschung

# Inhaltsverzeichnis

| Abbildu | ngsverzeichnis                                                                             | 6  |
|---------|--------------------------------------------------------------------------------------------|----|
| Tabelle | nverzeichnis                                                                               | 7  |
| Abkürzu | ungsverzeichnis                                                                            | 9  |
| Zusamn  | nenfassung                                                                                 | 11 |
| 1.      | Einleitung                                                                                 | 13 |
| 2.      | Ziele und Anwendungen der Studie                                                           | 15 |
| 3.      | Festlegung des Untersuchungsrahmens                                                        | 15 |
| 3.1.    | Funktion und funktionelle Einheit                                                          | 15 |
| 3.2.    | Festlegung der Systemgrenzen                                                               | 15 |
| 3.3.    | Datenerhebung, Anforderung an die Daten und die Datenqualität                              | 16 |
| 3.3.1.  | Technologische Repräsentativität                                                           | 16 |
| 3.3.2.  | Geographische Repräsentativität                                                            | 16 |
| 3.3.3.  | Zeitrepräsentativität                                                                      | 17 |
| 3.4.    | Allokation                                                                                 | 17 |
| 3.4.1.  | CO <sub>2</sub> -Allokation bei Nutzung von CO <sub>2</sub> aus industriellen Punktquellen | 17 |
| 3.4.2.  | Allokation bei Literaturdaten                                                              | 19 |
| 3.5.    | Wirkungskategorien                                                                         | 19 |
| 3.6.    | Methoden der Auswertung                                                                    | 22 |
| 3.7.    | Einschränkungen und Verwendung                                                             | 22 |
| 3.8.    | Art und Aufbau des für die Studie vorgesehenen Berichts                                    | 22 |
| 3.9.    | Konformität und kritische Prüfung                                                          | 23 |
| 4.      | Prozess                                                                                    | 23 |
| 4.1.    | Stromvorkette                                                                              | 23 |
| 4.2.    | H <sub>2</sub> -Elektrolyse                                                                | 28 |
| 4.3.    | CO <sub>2</sub> -Vorkette                                                                  | 30 |
| 4.4.    | OME-Synthese                                                                               | 31 |
| 5.      | Datengrundlage                                                                             | 33 |
| 6.      | Einschätzung der Datenqualität                                                             | 36 |
| 7.      | Ergebnisse der Wirkungsabschätzung                                                         | 36 |
| 7.1.    | Strommix 2018                                                                              | 37 |
| 7.1.1.  | Treibhauspotenzial (GWP)                                                                   | 37 |

| 7.1.2.     | Surplus Ore Potential (SOP)                               | 38 |
|------------|-----------------------------------------------------------|----|
| 7.1.3.     | Feinstaub (PM10)                                          | 38 |
| 7.1.4.     | Photochemisches Oxidantienbildungspotenzial (NMVOC)       | 39 |
| 7.1.5.     | Kumulierter Energieaufwand (KEA)                          | 39 |
| 7.1.6.     | Versauerungspotenzial (AP)                                | 40 |
| 7.1.7.     | Eutrophierungspotenzial (EP)                              | 41 |
| 7.2.       | Strommix 2030                                             | 41 |
| 7.2.1.     | Treibhauspotenzial (GWP)                                  | 42 |
| 7.2.2.     | Surplus Ore Potential (SOP)                               | 43 |
| 7.2.3.     | Versauerungspotenzial (AP)                                | 44 |
| 7.2.4.     | Eutrophierungspotenzial (EP)                              | 45 |
| 7.2.5.     | Feinstaub (PM10)                                          | 46 |
| 7.2.6.     | Photochemisches Oxidantienbildungspotenzial (POCP, NMVOC) | 47 |
| 7.2.7.     | Kumulierter Energieaufwand (KEA)                          | 48 |
| 7.3.       | Strommix 2050                                             | 48 |
| 7.3.1.     | Treibhauspotenzial (GWP)                                  | 49 |
| 7.3.2.     | Surplus Ore Potential (SOP)                               | 50 |
| 7.3.3.     | Versauerungspotenzial (AP)                                | 51 |
| 7.3.4.     | Eutrophierungspotenzial (EP)                              | 52 |
| 7.3.5.     | Feinstaub (PM10)                                          | 53 |
| 7.3.6.     | Photochemisches Oxidantienbildungspotenzial (POCP, NMVOC) | 54 |
| 7.3.7.     | Kumulierter Energieaufwand (KEA)                          | 55 |
| 8.         | Auswertung der Ökobilanz                                  | 55 |
| 8.1.       | Identifizierung der signifikanten Parameter               | 55 |
| 8.2.       | Beurteilung                                               | 57 |
| 8.2.1.     | Vollständigkeitsprüfung                                   | 57 |
| 8.2.2.     | Sensitivitätsprüfung                                      | 57 |
| 8.2.2.1.   | Dieselverbrauch                                           | 57 |
| 8.2.2.2.   | Carbon capture and usage (CCU)                            | 59 |
| 8.2.2.3.   | Batterieelektrisches Fahrzeug                             | 61 |
| 8.2.3.     | Konsistenzprüfung                                         | 65 |
| 9.         | Schlussfolgerungen und Empfehlungen                       | 65 |
| Literatury | verzeichnis                                               | 67 |
| Annex I: I | Parameterliste                                            | 72 |
| Annex II:  | Ergebnisse der LCA                                        | 79 |
| Annex III: | Externes kritisches Gutachten                             | 92 |

# Abbildungsverzeichnis

| Abbildung 1-1:  | Produktionsrouten Ruß-NO <sub>X</sub> -Schere von OME <sub>1</sub> , konventionellem Die<br>und verschieden Blending-Raten | esel<br>14 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| Abbildung 3-1:  | Systemgrenzen der untersuchten OME <sub>x</sub> -Produktionsrouten                                                         | 16         |
| Abbildung 4-1:  | Übersicht untersuchter und weiterer OME <sub>x</sub> -Produktionsrouten                                                    | 31         |
| Abbildung 7-1:  | GWP der OME-Routen mit Strombezug 2018                                                                                     | 37         |
| Abbildung 7-2:  | SOP der OME-Routen mit Strombezug 2018                                                                                     | 38         |
| Abbildung 7-3:  | PM10 der OME-Routen mit Strombezug 2018                                                                                    | 38         |
| Abbildung 7-4:  | POCP der OME-Routen mit Strombezug 20180                                                                                   | 39         |
| Abbildung 7-5:  | KEA der OME-Routen mit Strombezug 2018                                                                                     | 39         |
| Abbildung 7-6:  | AP der OME-Routen mit Strombezug 2018 (ohne Fahrzeugbau)                                                                   | 40         |
| Abbildung 7-7:  | EP der OME-Routen mit Strombezug 2018 (ohne Fahrzeugbau)                                                                   | 41         |
| Abbildung 7-9:  | GWP der OME-Routen mit Strombezug 2030                                                                                     | 42         |
| Abbildung 7-10: | SOP der OME-Routen mit Strombezug 2030                                                                                     | 43         |
| Abbildung 7-11: | AP der OME-Routen mit Strombezug 2030 (ohne Fahrzeugbau)                                                                   | 44         |
| Abbildung 7-12: | EP der OME-Routen mit Strombezug 2030 (ohne Fahrzeugbau)                                                                   | 45         |
| Abbildung 7-13: | PM10 der OME-Routen mit Strombezug 2030                                                                                    | 46         |
| Abbildung 7-14: | POCP der OME-Routen mit Strombezug 2030                                                                                    | 47         |
| Abbildung 7-15: | KEA der OME-Routen mit Strombezug 2030                                                                                     | 48         |
| Abbildung 7-17: | GWP der OME-Routen mit Strombezug 2050                                                                                     | 49         |
| Abbildung 7-18: | SOP der OME-Routen mit Strombezug 2050                                                                                     | 50         |
| Abbildung 7-19: | AP der OME-Routen mit Strombezug 2050 (ohne Fahrzeugbau)                                                                   | 51         |
| Abbildung 7-20: | EP der OME-Routen mit Strombezug 2050 (ohne Fahrzeugbau)                                                                   | 52         |
| Abbildung 7-21: | PM10 der OME-Routen mit Strombezug 2050                                                                                    | 53         |
| Abbildung 7-22: | POCP der OME-Routen mit Strombezug 2050                                                                                    | 54         |
| Abbildung 7-23: | KEA der OME-Routen mit Strombezug 2050                                                                                     | 55         |
| Abbildung 8-1:  | Energiebedarf der OME <sub>x</sub> -Produktionsrouten nach Anteilen in %                                                   | 56         |
| Abbildung 8-2:  | GWP der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)                                                              | 57         |
| Abbildung 8-3:  | SOP der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)                                                              | 58         |
| Abbildung 8-4:  | PM10 der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)                                                             | ) 58       |
| Abbildung 8-5:  | POCP der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018                                                              | 5)         |
|                 |                                                                                                                            | 59         |
| Abbildung 8-6:  | GWP der OME-Routen mit Strombezug 2050 (100:0)                                                                             | 60         |
| Abbildung 8-7:  | GWP der OME-Routen mit Strombezug 2050 (50:50)                                                                             | 60         |
| Abbildung 8-8:  | Vergleich BEV mit OME <sub>1 reductive</sub> und Diesel (2018)                                                             | 62         |
| Abbildung 8-9:  | Vergleich BEV mit OME <sub>1 reductive</sub> und Diesel (2030)                                                             | 63         |
| Abbildung 8-10: | Vergleich BEV mit OME <sub>1 reductive</sub> und Diesel (2050)                                                             | 64         |

# Tabellenverzeichnis

| Beschreibung der betrachteten PtX-Einsatzfälle und der relevanten Eingangsgrößen für die Modellierung | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zentrale Modellierungsergebnisse für die unterschiedlichen Einsatzfä                                  | álle<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Anlagenpark der Stromerzeugung 2018, 2030 und 2050                                                    | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Verwendete ecoinvent-Datensätze nach Energieträger                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Parameter der Entwicklungsstände der PEM-Elektrolyse für die LCA                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Energie- und Wasserbedarf für die PEM-Elektrolyse                                                     | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Energiebedarf verschiedener Technologien zur Abscheidung von CC aus Luft                              | ) <sub>2</sub><br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Energiebedarf der OME-Routen bei vollständiger Wärmeintegration                                       | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kenngrößen der Fahrzeuge                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Umweltwirkung der Fahrzeugherstellung                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Stromverbrauch BEV                                                                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                       | Beschreibung der betrachteten PtX-Einsatzfälle und der relevanten<br>Eingangsgrößen für die Modellierung<br>Zentrale Modellierungsergebnisse für die unterschiedlichen Einsatzfä<br>Anlagenpark der Stromerzeugung 2018, 2030 und 2050<br>Verwendete ecoinvent-Datensätze nach Energieträger<br>Parameter der Entwicklungsstände der PEM-Elektrolyse für die LCA<br>Energie- und Wasserbedarf für die PEM-Elektrolyse<br>Energiebedarf verschiedener Technologien zur Abscheidung von CC<br>aus Luft<br>Energiebedarf der OME-Routen bei vollständiger Wärmeintegration<br>Kenngrößen der Fahrzeuge<br>Umweltwirkung der Fahrzeugherstellung<br>Stromverbrauch BEV |

# Abkürzungsverzeichnis

| AP    | Versauerungspotenzial (Acidification Potential)                                     |
|-------|-------------------------------------------------------------------------------------|
| BEV   | batterieelektrisches Fahrzeug (Battery Electric Vehicle)                            |
| CCU   | Carbon Capture and Usage                                                            |
| CO2   | Kohlendioxid                                                                        |
| COP   | Heizzahl (Coefficient of Performance)                                               |
| DAC   | Direct Air Capture                                                                  |
| DME   | Dimethylether                                                                       |
| EE    | Erneuerbare Energien                                                                |
| EP    | Eutrophierungspotenzial (Eutrophication Potential)                                  |
| GWP   | Treibhauspotenzial (Global Warming Potential)                                       |
| H2    | Wasserstoff                                                                         |
| ISO   | Internationale Organisation für Normung                                             |
| KEA   | Kumulierter Energieaufwand                                                          |
| KSZ   | Klimaschutzszenario                                                                 |
| LCA   | Ökobilanz (Life Cycle Assessment)                                                   |
| LHV   | Unterer Heizwert (Lower Heating Value)                                              |
| NMVOC | Non-methane Volatile Organic Compounds                                              |
| OME   | Oxymethylenether                                                                    |
| PEM   | Protonen-Austausch-Membran (Proton Exchange Membrane)                               |
| PM10  | Feinstaubemission bei einem aerodynamischen Durchmesser von 10 $\mu m$              |
| POCP  | Photochemisches Oxidatienbildungspotenzial (Photochemical Ozone Creation Potential) |
| РОМ   | Polyoxymethylen                                                                     |
| PtX   | Power-to-X                                                                          |
| SOP   | Verbrauch mineralischer Ressourcen (Surplus Ore Potential)                          |
| TRL   | Technology Readiness Level                                                          |
| WLTC  | Worldwide harmonized Light Duty Test Cycle                                          |

9

# Zusammenfassung

#### Hintergrund der Studie

Das vom Bundesministerium für Bildung und Forschung Kopernikusprojekt "P2X: Erforschung, Validierung und Implementierung von "Power-to-X" Konzepten" wurde zwischen September 2016 und August 2019 unter Koordination der RWTH Aachen, des Forschungszentrums Jülich und der DECHEMA durchgeführt.

Die Eigendarstellung von "P2X" findet sich unter:

#### https://www.kopernikus-projekte.de/projekte/power-to-x

Aufgrund des politischen Ziels, Deutschland bis 2050 aus erneuerbaren Energien zu versorgen, müssen effiziente Speichertechnologien für diese fluktuierenden Energieressourcen entwickelt werden. Gleichzeitig ist der Transportsektor aber auch die chemische Industrie mit schwindenden fossilen Energieressourcen und der politischen Vorgabe, anthropogene CO<sub>2</sub>-Emissionen nachhaltig zu senken, konfrontiert. Im Verbundprojekt "P2X" wurden verschiedene Power-to-X-Anwendungen erforscht und ihr möglicher Beitrag zur Senkung der CO<sub>2</sub>-Emissionen bewertet

Die vorliegende Ökobilanz untersucht die Produktion von Oxymethylenether (OME) und dessen Nutzung als Dieselsubstitut im PKW-Verkehr. Die Prozesskette zur Herstellung von Oxymethylenether umfasst zunächst die Bereitstellung von Wasserstoff über Elektrolyse. Als zweiter Rohstoff ist reines CO<sub>2</sub> erforderlich. Darauffolgend wird H<sub>2</sub> mit CO<sub>2</sub> zu Oxymethlyenether (OME) umgesetzt. Bilanziert wurde der Stand von Forschung und Entwicklung von Anfang 2019. Für die Bereitstellung von elektrischer Energie wurden neben dem aktuellen Stand (Bezugsjahr 2018) auch zukünftige Szenarien bilanziert (2030 und 2050).

Zielgruppe für die Ökobilanzstudie sind die Verbundpartner im Kopernikus-P2X-Projekt selbst, die sowohl Industrieunternehmen als auch wissenschaftliche Institute umfassen. Weitere Zielgruppen für die Ergebnisse stellen das fördernde Bundesministerium für Bildung und Forschung selbst und die interessierte Fachöffentlichkeit dar.

#### **OME-Produktionsrouten und funktionelle Einheiten**

Die Systemgrenzen für die Bilanzierung der OME-Nutzung umfassen die folgenden Module:

- Bereitstellung von elektrischer Energie
- Wasserstoffherstellung mittels PEM-Elektrolyse
- CO<sub>2</sub>-Bereitstellung
- Synthese von OME<sub>1</sub> (drei Routen: etabliert, oxidativ und reduktiv) bzw. OME<sub>3-5</sub> (etablierte Route)
- Nutzung von OME als Dieselsubstitut im PKW

Die funktionelle Einheit für die Ökobilanz ist 1 Fahrzeugkilometer (vehicle kilometer, vkm).

#### Ergebnisse

Die Auswertung der Ökobilanzergebnisse für die Verwendung von OME als Dieselsubstitut in einem PKW ergibt für alle untersuchten Wirkungskategorien, d. h. Treibhauspotenzial (GWP), Verbrauch mineralischer Ressourcen (SOP), Eutrophierungspotenzial (EP), Versauerungspotenzial (AP) und Photochemisches Oxidatienbildungspotenzial (POCP), Partikelemission (PM10) sowie Kumulierter

Energieaufwand (KEA), für das Jahr 2018 und 2030 deutlich höhere ökologische Lasten als die vergleichend betrachtete Nutzung von fossilem Diesel (Benchmark). Erst mit dem Stromszenario für das Jahr 2050 führt die Bewertung mit dem flexmix-Strom<sup>1</sup> zumindest beim GWP zu geringeren Werten als die Nutzung von Diesel, während bei den anderen untersuchten Wirkungskategorien auch 2050 die Lasten höher liegen als beim Benchmark. Während das SOP sehr von der Fahrzeugherstellung geprägt wird, werden alle anderen untersuchten Wirkungskategorien in allen drei Stromszenarien von der Stromvorkette dominiert.

#### Einschränkungen

In den Systemgrenzen der vorliegenden Ökobilanz für den Zeitraum bis 2050 wird ausschließlich die Zusammensetzung des Stromerzeugungsmixes (sowie einige technische Parameter der Vordergrundprozesse) variiert. Eine Veränderung der Vorketten, z. B. durch technische Weiterentwicklung oder Verfahrensumstellung ist nicht berücksichtigt. So könnten effizientere Produktionsweisen oder die Nutzung von erneuerbaren Energien insbesondere bei der Produktion von Fahrzeugen, Metallen oder Anlagen zur Gewinnung erneuerbarer Energien zu einer Verbesserung der Umweltperformance beitragen. Weiterhin müssen die Ökobilanzergebnisse unter dem Vorbehalt bewertet werden, dass die Sachbilanzdaten teilweise auf Einzel- und Laborversuchen beruhen.

#### Fazit und Empfehlungen

Die Ergebnisse der Ökobilanzstudie zeigen, dass die Verwendung von PtX-Kraftstoffen im Vergleich zu fossilen Kraftstoffen erst dann zu einer Reduktion der Treibhausgasemissionen führt, wenn der Anteil der erneuerbaren Energien am Strommix sehr hoch ist. Solange noch fossile Energieträger, insbesondere Kohle, verwendet wird, können strombasierte Kraftstoffe nicht zu einer Reduktion der Emission von klimarelevanten Gasen beitragen. In Anbetracht der Tatsache, dass EE-Strom in Deutschland und weltweit mittel- und langfristig ein knappes Gut sein wird, und der EE- und PtX-Anlagenbau u.a. den Einsatz von Spezialmetallen erfordert, sollte berücksichtigt werden, dass diese nur dort zum Einsatz kommen, wo keine unter Lebenszyklusperspektive effizienteren klimaschonenden Alternativen zur Verfügung stehen.

Eine Realisierung des Gesamtprozesses im Rahmen einer Pilotanlage oder gar auf großtechnischer Ebene steht noch aus. Erneute LCA-Studien zur Validierung der Ergebnisse dieser Studie in einigen Jahren werden empfohlen, wenn die Verfahrensentwicklung weiter fortgeschritten ist.

<sup>&</sup>lt;sup>1</sup> Siehe Kapitel 4.1 (Stromvorkette)

# 1. Einleitung

Als flüssige Kraftstoffe im straßengebundenen Verkehr kommen gegenwärtig praktisch ausschließlich fossiler Diesel und Ottokraftstoff zum Einsatz. Ziel der Forschungsarbeiten im Kopernikus-P2X-Projekt zu den flüssigen synthetischen Kraftstoffen war es, erneuerbare elektrische Energie für unterschiedliche Bereiche des Verkehrssektors zu erschließen. Für den straßengebundenen Verkehr wurden dabei neben den in dieser Ökobilanz bewerteten oligomeren Oxymethylenethern (OME<sub>x</sub>) auch synthetischer Diesel und synthetischer Ottokraftstoff, sowie für den Einsatz im Flugverkehr synthetisches Kerosinuntersucht.

Die PtX-Prozesskette zur Herstellung von oligomeren Oxymethylenethern, welche im Blend mit oder als Ersatz für fossile Dieselkraftstoffe eingesetzt werden können, umfasst zunächst die Bereitstellung von Wasserstoff über Elektrolyse (siehe Kapitel 4.2). Als zweiter Rohstoff ist reines CO<sub>2</sub> erforderlich. Darauffolgend wird H<sub>2</sub> mit CO<sub>2</sub> zu oligomeren Oxymethlyenethern (OME<sub>x</sub>) umgesetzt, wobei x die Kettenlänge definiert.

OME<sub>x</sub> mit längeren Ketten (20<x<100 sowie x>1500) eignen sich für die Herstellung von Polymeren. Diese Polyoxymethylenkunststoffe (POM) haben sich bereits seit langem etabliert und zeichnen sich durch eine hohe Steifigkeit, Festigkeit sowie Dimensionsstabilität aus [Luftl et al. 2014; Brostow 2007]. Erste Versuche in der Synthesekette aus CO<sub>2</sub> und Wasserstoff liefen bereits im Forschungscluster B3 des Kopernikus-P2X-Projektes, sie war aber in der ersten Phase noch nicht Gegenstand der ökobilanziellen Bewertung.

 $OME_x$  mit kurzen Kettenlängen (x<8) stellen wie in der Roadmap zum Kopernikus-P2X-Projekt [Roadmap 1.0, Roadmap 2.0] beschrieben aufgrund ihrer chemischen und physikalischen Eigenschaften ein vielversprechendes Substitut bzw. Teilsubstitut (Blend) für konventionellen Diesel dar. Es konnte gezeigt werden, dass bereits geringe Zusätze an  $OME_x$  in Diesel eine signifikante Minderung der Rußemission bewirken [Omari et al. 2017]. Dies ermöglicht eine innermotorische Reduktion der Stickoxide (NO<sub>x</sub>), da die von konventionellem Diesel bekannte Ruß-NO<sub>x</sub>-Schere signifikant reduziert wird. Abbildung 1-1 zeigt die Schwarzrauchzahl (Indikator für Ruß-Emissionen) über die NO<sub>x</sub>-Emissionen beispielhaft für verschiedene  $OME_1$ -Diesel-Blends und konventionellen Diesel. Bereits bei einem Blend von 35 Vol- %  $OME_1$  in Diesel können die Ruß-Emissionen um ca. 90 % reduziert werden. Damit können durch den Einsatz von  $OME_x$  die lokalen Ruß- und NO<sub>x</sub>-Emissionen deutlich reduziert werden. Durch den Einsatz von  $CO_2$  als regenerativer C1-Baustein (CO<sub>2</sub>-Emissionen aus biogenen industriellen Punktquellen oder Abtrennung aus der Luft) könnte zudem der Verbrauch an fossilen Rohstoffen reduziert werden.



# Abbildung 1-1: Produktionsrouten Ruß-NO<sub>X</sub>-Schere von OME<sub>1</sub>, konventionellem Diesel und verschieden Blending-Raten

Quelle: Omari et al. 2017

Im Rahmen des Forschungsvorhabens wurden verschiedene Prozessrouten für die Herstellung von  $OME_x$  ausgehend von H<sub>2</sub> und CO<sub>2</sub> untersucht. Sie sind in der Roadmap 1.0 bzw. 2.0 [Roadmap 1.0, Roadmap 2.0] beschrieben und werden im Folgenden wiedergegeben. Als technologischer bzw. chemischer Benchmark dient hierbei die etablierte Route über Methanol und Formaldehyd zu OME1 und anschließend von OME<sub>1</sub> und Trioxan zu OME<sub>3-5</sub> [Burger et al. 2013]. Über diese etablierte Route wird OME<sub>3-5</sub> bereits im industriellen Maßstab für die chemische Industrie gewonnen. Die OME<sub>x</sub> Produktion über Kombination konventioneller Einzeltechnologien auf Basis von Synthesegas ist in China bereits erfolgt, sodass der technologische Reifegrad dieser Technologie grundsätzlich mit 7-8 eingestuft werden kann. Diese Herstellungsroute ist im Sinne eines Gesamtprozesses jedoch nicht energetisch optimiert, sodass hier noch großes Verbesserungspotential ausgeschöpft werden kann. Im P2X-Projekt werden an der RWTH Aachen zudem neue Syntheserouten beispielsweise mittels Direktoxidation von Methanol oder unter Anwendung neuartiger Katalysatoren entwickelt. Die angestrebte neuartige Prozesskette über CO2 und Elektrolyse-Wasserstoff befand sich bei Projektbeginn noch auf einem TRL von 1, wobei sich die TRLs der einzelnen Prozessschritte im Gesamtsystem sehr unterschiedlich darstellen. So weisen die Prozessschritte zur Methanolbereitstellung aus CO<sub>2</sub> (heterogen-katalysiert) und Formaldehydbereitstellung aus Methanol bereits einen TRL von 8-9 auf. Neue Prozesseinheiten wie die Formaldehydherstellung aus CO<sub>2</sub>, die Formaldehydbereitstellung über das Niedertemperaturverfahren und DME-Herstellung aus CO<sub>2</sub> (homogen-katalysiert) weisen dagegen einen sehr niedrigen Reifegrad auf.

Zur motorischen Anwendung und späteren Nutzung im Fahrzeug wurden an der RWTH Aachen experimentelle Untersuchungen durchgeführt, um das gesamte Potential von Emissions- und Verbrauchsreduktionen zu charakterisieren. Hierzu werden Tests am Einzylindermotor durchgeführt und reale Fahrzyklen simuliert, um das gesamte Spektrum der fahrzeugseitigen Emissionen zu identifizieren. Parallel werden die Verbrennungskinetik untersucht und Reaktionsmodelle entwickelt, um Zündverzugszeiten und lokale Mischungsverhältnisse vorherzusagen. Auf Grundlage dessen kann die Motorsteuerung und die Einspritzung für OME<sub>x</sub>-Kraftstoffe angepasst und optimiert werden.

# 2. Ziele und Anwendungen der Studie

Die Ökobilanz dient zur Unterstützung der Bewertung der sich in Entwicklung befindlichen OMEx-Synthese im Rahmen des P2X-Projekts. Den beteiligten Verbundpartnern sollen damit detaillierte Informationen bzgl. der ökologischen Vorteile und Schwachstellen zur Verfügung gestellt werden. Weiterhin dienen die Arbeiten zur Ökobilanz dazu, Herausforderungen und Potenziale zur Verbesserung der Umweltwirkungen der strombasierten OME-Herstellung aufzuzeigen, beispielsweise durch den Vergleich unterschiedlicher Syntheserouten. Zudem wurde die direkte Verwendung von Strom zum Betrieb eines batterieelektrischen Fahrzeugs der Nutzung von OME in einem konventionellen Diesel-Pkw gegenübergestellt.

Eine wichtige Zielgruppe für die Ökobilanzstudie sind die Verbundpartner im Kopernikus-P2X-Projekt selbst, die sowohl Industrieunternehmen als auch wissenschaftliche Institute umfassen. Weitere Zielgruppen für die Ergebnisse stellen das fördernde Bundesministerium für Bildung und Forschung selbst und die interessierte Fachöffentlichkeit dar.

# 3. Festlegung des Untersuchungsrahmens

#### 3.1. Funktion und funktionelle Einheit

Die Funktion des untersuchten P2X-Prozesses ist die Nutzung von Oxymethylether (OME) als Dieselsubstitut in einem PKW, wobei die Betrachtung verschiedener Syntheserouten für OME ausgehend von Wasserstoff und CO<sub>2</sub> im Vordergrund steht. Aufgrund des hohen Beitrags zu den untersuchten Umweltwirkungskategorien werden außerdem die Stromerzeugung, die Wasserstoffproduktion mittels Wasserelektrolyse und die CO<sub>2</sub>-Bereitstellung im Detail betrachtet und bilanziert.

Die funktionelle Einheit ist auf die Nutzung eines PKW über einen Fahrzeugkilometer (vehicle kilometer, vkm) festgelegt.

# 3.2. Festlegung der Systemgrenzen

Die Systemgrenzen der untersuchten Routen (siehe Abbildung 3-1) umfassen insbesondere die Bereitstellung von elektrischer Energie, Wasserstoff und CO<sub>2</sub>, die Synthese von OME<sub>1</sub> bzw. OME<sub>3-5</sub> sowie die Nutzung von OME als Dieselsubstitut im PKW. Weiterhin sind die Vorketten der notwendigen Material- und Energieströme sowie die Fahrzeugherstellung eingeschlossen.

Als Referenzprozess gilt die Nutzung fossil bereitgestellten Diesels in einem Diesel-PKW (durchschnittlicher Mittelklassewagen, Golf 7). In einer Sensitivitätsanalyse wird auch der Vergleich mit einem batterieelektrischen PKW (BEV) betrachtet (siehe Kapitel 8.2.2.3).



#### Abbildung 3-1: Systemgrenzen der untersuchten OME<sub>x</sub>-Produktionsrouten

# 3.3. Datenerhebung, Anforderung an die Daten und die Datenqualität

Die Datenerhebung für die Sachbilanzen wurde in Zusammenarbeit mit den P2X-Partnern durchgeführt. Die Sachbilanzdaten der Vordergrundprozesse zur OME-Synthese beruhen im Wesentlichen auf Modellierungen (Simulationen in Aspen Plus), denen Labor- und Literaturwerte sowie verfahrenstechnische Abschätzungsmethoden (z. B. Minium energy demand calculations) zugrunde liegen. Wasserstoff- und CO<sub>2</sub>-Bereitstellung basieren auf Literaturdaten, während der Fahrzeugherstellung und –nutzung Angaben von Audi zugrunde liegen. Die Sachbilanzdaten für die Hintergrundprozesse werden aus der ecoinvent-Datenbank [ecoinvent v3.5] entnommen.

#### 3.3.1. Technologische Repräsentativität

Die wesentlichen Prozessdaten zur OME-Synthese basieren auf Primärdaten der RWTH Aachen [RWTH.AVT.SVT 2019]. Die Daten zur OME-Synthese repräsentieren Simulationsergebnisse basierend auf Ergebnissen aus dem Pilot-/ Labormaßstab und Literaturwerten. Ein großtechnischer Betrieb ist zum Zeitpunkt der Erstellung der Ökobilanz insbesondere für die oxidative und reduktiven Routen noch nicht realisiert.

#### 3.3.2. Geographische Repräsentativität

Die Ökobilanz der OME-Produktion hat den geographischen Bezug Deutschland. Die Zusammensetzung des Strommixes wird daher für die Situation in Deutschland angesetzt (s. Kapitel 4.1). Zudem werden Datensätze für deutsche Stromerzeugungsanlagen verwendet. Für die Bilanzierung global gehandelter Güter (z. B. Metalle) werden im Allgemeinen gemeinen die globalen Marktmixe herangezogen, teilweise mit spezifischem Bezug auf die Situation in Europa.

# 3.3.3. Zeitrepräsentativität

Die im Rahmen dieser Studie ökobilanziell bewerteten Routen beziehen sich auf das Jahr 2018 sowie anhand der Untersuchung von möglichen Entwicklungen im Stromsektor im Ausblick auf die Jahre 2030 bzw. 2050. Diese LCA hat einen prospektiven Charakter, da sie zukünftige Prozesse abzubilden versucht, die so zurzeit nicht existieren. Hierbei werden keine Veränderungen über die gesamte Lebensdauer von Anlagen, Fahrzeugen usw. berücksichtigt, sondern jeweils eine punktuelle Betrachtung für das Bezugsjahr.

Die primären Daten für die OME-Synthese, die CO<sub>2</sub>-Abscheidung und die PEM-Elektrolyse stammen aus Pilot- und Laborversuchen und Modellierungen der involvierten Projektpartner aus den Jahren 2016 bis 2019. Datensätze aus ecoinvent v3.5 stammen aus den letzten 10 Jahren.

Die Unsicherheit der Daten bewegt sich im üblichen Rahmen und unterscheidet sich je nach Elementarfluss.

# 3.4. Allokation

Unter **Allokation** werden bei der Durchführung von Ökobilanzen Zuordnungsverfahren verstanden, die dann erforderlich sind, wenn bei Prozessen mehrere verwertbare Produkte erzeugt werden, aber nur ein Teil der Produkte in dem betrachteten ökobilanziellen System genutzt wird. Sie wird immer dann durchgeführt, wenn eine Systemerweiterung aus praktischen Gründen nicht möglich ist. Klassische Beispiele für Allokationen sind der Chloralkaliprozess oder die Erdölraffination. So werden in der Erdölraffination aus dem Hauptinput Erdöl viele Raffinerieprodukte wie Benzin und Diesel, aber auch Naphtha, schweres Heizöl und andere erzeugt. Bei der Raffinerie werden aufgrund der Komplexität die gesamten ökologischen Aufwendungen anteilig auf die Gesamtprodukte anhand eines Kriteriums umgelegt, z. B. über den Heizwert. Dieses Verfahren ist allgemein akzeptiert und entspricht der ISO-Norm, indem einer Allokation nach physikalischen Größen der Vorzug gegeben wird [ISO 2006, ISO 2018].

In der vorliegenden Ökobilanz wird bei den Vordergrundprozessen im Basisfall, wo eine CO<sub>2</sub>-Bereitstellung durch Abscheidung aus der Luft angenommen wird, keine Allokation nötig. Gegenüber der CO<sub>2</sub>-Abscheidung aus der Luft ist die Verwendung von CO<sub>2</sub> aus industriellen Punktquellen aus energetischer Sicht attraktiv aufgrund der höheren Konzentration von CO<sub>2</sub> in den Abgasen (s. Sensitivitätsanalyse in Kapitel 8.2.2.2). In diesem Fall wird jedoch zur Bestimmung der Umweltwirkungen des als Rohstoff verwendeten CO<sub>2</sub> eine Allokationsentscheidung nötig. Diese Entscheidung kann einen entscheidenden Einfluss auf das Ergebnis haben und muss daher transparent dargestellt werden. Daher wird im folgenden Abschnitt gesondert darauf eingegangen. Die Allokationsentscheidungen, die den Hintergrunddaten zugrunde liegen, sind der Dokumentation von ecoinvent zu entnehmen [ecoinvent 3.5].

# 3.4.1. CO<sub>2</sub>-Allokation bei Nutzung von CO<sub>2</sub> aus industriellen Punktquellen

Eine Diskussion möglicher Vorgehensweisen bei der Bewertung von Umweltauswirkungen für den Fall, dass in einem PtX-Prozess  $CO_2$  genutzt wird, das aus einem vorgelagerten Prozess emittiert und abgeschieden wurde (Carbon Capture and Usage, CCU), findet sich auch in der [Roadmap 2.0] und wird im Folgenden mit Hinblick auf die Frage der Allokation wiedergegeben. Wenn in einem PtX-Prozess  $CO_2$  aus einem biomasse-verwertenden Prozess, z. B. einer Biogas-Anlage, oder aus fossilen/geogenen industriellen Punktquellen verwendet wird, dann sind diese PtX-Produktionsprozesse Teil einer Gesamt-Prozesskette, im Rahmen derer mehrere Produkte hergestellt werden, z. B. Wärme und Strom aus der Biogasanlage + PtX-Produkt oder Zement + PtX-Produkt bei Verwendung von  $CO_2$  aus einem Zementwerk.

Nach ISO 14040/14044 [ISO 2006, ISO 2018] soll eine Allokation der Umweltwirkungen möglichst durch Entkopplung der Prozesse oder Systemraumerweiterung vermieden werden. Bei CCU sind die Prozesse jedoch inhärent gekoppelt und in der vorliegenden Ökobilanz sollen die spezifischen Umweltwirkungen von strombasiertem OME ausgewiesen werden. Eine Systemraumerweiterung kommt daher nicht in Frage, da die funktionelle Einheit dann beispielsweise "Produktion von 1 MJ OME und x kg Zement" wäre.

Neben der Frage der Aufteilung der Umweltwirkungen aus dem ersten CO<sub>2</sub>-erzeugenden Prozess und der CO<sub>2</sub>-Abscheidung geht es bei der Allokation insbesondere um die Frage der Anrechnung des abgeschiedenen und somit an der ersten Anlage nicht emittierten CO<sub>2</sub>. Biogene CO<sub>2</sub>-Punktquellen sollten den gleichen Allokationsregeln wie fossile folgen, jedoch sollte zusätzlich die CO<sub>2</sub>-Aufnahme aus der Luft während des Pflanzenwachstums berücksichtigt werden.

Zur Allokation der Umweltwirkungen bei CCU werden im Folgenden drei Optionen vorgestellt, die aus ökobilanzieller Sicht in Frage kommen:

- CO<sub>2</sub> wird als "Abfall zur Beseitigung" angesehen, damit wäre die Nettolast beim Industrieprozess: Der Industrieprozess bekommt die volle Emission angerechnet, die der endgültigen Freisetzung am Ende des PtX Prozesses entspricht, der PtX-Prozess bekommt die vermiedene Emission angerechnet (-1 kg CO<sub>2</sub>/kg CO<sub>2</sub>), am Lebensende wird dieses CO<sub>2</sub> rechnerisch nicht mehr emittiert (100:0-Allokation).
- 2. CO<sub>2</sub> wird als "Abfall zur Verwertung" angesehen, damit kann in Anlehnung an Bilanzen der Abfallwirtschaft eine **50:50-Allokation** definiert werden.
- 3. CO<sub>2</sub> wird als "Co-Produkt" des vorgelagerten Industrieprozesses angesehen, damit würde die Emission des CO<sub>2</sub> vollständig der Nutzung des PtX-Kraftstoffs im Fahrzeug angerechnet, da hier das CO<sub>2</sub> tatsächlich emittiert wird (0:100-Allokation). Als Co-produkt nimmt es zudem noch zuallozierte Umweltwirkungen des ersten Prozesses (inkl. der CO<sub>2</sub>-Abscheidung und –Aufreinigung) mit. Die direkten Emissionen des Industrieprozesses vermindern sich entsprechend um die abgeschiedene CO<sub>2</sub>-Menge.

Ein wichtiger Parameter für die Wahl des Bilanzierungsansatzes ist dabei der Grad der Dekarbonisierung des Produktionssystems, da die emittierte Menge an CO<sub>2</sub> im Vergleich zur Nachfrage nach CO<sub>2</sub> als Rohstoff die Unterscheidung zwischen Abfall zur Beseitigung, Abfall zur Verwertung und Koppelprodukt beeinflusst.

# Option 1: Bilanzierungsansatz bei Einstufung von CO2 als Abfall zur Beseitigung

Wenn CO<sub>2</sub> abgeschieden wird, das einem Industrieprozess entstammt, ist die Verwendung dieses CO<sub>2</sub> in einem PtX-Prozess unter heutigen Bedingungen tendenziell als eine Weiternutzung eines Abfalls einzuordnen. CO<sub>2</sub> (im Abgas) geht somit als Abfall lastenfrei in die Bilanz des PtX-Prozesses ein. Die CO<sub>2</sub>-Abscheidung gehört dann im Allgemeinen zum PtX-Prozess (außer in dem Fall, dass die CO<sub>2</sub>-Abtrennung bereits nötig ist, um ein vermarktbares Produkt aus dem ersten Prozess zu erhalten, z. B. Ethylenoxidherstellung, Gichtgasrückführung im Hochofen). Dem Produkt aus dem ersten Industrieprozess werden die vollständigen Umweltwirkungen dieses Industrieprozesses zugeordnet (direkte Emissionen aus dem Prozess, Vorketten sowie die Emission des CO<sub>2</sub>) zugeordnet.

# **Option 2: Bilanzierungsansatz bei Einstufung von CO<sub>2</sub> als Abfall zur Verwertung**

Bei der Betrachtung von CO<sub>2</sub> als "Abfall zur Verwertung" handelt es sich um ein open-loop-Recycling, da eine Veränderung der inhärenten Materialeigenschaften auftritt und das CO<sub>2</sub> in einem anderen Produktsystem wiederverwertet wird. Gemeinsam benutzte Prozessmodule müssen alloziert werden. Bei dieser Betrachtung stiftet das rezyklierte Material einen Nutzen in zwei Produktsystemen und dieser Nutzen kann gleichmäßig zwischen den zwei Teilsystemen aufgeteilt werden: 50-50 Allokation. Dabei wird nicht nur der Prozess betrachtet, der das CO<sub>2</sub> freisetzt, sondern es werden ebenso die Lasten aus gemeinsam genutzten vor- und nachgelagerten Prozessen aufgeteilt. Dadurch wird auch sichergestellt, dass bei biogenen Kohlenstoffquellen die CO<sub>2</sub>-Aufnahme während des Pflanzenwachstums anteilig beiden Teilsystemen angerechnet wird, so dass biogene und fossile Ströme nach der gleichen Methodik behandelt werden können.

Zur Allokation muss unterschieden werden zwischen Prozessen, die nur dem ersten System dienen, Prozessen, die nur dem zweiten System dienen und Prozessen, die beiden Systemen gleichermaßen dienen. Nur letztere sind gleichmäßig zwischen beiden Systemen aufzuteilen. Beispielsweise stellt sich die Frage, ob die Lasten aus der CO<sub>2</sub>-Abtrennung und Reinigung nur dem PtX-System zuzuordnen sind. Wenn die Aufteilung der direkten CO<sub>2</sub>-Emissionen aus dem Industrieprozess als Nutzen für diesen interpretiert wird, kann argumentiert werden, dass von der Weiternutzung des CO<sub>2</sub> beide Teilsysteme profitieren. Vor diesem Hintergrund wurden in der Sensitivitätsanalyse zu CCU in Kapitel 8.2.2.2 auch die Umweltwirkungen der CO<sub>2</sub>-Abscheidung und -Aufreinigung in die Allokation miteinbezogen.

# Option 3: Bilanzierungsansatz bei Einstufung von CO2 als Koppelprodukt

Wenn im Laufe der Dekarbonisierung die CO<sub>2</sub>-Emissionen insbesondere durch den Verzicht auf die Nutzung fossiler Energie-/Kohlenstoffträger sehr stark zurückgehen, dann wird deutlich weniger CO<sub>2</sub> aus Industrieanlagen zur Verfügung stehen. Falls eine Situation entsteht, in der konzentriertes CO<sub>2</sub> als ein vollwertiges Koppelprodukt angesehen werden kann, werden die CO<sub>2</sub>-liefernden Prozesse zu Multi-Output-Prozessen, deren Lasten auf das ursprüngliche Produkt und das vermarktbare CO<sub>2</sub> aufgeteilt werden müssen. Die Emission des abgeschiedenen CO<sub>2</sub> kann jetzt nicht mehr dem Industrieprozess angelastet werden. Stattdessen wird sie dort angerechnet, wo sie entsteht, das heißt am Fahrzeug. Andererseits muss in diesem Fall der gesamte vorgelagerte Industrieprozess auf die Koppelprodukte alloziert werden, z. B. nach ökonomischem Wert. Damit bekommt das CO<sub>2</sub> eine Teillast aus dem Industrieprozess angerechnet.

Für die beiden ersten Optionen wird der Effekt der Wahl der Allokationsmethodik in der in Kapitel 8.2.2.2 beschriebenen Sensitivitätsanalyse beispielhaft für die Nutzung von CO<sub>2</sub> aus einem Zementwerk aufgezeigt. In allen Fällen muss sichergestellt sein, dass die Summe aller CO<sub>2</sub>-Emissionen in der Gesamtbetrachtung voll berücksichtigt bleibt und nicht durch die Anwendung der Allokationsmethodik für die Summe der beiden Teilsysteme rein rechnerisch verschwindet.

# 3.4.2. Allokation bei Literaturdaten

Die **Literaturdaten** bestehen aus im Wesentlichen aus Datensätzen, die aus der Datenbank ecoinvent v3.5 übernommen wurden, für die in einigen Fällen bereits Allokationen vorgenommen worden sind. Sie können der entsprechenden Dokumentation in ecoinvent v3.5 entnommen werden.

# 3.5. Wirkungskategorien

Von den einzelnen Schritten der OME-Produktion und –Nutzung können unterschiedliche Auswirkungen auf die Umwelt ausgehen. Diese möglichen Auswirkungen sind bei der Schadstoffbewertung in der Wirkungsabschätzung zu berücksichtigen. Die Aufgabe der Wirkungsabschätzung ist es, die in der Sachbilanz erhobenen Daten in Hinblick auf bestimmte Umweltauswirkungen, sogenannte Wirkungskategorien, zu untersuchen und damit zusätzliche Informationen zu liefern, die in die Bewertung einfließen. Der Guide zum Product Environmental Footprint (PEF) [EC 2013] führt folgende Standardwirkungskategorien auf: Klimaänderung, Abbau der Ozonschicht, Ökotoxizität – Süßwasser, Humantoxizität - kanzerogene Folgen, Humantoxizität - nichtkanzerogene Folgen, Feinstaub/anorganische Emissionen, Ionisierende Strahlung - Auswirkungen auf die menschliche Gesundheit, Fotochemische Bildung von Ozon, Versauerung, Eutrophierung – Land, Eutrophierung – Wasser, Ressourcenerschöpfung – Wasser, Ressourcenerschöpfung – mineralisch, fossil, Landnutzungsänderungen

Das International Reference Life Cycle Data-Handbuch [ILCD 2010] empfiehlt nachfolgende Wirkungskategorien: Climate change, (Stratospheric) Ozone depletion, Human toxicity, Respiratory inorganics, ionizing radiation, (Ground-level) Photochemical ozone formation, Acidification (land and water), Eutrophication (land and water), Ecotoxicity, Land use, Resource depletion (minerals, fossil and renewable energy resources, water).

Weitere Wirkungskategorien sind z. B. Geruchsbelästigung, Lärm, Belastung am Arbeitsplatz, Abwärme und Abfallaufkommen, Bedrohung von Naturschönheit und -vielfalt [UBA 1995].

Bezüglich der zu betrachtenden Wirkungskategorien führt die Fachliteratur aus: "Da ISO 14044 keine feste Liste von Wirkungskategorien vorgibt, nicht einmal eine Empfehlungsliste, obliegt die Auswahl der Kategorien den Erstellern der Ökobilanz." [Klöpffer 2009]

In Anpassung an die Thematik und die bestehenden Fragestellungen haben sich die Projektpartner für die Bewertungen der Power-to-X-Anwendungen im Rahmen der Roadmap [Roadmap 1.0, Roadmap 2.0] auf [ReCiPe 2016] als Methode zur Wirkungsabschätzung geeinigt. Die Daten für die Fahrzeugherstellung wurden mit Ausnahme des SOP mit [ReCiPe 2008] bewertet. Da die Kategorien POCP und PM10 in den beiden ReCiPe-Versionen unterschiedlich berechnet wurden, wurde in dieser Studie [ReCiPe 2008] für POCP und PM10 verwendet, während die anderen Wirkungskategorien mit [ReCiPe 2008] bewertet wurden.

ReCiPe ermöglicht eine kombinierte Auswertung der Ergebnisse mit der CML-2001 Methode sowie der Eco-Indicator 99 Methode [ReCiPe 2013]. Bei der CML-2001 Methode erfolgt die Wirkungsabschätzung auf midpoint-Ebene, d. h. in der Mitte der Wirkungskette. Die problemorientierten midpoint-Wirkungsindiaktorenergebnisse haben den Vorteil einer höheren Datensicherheit und enthalten keine Normierung bzw. Gewichtung. Bei der Eco-indicator 99 Methode [Goedkoop/Spriensma 1999] werden die Ergebnisse der Wirkungsabschätzung auf endpoint-Ebene, d.h. am Ende der Wirkungskette betrachtet. Die Ergebnisse der endpoint-Wirkungsindikatoren werden mit schadensbasierter Gewichtung ermittelt und haben eine größere Umweltrelevanz (vgl. [Guinée et al. 2001], S. 142).

In [ReCiPe 2016] werden Ergebnisse für 18 Midpointkategorien und drei Endpointkategorien berechnet. Die drei Endpointkategorien beziehen sich auf die drei Schutzziele an denen Schaden verursacht werden: Menschliche Gesundheit, Ökosystemvielfalt und Ressourcenverfügbarkeit.

Zu den 18 Midpoint-Kategorien zählen:

- Klimaänderung
- Ozonabbau
- Terrestrische Versauerung
- Frischwasser-und Meerwasser Eutrophierung
- Humantoxizität
- Photochemische Ozonbildung
- PM-10 (Feinstaub)

- Terrestrische und Frisch- und Meerwasser-Ökotoxizität
- Ionisierende Strahlung
- Landwirtschaftliche und urbane Landnutzung
- Landtransformation
- Wasserverbrauch
- Verbrauch mineralischer Ressourcen
- Verbrauch fossiler Brennstoffe

Folgende Midpointkategorien wurden für diese Studie ausgewählt: Treibhauspotenzial (GWP), Verbrauch mineralischer Ressourcen (SOP), Eutrophierungspotenzial (EP), Versauerungspotenzial (AP) und Photochemisches Oxidatienbildungspotenzial (POCP). Weiterhin wurden Partikelemission mittels des Indikator PM10 bewertet sowie der Kumulierte Energieaufwand (KEA<sub>renewable</sub> bzw. KEA<sub>non-renewable</sub>) bewertet.

Die Berechnung des **Treibhauspotenzials** (GWP) in Form von CO<sub>2</sub>-Äquivalenten wird allgemein anerkannt. Mit dem Intergovernmental Panel of Climate Change (IPCC) besteht zudem ein internationales Fachgremium, das sowohl die Methode als auch die entsprechenden Kennzahlen für klimawirksame Substanzen errechnet und fortschreibt. Bei der Berechnung von CO<sub>2</sub>-Äquivalenten wird die Verweilzeit der Gase in der Troposphäre berücksichtigt; daher stellt sich die Frage, welcher Zeitraum der Klimamodellrechnung für die Zwecke der Ökobilanz verwendet werden soll. ISO TS 14067 [ISO 2013] legt die Modellierung auf der 100-Jahre-Basis fest. Die in den Berechnungen des Treibhauspotenzials berücksichtigten Substanzen werden mit ihren CO<sub>2</sub>-Äquivalenzwerten nach [ReCiPe 2016] bewertet.

Für den Verbrauch an **abiotischen Ressourcen mineralischen Typs** steht in [ReCiPe 2016] der Wirkungsparameter Mineral resource scarcity (Surplus Ore Potential, SOP), gemessen in Kupfer-Äquivalanten, zur Verfügung.

Die **Eutrophierung** steht für eine Nährstoffzufuhr im Übermaß, sowohl für Gewässer als auch für Böden. Im vorliegenden Projektzusammenhang wird der Nährstoffeintrag über Luft und Wasser (bzw. Boden) betrachtet. Das Eutrophierungspotenzial (EP, hier: fresh water eutrophication) von Nährstoffemissionen wird hierbei durch die Aggregation von Phosphor-Äquivalenten nach [ReCiPe 2016] ermittelt.

Eine **Versauerung** kann ebenfalls sowohl bei terrestrischen als auch bei aquatischen Systemen eintreten. Verantwortlich sind die Emissionen säurebildender Abgase. Die Berechnung des Versauerungspotenzials (AP) erfolgt in Form von SO<sub>2</sub>-Äquvalanten mit den Charakterisierungsfaktoren nach [ReCiPe 2016].

Die Wirkungskategorie **Photooxidantien** (Photochemical Ozone Creation Potential, Photo-chemisches Oxidantienbildungspotenzial, POCP) bildet die Entstehung von Sommersmog oder bodennahem Ozon ab. Ozon führt zu Wald- und Vegetationsschäden. In höheren Konzentrationen ist es humantoxisch (Reizung der Atmungsorgane, Asthma, Husten und Augenreizung) [Schmid 2006]. Die Ozonbildung ist ein komplexer Prozess, bei dem den Kohlenwasserstoffen ein Ozonbildungspotenzial zugewiesen werden kann. Genaue Potenziale gelten nur für eine definierte Umgebung mit einer bestimmten Lichtintensität, einer bestimmten NO<sub>x</sub>-Konzentration und definierten meteorologischen Bedingungen. In der Ökobilanzierung werden als Mittelwerte die Wirkfaktoren nach [ReCiPe 2008] angesetzt, die auf 1 kg NMVOC-Äquivalent bezogen werden.

Die Partikelemissionen wurden mit dem Indikator PM10 nach [ReCiPe 2008] bewertet.

Der **Verbrauch an energetischen Ressourcen** wird über den Kumulierten Energie-Aufwand (KEA, engl. *Cumulative Energy Demand, CED*) abgebildet. KEA ist ein Maß für den gesamten Verbrauch an energetischen Ressourcen, die für die Bereitstellung eines Produktes oder einer Dienstleistung benötigt werden. Im KEA enthalten ist auch der Energiegehalt, der im Produkt selbst enthalten ist. Der KEA weist generell alle nicht erneuerbaren und erneuerbaren energetischen Ressourcen als Primärenergiewerte aus. In der vorliegenden Ökobilanz werden mit dem KEA gesamt sowohl die nicht erneuerbaren als auch die erneuerbaren energetischen Ressourcen berücksichtigt. Zur Berechnung wird der untere Heizwert der verschiedenen Energieträger angesetzt.

Verzichtet wurde in dieser Studie auf die Wirkungskategorien Ozonabbau, Terrestrische und Meerwasser-Eutrophierung, Human- und Ökotoxizität und Ionisierende Strahlung, da sie sich entweder als für die untersuchten Prozesse wenig relevant erwiesen haben (z. B. Ozonabbau, Ionisierende Strahlung) oder da die Datenlage so schlecht ist, dass fundierte Aussagen nur schwer abzuleiten sind (Human- und Ökotoxizität). Eine grobe Abschätzung ergab für Human- und Ökotoxizität eine signifikante Dominanz der PKWs-Produktion, der Schwerpunkt in dieser Studie liegt aber auf den Kraftstoffen. Weiterhin wurde auf die Auswertung von Landnutzung und Wasserverbrauch verzichtet.

Die von der EU-Kommission vorgeschlagenen Indikatoren und Methoden zum Product and Organisation Environmental Footprint [EC 2014] wurde in dieser Studie nicht angewendet, da bei PEF/OEF derzeit noch Widersprüche zur ISO-Norm 14044 bestehen (siehe [Lehmann 2015]).

# 3.6. Methoden der Auswertung

Die Auswertung wird entsprechend der in ISO 14040/44 [ISO 2006, ISO 2018] geforderten Bestandteilen durchgeführt. Diese umfasst:

- Identifizierung der signifikanten Parameter auf der Grundlage der Ergebnisse der Sachbilanz und Wirkungsabschätzungsphasen der Ökobilanz;
- eine Beurteilung, die die Vollständigkeits-, Sensitivitäts- und Konsistenzprüfungen berücksichtigt;
- Schlussfolgerungen, Einschränkungen und Empfehlungen.

# 3.7. Einschränkungen und Verwendung

Als wesentliche Einschränkung bzgl. der Ergebnisse der vorliegenden Ökobilanzstudie ist darauf hinzuweisen, dass es sich um Verfahren handelt, die sich noch im Entwicklungsstadium befinden und die Mehrzahl der Sachbilanzdaten aus Modellierungen oder Laborversuchen abgeleitet wurden.

Für das Fahrzeug wurde nur die Nutzung in einem Fahrzeugtyp untersucht

Die generischen Sachbilanzdaten werden aus Konsistenzgründen primär aus der Datenbank ecoinvent v3.5 entnommen.

# 3.8. Art und Aufbau des für die Studie vorgesehenen Berichts

Die Art und der Aufbau des Berichts orientieren sich an den vier Phasen einer Ökobilanz (Zieldefinition, Sachbilanz, Wirkungsabschätzung, Auswertung).

#### 3.9. Konformität und kritische Prüfung

Die vorliegende Ökobilanz wurde entsprechend den einschlägigen Vorgaben der ISO 14040/14044 [ISO 2006, ISO 2018] sowie ISO TS 14071 [ISO 2013] durchgeführt. Da es sich im eine vergleichende Ökobilanz handelt, die zur Publikation vorgesehen ist, wurde wie in den Normen vorgesehen, eine kritische Prüfung durch ein Panel aus drei unabhängigen Gutachtern durchgeführt. Das Review-Panel bestand aus Fredy Dinkel (Carbotech AG), Prof. Martin Wietschel (Fraunhofer ISI) und Prof. Herbert Vogel (TU Darmstadt), die auf einschlägige und umfassende Kenntnisse und Erfahrungen in den methodischen Anforderungen an Ökobilanzen, in Modellierung von Energiesystemen bzw. in Technischer Chemie verweisen können. Die Prüfung erfolgte gemäß Abschnitt 6.2 der ISO 14044 [ISO 2018] begleitend zur Studie. Das die Prüfaussage enthaltende Gutachten wird in den Anhang des Berichtes aufgenommen.

# 4. Prozess

# 4.1. Stromvorkette

Für die Durchführung der Ökobilanzen für die im Projekt analysierten unterschiedlichen PtX Technologien werden Strommixe benötigt. Im Kopernikus-P2X-Projekt wurde jedoch keine detaillierte Modellierung des Stromsystems sowie der weiteren relevanten Sektoren durchgeführt. Aus diesem Grund wurden Strommixe aus den bestehenden öko-instituts-eigenen Modellierungsläufen zum Klimaschutzszenario KSZ 95 für eine sektorübergreifende Reduktion der deutschen Treibhausgasemissionen um 95 % bis 2050 bezogen auf 1990 (KSZ 95) aus der Studie "Klimaschutzszenario 2050" des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit [OEKO/ISI 2015] generiert.

Es ist zu berücksichtigen, dass nur eine detaillierte Modellierung des Strommarktes inklusive der angedockten Sektoren und insbesondere inklusive der Abbildung des europäischen Stromaustausches der Bewertung eines relevanten Anstiegs der Stromnachfrage auf Grund von PtX-Anlagen gerecht werden kann. Da eine solche Modellierung in diesem Projekt nicht vorgesehen war, konnten die Strommixe nur unter der Annahme entwickelt werden, dass der modellierte PtX-Einsatz in Deutschland zu keinen Änderungen in den angrenzenden Sektoren und im EU-Ausland führt im Vergleich zu den Original-Modellierungen führt.

Um ein Bild von den Auswirkungen einer zusätzlichen Stromnachfrage durch PtX-Anlagen, insbesondere durch Elektrolyseure, auf den Strommix zu erhalten, wurden unterschiedliche illustrative PtX-Einsatzfälle entwickelt:

- *PtX zu Forschungszwecken*: Die zusätzliche Stromnachfrage durch PtX-Anlagen ist marginal und beeinflusst das Stromsystem nicht wesentlich.
- Ungeplanter PtX Rollout flexibel: Die PtX-Stromnachfrage nimmt beschleunigt zu, der EE-Ausbau folgt diesem zusätzlichen Bedarf nicht. Die Elektrolyseure sind mit einem Speicher ausgerüstet, so dass die Anlagen begrenzt flexibel auf den Strompreis<sup>2</sup> reagieren können. Dieser Einsatzfall wurde modelltechnisch dadurch erfasst, dass für das Jahr 2030 im KSZ 95 eine PtX-Nachfrage von 120 bis 140 TWh angesetzt wurde, jedoch ohne den EE-Ausbau entsprechend nachzuführen.

<sup>&</sup>lt;sup>2</sup> Eine Orientierung des Anlagenbetriebs am Strompreis bedeutet, dass die PtX-Anlagen vorzugsweise dann in Betrieb gehen, wenn der Strompreis niedrig ist. Somit führt diese Betriebsweise insbesondere in Systemen mit hohen EE-Anteilen zu einer vermehrten Integration von Strom aus Erneuerbaren Energien.

- Erneuerbarer PtX-Rollout flexibel: Entsprechend der PtX-Stromnachfrage werden EE-Erzeugungsanlagen zugebaut, so dass der EE-Ausbaukorridor gemäß § 1 EEG nicht unterschritten wird. Die Elektrolyseure sind mit einem Speicher ausgerüstet, so dass die Anlagen begrenzt flexibel auf den Strompreis reagieren können. Dieser Einsatzfall wurde modelltechnisch dadurch erfasst, dass die ohnehin im KSZ95 enthaltene PtX-Nachfrage von ca. 120 bis 140 TWh beibehalten wird. Es wurde allerdings zusätzlich unterstellt, dass aufgrund ökonomischer Überlegungen eine Vollaststundenzahl von ca. 5000 Stunden realisiert wird.
- *Erneuerbarer PtX-Rollout unflexibel*: Entsprechend der PtX-Stromnachfrage werden EE-Erzeugungsanlagen zugebaut, so dass der EE-Ausbaukorridor nicht unterschritten wird. Die Elektrolyseure orientieren sich nicht an dem Strompreis, d.h. sie laufen im Volllastbetrieb.

Für die Berechnung der Strommixe wurden bestehende Modellierungsläufe des Klimaschutzszenarios (KSZ) 95 genutzt und zum Teil um eine PtX-Stromnachfrage erweitert.

| gangsgrößen für die modelnerding                             |                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                           |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                              | PtX zu<br>Forschungszwecken                                                                                                                                     | ungeplanter<br>PtX- Rollout -<br>flexibel                                                                                                           | erneuerbarer<br>PtX-Rollout -<br>flexibel                                                                                                                 | erneuerbarer PtX-<br>Rollout -<br>unflexibel                                                                                                              |  |  |
| Annah-<br>men zum<br>EE-Aus-<br>bau                          | Nur marginale PtX-<br>Stromnachfrage , wel-<br>che sich nicht wesent-<br>lich auf die Stromerzeu-<br>gung auswirkt. EE-Anla-<br>gen werden nicht zuge-<br>baut. | Die PtX-Strom-<br>nachfrage nimmt<br>beschleunigt zu,<br>der EE-Ausbau<br>folgt diesem zu-<br>sätzlichen Bedarf<br>nicht.                           | Entsprechend der<br>PtX-Stromnachfrage<br>werden EE-Erzeu-<br>gungsanlagen zuge-<br>baut, so dass der EE-<br>Ausbaukorridor nicht<br>unterschritten wird. | Entsprechend der<br>PtX-Stromnachfrage<br>werden EE-Erzeu-<br>gungsanlagen zuge-<br>baut, so dass der EE-<br>Ausbaukorridor nicht<br>unterschritten wird. |  |  |
| Annah-<br>men zur<br>Flexibilität<br>der Elekt-<br>rolyseure |                                                                                                                                                                 | Durch vorhandene<br>Wasserstoffspei-<br>cher können die<br>Elektrolyseure be-<br>grenzt flexibel auf<br>den Strompreis re-<br>agieren. <sup>3</sup> | Durch vorhandene<br>Wasserstoffspeicher<br>können die Elektroly-<br>seure begrenzt flexi-<br>bel auf den Strom-<br>preis reagieren.                       | Die Elektrolyseure re-<br>agieren nicht flexibel<br>auf den Strompreis,<br>sondern laufen im<br>Volllastbetrieb.                                          |  |  |
| Zeithori-<br>zont                                            | 2030                                                                                                                                                            | 2030                                                                                                                                                | 2050                                                                                                                                                      | 2050                                                                                                                                                      |  |  |

# Tabelle 4-1:Beschreibung der betrachteten PtX-Einsatzfälle und der relevanten Ein-<br/>gangsgrößen für die Modellierung

Quelle: Eigene Darstellung

Die folgende Tabelle erläutert mögliche Methoden zur Ermittlung des der jeweiligen Stromnachfrage zugrundeliegenden Anlagenparks/Technologiemix der Stromerzeugung.

<sup>&</sup>lt;sup>3</sup> Dazu können sie unter Berücksichtigung einer Obergrenze gemäß der installierten Leistung (ca. 30 GW) ihre Momentanleistung stündlich anpassen. Ein ausreichend großer Wasserstoffspeicher (auf Basis des Erdgasnetzes) führt dazu, dass die Flexibilität der Fahrweise der Elektrolyseure nicht durch die Wasserstoffabnahme begrenzt ist.

| Durchschnittsbetrachtung<br>Stromerzeugung | Die ermittelten gesamten CO <sub>2</sub> -Emissionen werden ins Verhältnis zur gesam-<br>ten Stromerzeugung gesetzt, so dass jede produzierte MWh Strom den identi-<br>schen Emissionsfaktor zugerechnet bekommt.                                                                                                                                                                                                                |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                            | Diese Methodik führt dazu, dass sich eine mögliche Veränderung der durch-<br>schnittlichen Emissionen im Stromsektor, die aufgrund der PtX-Nachfrage ein-<br>tritt, gleichmäßig auf die Emissionen aller Verbrauchssektoren (z. B. Haus-<br>halte und gewerbliche Verbraucher) auswirkt.                                                                                                                                         |  |  |
| Durchschnittsbetrachtung<br>Stromerzeugung | Das Verfahren entspricht der Durchschnittsbetrachtung mit der Einschrän-<br>kung, dass ausschließlich die Stunden in Betracht gezogen werden, in denen                                                                                                                                                                                                                                                                           |  |  |
| (nur in Stunden mit PtX-Be-<br>trieb)      | Strom für PtX-Anwendungen bezogen wird. Das Verfahren bildet die Effekte der PtX-Anwendung etwas genauer ab, führt aber weiterhin zu einer Beein-<br>flussung der CO <sub>2</sub> -Bilanz anderer Verbraucher.                                                                                                                                                                                                                   |  |  |
| Grenzbetrachtung                           | Diese Betrachtung geht von der Perspektive aus, dass einem Stromsystem<br>die PtX-Nachfrage als zusätzliche Stromnachfrage hinzugefügt wird. Die Ver-<br>änderung der Stromerzeugung gegenüber einem Referenzfall ohne die zu-<br>sätzliche Stromnachfrage wird vollständig der PtX-Nachfrage zugeordnet. Die<br>CO <sub>2</sub> -Bilanz der anderen Verbraucher wird durch die zusätzliche Stromnach-<br>frage nicht verändert. |  |  |

Werden PtX-Anwendungen nur im kleinen Maßstab eingesetzt (z. B. zu Forschungszwecken), beeinflussen sie die Stromerzeugung nur minimal. In diesem Fall sind eine Durchschnittsbetrachtung bei der Bewertung von PtX-Anwendungen und damit eine Gleichbehandlung von PtX-Anwendungen im Vergleich zu anderen Verbrauchern angemessen. Bei einem breiten PtX-Rollout führt die damit einhergehende starke Erhöhung der Stromnachfrage jedoch zu relevanten Veränderungen in der Stromerzeugung und bei den CO<sub>2</sub>-Emissionen. In diesem Fall kann für die stromseitige Bewertung von PtX-Anwendungen auch eine Grenzbetrachtung angewendet werden, um darzustellen, welchen Effekt ein PtX-Rollout auf die Stromerzeugung hat und welche Emissionen sich durch diese neue Technologie im Vergleich zu einem System ohne diese Technologie ergeben.

Folgende Einschränkungen sind bei der Verwendung des Strommixes zu berücksichtigen:

- Die ermittelten Strommixe und die zugehörigen Anteile der Stromerzeugungstechnologien sind szenarioabhängig, d. h. sie gelten nur unter den gesetzten Annahmen. Das Klimaschutzszenario 95 stellt ein sehr ambitioniertes Szenario dar, in dem insbesondere in 2050 hohe EE-Anteile erreicht werden und in denen sich z. B. auch die Industrie ambitioniert in Bezug auf die Erreichung von Klimaschutzzielen verhält. In einem weniger ambitionierten Szenario wären die spezifischen direkten CO<sub>2</sub>-Emissionsfaktoren deutlich größer.
- Die Anteile der Stromerzeugungstechnologien gelten zudem nur f
  ür die in Tabelle 4-2 unterstellte PtX-Stromnachfrage. Eine Verwendung der abgeleiteten Strommixe f
  ür andere PtX-Nachfragen ist methodisch unzulässig.
- Bei den Rechnungen wurden die Nettoexporte in das benachbarte Ausland fixiert. Es ist davon auszugehen, dass sich mit einer Variation der PtX-Stromnachfrage auch der Leistungsaustausch mit dem Ausland verändern würde. Hieraus können sich deutlich andere Strommixe ergeben.
- Die Ergebnisse zu den Strommixen gelten ausschließlich für eine PtX-Nachfrage in Deutschland. Für eine ökologische Bewertung von PtX-Anwendungen im Ausland sind entsprechende energiewirtschaftliche Analysen des jeweiligen regionalen Stromsystems notwendig.

Die folgende Tabelle zeigt zentrale Kenngrößen aus der Modellierung.

|                                            | A) PtX zu<br>Forschungs-<br>zwecken | B) ungeplanter<br>PtX-Rollout -<br>flexibel | C) erneuerbarer<br>PtX-Rollout -<br>flexibel | D) erneuerbarer<br>PtX-Rollout - un-<br>flexibel |
|--------------------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Zeithorizont                               | 2030                                | 2030                                        | 2050                                         | 2050                                             |
| Gesamt-Stromerzeu-<br>gung inkl. PtX [TWh] | 464                                 | 585 <sup>4</sup>                            | 745                                          | 752                                              |
| EE-Anteil an Stromer-<br>zeugung [%]       | 68                                  | 57                                          | 94                                           | 90                                               |
| Volllaststunden Elektro-<br>lyseure        | k. A.                               | 5.415                                       | 5.403                                        | 8.760                                            |
| Quelle: Eigene Deretellung                 | ·                                   | ·                                           | ×                                            |                                                  |

#### Tabelle 4-2: Zentrale Modellierungsergebnisse für die unterschiedlichen Einsatzfälle

Für die vorliegende Ökobilanz wurde jeweils der Fall eines deutlichen Zubaus von PtX-Anlagen sowie ein eingeschränkt flexibler Betrieb der Elektrolyseure (ca. 5000 FLH) angesetzt (Tabelle 4-2 B) und C)). Für den Zeithorizont 2030 bedeutet das eine deutliche Unterschreitung des EE-Ausbaukorridors im Vergleich zu der originalen KSZ 95-Modellierung, da ohne weiteren EE-Zubau ein Roll-out von PtX-Anlagen unterstellt wird (B) "ungeplanter PtX-Rollout – flexibel"). Für den Zeithorizont 2050 ergibt sich eine geringe Veränderung durch Anpassung der unterstellten Vollaststunden (C) "erneuerbarer PtX-Rollout – flexibel). Um die Auswirkungen der Entscheidung aufzuzeigen, ob für den Strommix für die Wasserelektrolyse (1) eine Durchschnittsbetrachtung in den Stunden mit PtX-Betrieb oder (2) der Grenzstrommix (Differenz zwischen Strommodellierung mit und ohne PtX-Erzeugung) angesetzt wird, werden für die Zeithorizonte 2030 und 2050 jeweils beide Stromszenarien (1: flexmix, 2: marginal) ökobilanziell bewertet und in den Ergebnissen dargestellt. In Tabelle 4-3 sind der heutige Stromerzeugungsmix sowie die Zusammensetzung der Stromerzeugung in den Szenarien für 2030 und 2050 dargestellt. Für die heutige Situation wurde die Stromerzeugung basierend auf den Daten der Arbeitsgemeinschaft Energiebilanzen für das Jahr 2018 [AG Energiebilanzen 2019] verwendet. Für die CO2-Abscheidung und die OME-Synthese wurde jeweils der Durchschnittsmix über das ganze Jahr (mix) verwendet.

Die Varianten "PtX zu Forschungszwecken" und ein unflexibler PtX-Rollout 2050 (unflexibler Betrieb der Elektrolyseure) wurden in der LCA nicht betrachtet.

<sup>&</sup>lt;sup>4</sup> Abweichend vom Klimaschutzszenario wurde hier eine zusätzliche Stromnachfrage durch PtX-Anlagen unterstellt. Der EE-Ausbau wurde nicht angepasst.

| Energieträger /<br>Szenario | Mix heute                     | E+K 2030<br>mix                    | E+K 2030<br>flexmix                | E+K 2030<br>marginal               | E+K<br>2050 mix                 | E+K 2050<br>flexmix             | E+K 2050<br>marginal            |
|-----------------------------|-------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Quelle                      | AG Energie-bi-<br>lanzen 2019 | KSZ 95<br>zzgl. 120-140<br>TWh PtX | KSZ 95<br>zzgl. 120-140<br>TWh PtX | KSZ 95<br>zzgl. 120-140<br>TWh PtX | KSZ 95<br>EC mit ca.<br>5000FLH | KSZ 95<br>EC mit ca.<br>5000FLH | KSZ 95<br>EC mit ca.<br>5000FLH |
| Zeithorizont                | 2018                          | 2030                               | 2030                               | 2030                               | 2050                            | 2050                            | 2050                            |
| AKW [%]                     | 11,9                          | 0,0                                | 0,0                                | 0,0                                | 0,0                             | 0,0                             | 0,0                             |
| Braunkohle [%]              | 22,7                          | 1,2                                | 1,2                                | 2,0                                | 0,0                             | 0,0                             | 0,0                             |
| Steinkohle [%]              | 13,0                          | 8,7                                | 8,5                                | 21,0                               | 0,0                             | 0,0                             | 0,0                             |
| Laufwasser [%]              | 2,6                           | 3,3                                | 3,3                                | 0,0                                | 3,3                             | 2,8                             | 0,0                             |
| Erdgas [%]                  | 13,0                          | 41,4                               | 41,1                               | 63,0                               | 6,1                             | 4,4                             | 14,0                            |
| ÖI [%]                      | 0,8                           | 0,0                                | 0,0                                | 0,0                                | 0,0                             | 0,0                             | 0,0                             |
| Gichtgas⁵ [%]               | 2,0                           | 0,0                                | 0,0                                | 0,0                                | 0,0                             | 0,0                             | 0,0                             |
| Müllverbrennung<br>[%]      | 2,0                           | 1,2                                | 1,1                                | 0,0                                | 0,8                             | 0,4                             | 0,0                             |
| Biogas [%]                  | 3,6                           | 2,3                                | 2,3                                | 2,0                                | 0,1                             | 0,1                             | 0,0                             |
| Biomasse [%]                | 3,6                           | 1,5                                | 1,5                                | 1,0                                | 0,1                             | 0,1                             | 0,0                             |
| Photovoltaik [%]            | 7,2                           | 9,4                                | 9,7                                | 0,0                                | 16,6                            | 16,5                            | 0,0                             |
| Wind offshore [%]           | 3,0                           | 8,5                                | 8,6                                | 8,0                                | 20,7                            | 20,7                            | 52,0                            |
| Wind onshore [%]            | 14,4                          | 22,1                               | 22,4                               | 2,0                                | 52,3                            | 55,0                            | 34,0                            |

| Tabelle 4-3: | Anlagenpark der | Stromerzeugung | 2018, | 2030 und 2050 |
|--------------|-----------------|----------------|-------|---------------|
|--------------|-----------------|----------------|-------|---------------|

Quelle: Eigene Darstellung

Tabelle 4-4 zeigt die für die Modellierung verwendeten ecoinvent-Datensätze nach Energieträger. Die Gesamt-Netzverluste wurden für alle Jahre mit 4 % angesetzt.

<sup>&</sup>lt;sup>5</sup> Vereinfachend abgeschätzt nach den Angaben für "sonstige Gase" (AG Energiebilanzen 2019)

| Energieträger    | ecoinvent-DS                                                                                          |
|------------------|-------------------------------------------------------------------------------------------------------|
| Atomkraftwerk    | electricity production, nuclear, pressure water reactor, [DE]                                         |
| Braunkohle       | electricity production, lignite [DE]                                                                  |
| Steinkohle       | electricity production, hard coal [DE]                                                                |
| Erdgas           | electricity production, natural gas, at conventional power plant [DE]                                 |
| Siedlungsabfälle | electricity, from municipal waste incineration to generic market for electricity, medium voltage [DE] |
| feste Biomasse   | heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 [DE]                         |
| Biogas           | heat and power co-generation, biogas, gas engine [DE]                                                 |
| Laufwasser       | electricity production, hydro, run-of-river [DE]                                                      |
| PV               | electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted [DE]   |
| Wind onshore     | electricity production, wind, 1-3MW turbine, onshore [DE]                                             |
| Wind offshore    | electricity production, wind, 1-3MW turbine, offshore [DE]                                            |
| Gichtgas         | treatment of blast furnace gas, in power plant [DE]                                                   |
|                  | 1<br>                                                                                                 |

# Tabelle 4-4: Verwendete ecoinvent-Datensätze nach Energieträger

Quelle: Eigene Darstellung

# 4.2. H<sub>2</sub>-Elektrolyse

Für die Produktion von Wasserstoff stellt das Dampfreformieren von Erdgas mit rund 70 % Wirkungsgrad und einem globalen Anteil von 48 % den gegenwärtigen Industriestandard dar (Bertuccioli et al. 2014). Die jährliche weltweite Produktion von rund 60 Millionen t Wasserstoff [Weger et al. 2017] entspricht etwa 1 % des heutigen globalen Primärenergieeintrags und rund 330 Millionen t CO<sub>2</sub>-Emissionen.

Für die Bereitstellung von Wasserstoff bzw. Synthesegas wurden im P2X-Projekt verschiedene Elektrolyse-Routen untersucht, neben der PEM-Elektrolyse eine Niedertemperatur-Co-Elektrolyse von CO<sub>2</sub> zu CO und H<sub>2</sub> und die Hochtemperatur-Co-Elektrolyse zur Gewinnung von Synthesegas [Roadmap 1.0, Roadmap 2.0].

Für die OME<sub>x</sub>-Synthese im Rahmen dieser Studie wurde die Wasserstoff-Produktion mittels Polymer-Elektrolyt-Membran-Elektrolyse (PEM) angesetzt, die im Rahmen von Kopernikus P2X im Forschungscluster A-1 erforscht wurde. Der mittlere Systemwirkungsgrad der PEM-Elektrolyse liegt derzeit bei rund 60 % bezogen auf den unteren Heizwert (LHV) [Kopp et al. 2017, Smolinka et al. 2018, Bareiß et al. 2019], langfristig sind rund 70 % (LHV) möglich [Smolinka et al. 2018]. Die PEM-Elektrolyse ist eine bereits erprobte, vor der Kommerzialisierung stehende Technik und findet heute schon Anwendung [Töpler & Lehmann 2014]. Die angestrebten Optimierungen im Prozess betreffen vor allem die Verbesserung der Langzeitstabilität unter transientem (fluktuierendem) Betrieb, die Nutzung von Membranmaterialien mit geringerer Gaspermeation, die Entwicklung von Katalysatoren mit hoher spezifischer Aktivität, eine Verringerung der Ressourcen-limitierten Edelmetallbeladungen der Elektroden, sowie die Erhöhung des Wirkungsgrades [Roadmap 1.0]. Für die Ökobilanz des PEM-Elektrolyseurs wurden die Angaben zur Materialzusammensetzung eines Elektrolyseur von 1 MW Leistung des Stacks zugrunde gelegt (Bareiß et al. 2019). Diesen liegt eine Container-Ausführung mit 1 MW<sub>el</sub> Anschlussleistung zugrunde. Neben den Materialien für den Stack werden dabei der Materialeinsatz für die Nebenaggregate, den Container und das Betonfundament berücksichtigt. Außerdem wird ein Standard-Niederdruckspeicher für den Wasserstoff berücksichtigt [OEKO/ZSW 2016]. Zur Bewertung der PEM-Elektrolyse für heute wird der in [Bareiß et al. 2019] angegebene heutige Materialbedarf zugrunde gelegt, für 2030 und 2050 wird mit der Abschätzung des zukünftigen Materialbedarf ("near future") gearbeitet. Die Lebenszeit der Anlage wird auf 20 Jahre angesetzt. Dabei wird berücksichtigt, dass der Stack nach 7 Jahren (heute) bzw. 10 Jahren (zukünftig) erneuert werden muss.

Für den Transport des H<sub>2</sub> wurde ein LKW-Transport mit einem Druckwasserstofftank über 200 km angesetzt. Der Wasserstoff-Transport wurde nach [OEKO 2012] modelliert. Ob der Wasserstoff tatsächlich zur OME-Anlage transportiert würde, ist aus ökonomischer Sicht eher fraglich, wird aber hier zur Analyse des möglichen Impacts angenommen, da die gesamte elektrische Anschlussleistung für eine nach heutigem Maßstab großtechnische OME-Produktion sehr hoch wäre. So ergibt sich bspw. bei den in der techno-ökonomischen Analyse im Kopernikus-P2X-Projekt unterstellten 200.000 Jahrestonnen OME eine Anschlussleistung von gut 500 MW (bei 5000 FLH der Elektrolyse). Es ist also ebenfalls unsicher, ob eine so hohe Leistung an einem Ort bereitgestellt werden könnte.

Tabelle 4-5 zeigt die abgeschätzte Entwicklung verschiedener Parameter der PEM-Elektrolyse über die nächsten 10 Jahre.

|                                     | heute                     | nahe Zukunft            |
|-------------------------------------|---------------------------|-------------------------|
| Systemwirkungsgrad (LHV<br>basiert) | 60 %                      | 60 %                    |
| Zellspannung                        | 1,79 V                    | 1,79 V                  |
| Stromdichte                         | 1 ± 0.5 A/cm <sup>2</sup> | 3 A/cm <sup>2</sup>     |
| Ir Beladung (Anode)                 | 2 mg/cm <sup>2</sup> [2]  | 0,2 mg/cm <sup>2</sup>  |
| Platinbeladung (Kathode)            | 0,3 mg/cm <sup>2</sup>    | 0,05 mg/cm <sup>2</sup> |
| Titan Bipolarplatte                 | 3 mm (Dicke)              | 0,4 ± 0,1 mm (Dicke)    |
| Nafion (Membran)                    | 200 µm (Dicke)            | 50 μm (Dicke)           |
| Quelle: Bareiß et al. 2019          |                           |                         |

# Tabelle 4-5: Parameter der Entwicklungsstände der PEM-Elektrolyse für die LCA

Die in dieser Ökobilanz angesetzten Bedarfe an Energie und Wasser sind in Tabelle 4-6 aufgeführt.

# Tabelle 4-6: Energie- und Wasserbedarf für die PEM-Elektrolyse

|                                   | heute                     | 2030 & 2050              |
|-----------------------------------|---------------------------|--------------------------|
| Betriebsstrom (PEM-Elektrolyseur) | 56 kWh/kg H <sub>2</sub>  | 48 kWh/kg H <sub>2</sub> |
| Prozesswasser                     | 12.5 kg/kg H <sub>2</sub> |                          |

Quelle: Betriebsstrom: Bareiß et al. 2019, Prozesswasser: Mittelwert basierend auf OEKO/ZSW 2016

# 4.3. CO<sub>2</sub>-Vorkette

Für die CO<sub>2</sub>-Bereitstellung stehen im Prinzip drei Quellen zur Verfügung:

- Abtrennung aus Abgasströmen biobasierter Prozesse, z. B. Biogasanlagen
- Abtrennung aus Abgasströmen industrieller Prozesse, die auf fossilen oder geogenen Kohlenstoffquellen basieren, z. B. Primärstahlwerk, Zementwerk usw.
- Abtrennung aus der Luft mittels Direct Air Capture (DAC)

Biobasierte Quellen sind mengenmäßig beschränkt und von ihrem Vorkommen her sehr stark verteilt. Um eine großtechnische OME-Anlage zu betreiben, sind kleinräumig anfallende biobasierte CO<sub>2</sub>-Quellen kaum geeignet und werden daher in dieser Studie nicht berücksichtigt. Wenn die Vorgaben des Pariser Klimaschutzabkommens eingehalten werden, dürfen langfristig (2050 ff.) in Deutschland keine fossilen und geogenen Kohlenstoffquellen mehr existieren und somit sind auch die industriellen Punktquellen langfristig beschränkt. Aus diesem Grund wird in dieser Studie die CO<sub>2</sub>-Bereitstellung aus Direct Air Capture als Standardvariante angesetzt. Die Nutzung von CO<sub>2</sub> aus Carbon Capture & Usage (CCU), d. h. aus geogen- bzw. fossilbasierten Industriequellen wird im Rahmen eine Sensitivitätsbetrachtung untersucht (vgl. Kapitel 8.2.2.2). Da der Energieaufwand und auch die derzeitigen Kosten bei DAC höher sind als die CO<sub>2</sub>-Abscheidung aus industriellen Punktquellen kann die DAC hier als Worst-Case-Szenario angesehen werden, sofern bei der Bewertung der Nutzung von CO2 aus einem Industrieprozess dieser eine Gutschrift für die CO<sub>2</sub>-Abscheidung und -nachnutzung zugewiesen bekommt (siehe Kapitel 8.2.2.2).

Für die Abscheidung von CO<sub>2</sub> mittels DAC wird das Verfahren der Firma Climeworks angesetzt, die für das Kopernikus-P2X-Projekt Daten zur Verfügung gestellt hat, siehe Annex I.

Zur CO<sub>2</sub>-Abscheidung aus der Luft gibt es zwei gängige Verfahren [Goeppert et al. 2012]:

- Absorption in basischen Medien (KOH, Ca(OH)<sub>2</sub>, NaOH): CO<sub>2</sub> reagiert mit wässrigen Lösungen starker Basen zum entsprechenden Carbonat (K<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, CaCO<sub>3</sub>) mit hoher Selektivität und hoher Ausbeute (>99 %).
- Adsorption an geträgerten Organo-Aminen (Polyethylenimin [PEI], Amino-Trimethoxysilane [TRI], verzweigten Aminosilikaten [HAS]): CO<sub>2</sub> wird reversibel an funktionelle Amin-Gruppen (-NH<sub>2</sub>) gebunden.

Die zweite Technologie erfordert einen deutlich geringeren Energieaufwand zur Freisetzung des adsorbierten CO<sub>2</sub> und ist die Grundlage für die Anlagen der Firma Climeworks. Tabelle 4-7 stellt die angesetzten Werte für den Energiebedarf der beiden Technologien dar. Sie geben den derzeitigen Stand der Forschung wieder und basieren vor allem auf Laboruntersuchungen und nur zum Teil auf laufenden Demonstrator-Anlagen. Es ist zu erwarten, dass der Energiebedarf im Laufe der Zeit durch technologischen Fortschritt abnimmt [Roadmap 1.0].

# Tabelle 4-7:Energiebedarf verschiedener Technologien zur Abscheidung von CO2 aus<br/>Luft

|                                                            | Absorption (NaOH, KOH)     | Adsorption (PEI, TRI)  |
|------------------------------------------------------------|----------------------------|------------------------|
| Thermische Energie [kWh/Nm <sup>3</sup> CO <sub>2</sub> ]  | 1,9 – 6,0 (bei 400-700 °C) | 1,8 – 4,0 (bei 100 °C) |
| Elektrische Energie [kWh/Nm <sup>3</sup> CO <sub>2</sub> ] | 0,4 - 2,2                  | 0,4 - 3,7              |
| Quelle: Roadmap 1.0                                        |                            |                        |

Für den Transport des CO<sub>2</sub> nach der Abtrennung zur OME-Produktionsanlage wurde ein Pipeline-Transport über 200 km angesetzt. Der Pipeline-Transport wurde mit Angaben des Projektpartners FZ Jülich modelliert, siehe Annex I. Ob ein Transport von aus der Luft abgeschiedenem CO<sub>2</sub> tatsächlich nötig würde und auch, inwiefern hierzu eine Pipeline errichtet würde, ist fraglich, wurde hier aber zur Orientierung mit berücksichtigt.

# 4.4. OME-Synthese

Oxymethylenether lassen sich auf unterschiedlichen Routen herstellen, in der ersten Phase des Kopernikus-P2X-Projektes wurden drei verschiedene Routen für die OME<sub>x</sub>-Synthese untersucht, die in Abbildung 4-1 abgebildet sind. Eine Beschreibung findet sich in der Roadmap 1.0 und wird im Folgenden wiedergegeben. Drei Routen wurden untersucht: etablierte Route (blau), Direktoxidation (grün) und reduktive Route (rot). Die sogenannte "ideale Route" (orange) dient als theoretischer Vergleichsprozess und stellt den am stärksten integrierten Weg dar, in dem alle Zwischenprodukte in-situ umgesetzt werden. Die Route der direkten Dehydrierung [Wu et al. 2018] (dunkelbraun) wurde nicht untersucht.



Quelle: Roadmap 1.0

Für die **etablierte Route zur Herstellung von OME**<sub>1</sub> [Van-Dal/Bouallou 2013] wird zunächst Methanol benötigt. Die Bereitstellung von Methanol kann auf konventionellem Weg durch Synthesegas, aber auch aus CO<sub>2</sub> und elektrolytischem H<sub>2</sub> erfolgen [Pontzen et al. 2011]. Das benötigte H<sub>2</sub> kann durch die PEM-Elektrolyse gedeckt werden, wie in Kapitel 4.2 beschrieben. In der etablierten Route wird das als zweites Edukt benötigte Formaldehyd durch eine anteilige Oxidation von Methanol gewonnen und in der Gaswäsche mit Wasser in eine wässrige Lösung (Formalin) überführt [Reuss et al. 2012]. In einem nachgeschalteten Prozessschritt reagiert Formaldehyd mit Methanol in der Flüssigphase zu OME<sub>1</sub> [Weidert et al. 2017]. Als Katalysator dient ein saurer Zeolith oder ein Ionentauscherharz. Formalin dient zudem als Ausgangsstoff für Trioxan [Grützner et al. 2007], das für die Herstellung von OME<sub>3-5</sub> [Burger et al. 2013] aus OME<sub>1</sub> verwendet wird. Diese Route ist aus energetischer Sicht ungünstig, da durch die Oxidation von Methanol zu Formaldehyd die rein reduktive Route verlassen wird. Dadurch wird in der Oxidation von Methanol Wasser produziert und somit Wasserstoff verbraucht. Zudem wird bei der Gaswäsche in der Formalin-Herstellung Wasser eingesetzt, das letztendlich wieder aus dem System entfernt werden muss. Der damit verbundene zusätzliche Energieaufwand senkt folglich den Wirkungsgrad der etablierten Route. Eine alternative Route von Methanol zu Formaldehyd existiert in Form einer direkten Dehydrierung, die auch bereits für die OME-Herstellung vorgeschlagen wurde [Ouda et al. 2018], die allerdings noch auf einem niedrigen TRL-Level (3-4) steht.

Für die Route der **Direktoxidation zur Herstellung von OME**<sub>1</sub> [Freveland/Hedelund o. J., Fu/Shen 2007] wird Methanol ebenfalls aus CO<sub>2</sub> und H<sub>2</sub> bereitgestellt. Allerdings wird im zweiten Schritt ein Teil des Methanols *in-situ* zu Formaldehyd oxidiert und mit weiterem Methanol zu OME<sub>1</sub> kondensiert. Als Katalysator dient phosphatiertes V2O5. Dieser Prozess hat mehrere Vorteile gegenüber der etablierten Route. Zum einen wird kein zusätzliches Wasser wie in der etablierten Formaldehyd-Herstellung in den Prozess geführt, zum anderen läuft die Reaktion in der Gasphase ab. Die Gasphasenreaktion wird bevorzugt, da diese deutlich schneller abläuft als die Flüssigphasenreaktion. Außerdem verspricht die Einsparung des Prozesschritts zur Formalin-Herstellung Vorteile hinsichtlich der Kapitalkosten.

Auch in der **reduktiven Route zur Herstellung von OME**<sub>1</sub> werden bei der Methanol-Herstellung CO<sub>2</sub> und H<sub>2</sub> als Ausgangsstoffe verwendet [Thenert et al. 2016, Deutz et al. 2018, Schieweck/Klankermayer 2017]. Allerdings wird bei dieser Route CO<sub>2</sub> nicht nur für die Methanol-Herstellung verwendet, sondern auch als Baustein, um über das Zwischenprodukt Methylformiat *in-situ* OME<sub>1</sub> zu bilden. Dies ist von Vorteil, da nicht das gesamte CO<sub>2</sub> bis zu Methanol reduziert werden muss. Diese Route hat aktuell den geringsten H<sub>2</sub>-Bedarf und somit den geringsten Strombedarf für die Elektrolyse. Es entsteht dennoch bei der Reaktion Wasser, das abgetrennt werden muss. Als Katalysator dient ein Ir-Komplex.

Die sogenannte **ideale Route zur Herstellung von OME**<sub>1</sub> beschreibt die chemisch am stärksten integrierte Syntheseroute und bezieht sich auf einen Reaktionspfad, bei dem ausgehend von CO<sub>2</sub> und H<sub>2</sub> direkt OME<sub>1</sub> gebildet wird. Da diese Reaktion bisher noch nicht beobachtet wurde, dient diese Route vorerst nur als theoretischer Vergleichsprozess. Ihr Reaktionspfad könnte beispielsweise über Methanol laufen, aus dem anschließend reduktiv *in-situ* Formaldehyd durch Abspaltung von H<sub>2</sub> entsteht. Somit würde deutlich weniger Wasser bei der Reaktion produziert werden, was die Aufreinigung der Produkte vereinfacht.

Die Route der **direkten Dehydrierung zur Herstellung von OME**<sup>1</sup> [Wu et al. 2018] wurde im Projekt nicht experimentell untersucht und aus diesem Grund auch nicht in die Bilanzierung aufgenommen. Hierbei wird OME1 aus einer direkten Dehydrierung von Methanol gewonnen. Da kein Wasser benötigt wird, ist der Trennaufwand deutlich niedriger als in der etablierten Route. Auch weist diese Route weniger Prozessschritte und eine bessere Gesamtstöchiometrie auf. Allerdings befindet sie sich noch in einem sehr frühen Entwicklungsstand.

Die **Kettenverlängerung zu OME**<sub>3-5</sub> verläuft bisher nach der etablierten Route über Trioxan [Burger et al. 2013]. Da diese Route wasserfrei ist, wird die Aufreinigung der Produkte stark vereinfacht. Die Herstellung von Trioxan ist allerdings aufgrund des hohen Wärmebedarfs sehr energieaufwendig. Aktuelle Bemühungen verfolgen daher einen alternativen Weg zur Kettenverlängerung, bei dem Methanol und Formaldehyd direkt zu OME<sub>3-5</sub> umgesetzt werden. Bei dieser Reaktion entsteht jedoch Wasser, welches bei der Produktaufreinigung betrachtet werden muss.

# 5. Datengrundlage

Die Beschreibung der Datengrundlage wird hier nach dem entsprechenden Kapitel der [Roadmap 2.0] wiedergegeben.

Die Datengrundlage für die drei untersuchten Routen ist abhängig vom jeweiligen Entwicklungsstand und wird bei höher entwickelten Prozessschritten mit dem etablierten Prozesssimulator ASPEN Plus modelliert, bei niedrigeren TRL werden die Daten anhand von Massenbilanzen und Shortcut-Methoden [Bausa et al. 1998] zur Abschätzung des Trennaufwands generiert.

Für die etablierte Route wurde für jeden Teilprozess ein detailliertes Prozessmodell entwickelt, welches die komplexen Oligomer-Reaktionen von Formaldehyd mit Wasser und Methanol abbildet, sobald Formaldehyd im System vorhanden ist. Der Prozess für die Methanol-Herstellung, der auch Bestandteil der Direktoxidation und der reduktiven Route ist, basiert auf der direkten Umsetzung von CO<sub>2</sub> und H<sub>2</sub> zu Methanol [Burre et al. 2018]. Für diesen Prozessschritt wurde eine detaillierte Reaktionskinetik implementiert. Auch für die OME<sub>1</sub>- und OME<sub>3-5</sub>-Synthese der etablierten Route wurde auf validierte Reaktionskinetiken zurückgegriffen [Drunsel et al. 2012; Burger et al. 2012]. Die Formaldehyd-Synthese aus Methanol verläuft nach dem BASF-Prozess partiell-oxidativ [Reuss et al. 2012] und Trioxan wird durch einen destillationsbasierten Prozess hergestellt [Grützner et al. 2007], um die aufwendige Extraktion des konventionellen Verfahrens zu umgehen.

Da sich die Direktoxidation und die reduktive Route noch in einem frühen Entwicklungsstadium befinden, basieren die jeweiligen Modelle auf experimentellen Beobachtungen. Für die Direktoxidation wird ein Betrieb über der oberen Explosionsgrenze angenommen, in dem der zur Verfügung stehende Sauerstoff vollständig verbraucht wird, wobei die Selektivität zu OME<sub>1</sub> aus Laborversuchen übertragen wurde. Als Nebenprodukte können Wasser, Methylformiat, Formaldehyd, Dimethylether (DME) und Kohlenstoffoxide (CO<sub>x</sub>) entstehen. Der Trennaufwand des Reaktionsgemisches wurde mit einer Shortcut-Methode [Bausa et al. 1998] abgeschätzt. So konnte der minimale Energiebedarf für die destillative Auftrennung berechnet werden. Da bei der reduktiven Route die Unsicherheiten über die finalen Umsätze und Selektivitäten noch hoch sind, wurde wie bei der Direktoxidation der Trennaufwand über Shortcut-Methoden [Bausa et al. 1998]. Die Kettenverlängerung von OME<sub>1</sub> zu OME<sub>3-5</sub> mit alternativen Formaldehydquellen zu Trioxan ist Gegenstand weiterführender Arbeiten. Die Katalysatoren für die drei Routen wurden in der LCA vereinfachend weggelassen, da insbesondere für den Iridium- und den Vanadium-Katalysator bisher keine ökonomisch darstellbaren Turn-Over-Numbers realisiert werden konnten.

Der Strombedarf für die OME-Produktion wird mit dem Jahresdurchschnittsmix angesetzt (siehe Kapitel 4.1), da davon auszugehen wird, dass die OME-Synthese nicht flexibel gefahren wird. Für die Wärmebereitstellung wird bei einer vollständigen Wärmeintegration die Nutzung einer Wärmepumpe angenommen (bis 105°C, Realwirkungsgrad 60%, COP ca. 2,5-2,8). Eine solche Wärmepumpe ist heute bereits technisch möglich, aber noch nicht kommerziell verfügbar [RWTH.LTT 2019] und wird daher unter der Prämisse angesetzt, dass bei strombasierten Prozessen der Fokus zunächst auf die Minimierung der Stromnachfrage gelegt werden sollte. Für die OME3-5-Synthese kommt aufgrund des hohen Temperaturniveaus der benötigten Wärme keine Wärmepumpe zum Einsatz. Tabelle 5-1 zeigt die verwendeten Werte für den Strom, Wärme- bzw. Kältebedarf der einzelnen OME-Routen.

|                      | Einheit   | OME1 etab | OME1 red           | OME1 ox            | OME3-5 |
|----------------------|-----------|-----------|--------------------|--------------------|--------|
| Elektrolyse, Strom   | MJ/kg OME | 45        | 38                 | 44                 | 43     |
| DAC, Strom           | MJ/kg OME | 3,5       | 3,3                | 3,3                | 3,3    |
| DAC, Wärme als Strom | MJ/kg OME | 3,9       | 3,8                | 3,8                | 3,7    |
| OME, Strom           | MJ/kg OME | 1,4       | (nicht modelliert) | (nicht modelliert) | 2,5    |
| OME, Wärme als Strom | MJ/kg OME | 0,4       | 2,5                | 0                  | 17,9   |
| OME, Kälte als Strom | MJ/kg OME | 0         | 0                  | 0,83               | 0      |

 Tabelle 5-1:
 Energiebedarf der OME-Routen bei vollständiger Wärmeintegration

Quelle: Eigene Darstellung nach RWTH Aachen SVT.AVT

Der Transport des Endprodukts  $OME_x$  zur Tankstelle wird mit einem LKW-Transport über 200 km modelliert.

Der Modellierung liegt ein Maßstab der OME-Produktionsanlage von 200.000 Jahrestonnen zugrunde. Der Anlagenbau wird ökobilanziell mit einem generischen Datensatz für Chemieanlagen bewertet.

Für die Gewinnung des Wasserstoffs wird wie in Kapitel 4.2 beschrieben eine PEM-Elektrolyse angesetzt [Bareiß et al. 2019], für die CO<sub>2</sub>-Bereitstellung in der Standardrechnung die Abscheidung aus der Luft mittel DAC nach dem Verfahren der Firma Climeworks (vgl. Kapitel 4.3). Für den Transport des Wasserstoffs wurde ein LKW-Transport nach [OEKO 2012] über 200 km angesetzt.

Für die Elektrolyseure wird angenommen, dass sie eingeschränkt flexibel gefahren werden können. Die Stromnachfrage der Elektrolyseure wird mit jeweils zwei Stromszenarien bewertet: zum einen mit dem Durchschnittsmix in den Betriebsstunden, zum anderen mit dem Marginalstrommix (siehe Kapitel 4.1).

Der Strombedarf für die CO<sub>2</sub>-Abscheidung wird mit dem Jahresdurchschnittsmix berechnet. Zur Bereitstellung der Prozesswärmewird wie für die OME-Synthese eine Wärmepumpe angesetzt.

Für die Nutzung im Fahrzeug wurde ein durchschnittlicher Mittelklassewagen (Golf 7 TDI) als Fahrzeug angesetzt (siehe Tabelle 5-2), für den Vergleich mit einem batterieelektrischen Fahrzeug (battery electric vehicle, BEV) in der Sensitvitätsrechnung (siehe Kapitel 8.2.2.3) ein eGolf 7 (siehe Tabelle 5-2). Die Daten für die Herstellung und Nutzung des PKWs wurden vom Projektpartner Audi zur Verfügung gestellt (siehe Tabelle 5-3) und beziehen sich auf die Bilanzierungsarbeiten von Volkswagen [VW 2019]. Werte für das Eutrophierungspotenzial und Versauerungspotenzial wurden vom Projektpartner Audi nicht zur Verfügung gestellt. Für andere Emissionen für die Werte aus dem ecoinvent-Datensatz "transport, passenger car, small size, diesel, EURO 5" übernommen. Für die OME<sub>x</sub>-Kraftstoffe wurden an der RWTH Aachen Einzylindertest und WLTC-Zyklussimulation durchgeführt, um die motorseitigen Emissionen zu charakterisieren. Für die ökobilanzielle Bewertung wurde daraus abgeleitet, dass die NO<sub>x</sub>-Emissionen um 50 % gesenkt werden im Vergleich zu Diesel und keine Rußemissionen entstehen (PM 2,5 = 0). Der angesetzte Kraftstoffverbrauch beruht auf Messungen nach dem WLTC-Zyklus [Audi 2019]. Der heutige Kraftstoffverbrauch liegt somit bei 1,3 MJ Diesel/vkm und für den künftigen Verbrauch (für die Szenarien der Jahre 2030 und 2050) bei 1

MJ Diesel/km. Da die Realverbräuche heute insbesondere bei Dieselfahrzeugen deutlich höher liegen (vgl. z. B. [ICCT 2017]), wird in einer Sensitivitätsrechnung auch ein Verbrauchswert von 1,9 MJ Diesel/vkm (nach Daten des "Spritmonitors" [Spritmonitor 2019]) betrachtet. Für die Bewertung von OME als Kraftstoff werden jeweils dieselben Verbrauchwerte verwendet.

| Fabelle 5-2:Kenngrößen der Fahrzeuge |                                                                       |                                                                            |  |
|--------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                      | Dieselmotor (TDI)                                                     | BEV (eGolf)                                                                |  |
| Fahrzeugklasse                       | Kompaktklasse (Golf)                                                  | Kompaktklasse (Golf)                                                       |  |
| Anzahl Türen [-]                     | 5                                                                     | 5                                                                          |  |
| Anzahl Sitze [-]                     | 5                                                                     | 5                                                                          |  |
| Ausstattung                          | Basis                                                                 | Basis                                                                      |  |
| DIN Leergewicht [kg]                 | 1.173                                                                 | 1.537                                                                      |  |
| Kraftstoff / Energie                 | Benzin                                                                | elektr. Energie                                                            |  |
| Tankvolumen [I]                      | 50                                                                    |                                                                            |  |
| Batterie [kWh]                       |                                                                       | 31,5 nutzbar                                                               |  |
| Kraftstoffverbrauch [MJ/vkm]         | heute:<br>• 1,3 (WLTC)<br>• 1,9 (Realverbrauch)<br>2030<br>• 1 (WLTC) |                                                                            |  |
| Stromverbrauch [MJ/vkm]              |                                                                       | heute:<br>• 0,50 (WLTC)<br>• 0,54 (Realverbrauch)<br>2030<br>• 0,48 (WLTC) |  |
| Getriebe                             | DSG 7-Gang                                                            | 1-Gang Getriebe                                                            |  |
| Verbrennungsmotor                    | 1.0 I TSI<br>81 kW                                                    |                                                                            |  |
| Elektrischer Antrieb                 |                                                                       | 100 kW<br>290 Nm                                                           |  |
| Reichweite NEFZ                      | 1.084                                                                 | 292 <sub>el.</sub>                                                         |  |
| Reichweite WLTC                      |                                                                       | 253 <sub>el.</sub>                                                         |  |
| Batterietyp                          |                                                                       | NMC 1-1-1 37Ah                                                             |  |

Quelle: [Audi 2019]; Realverbräuche nach [Spritmonitor 2019]

| Tabelle 5-3:         Umweltwirkung der Fahrzeugherstellung |                                                                                                            |                                                                                           |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Einheit                                                    | Dieselmotor (TDI)                                                                                          | BEV (eGolf)                                                                               |  |
| t CO <sub>2</sub> -eq                                      | 5,76                                                                                                       | 11,36                                                                                     |  |
| kg NMVOC-eq                                                | 17,82                                                                                                      | 36,6                                                                                      |  |
| kg PM10-eq                                                 | 9,88                                                                                                       | 24,4                                                                                      |  |
| kg Cu Äquiv.                                               | 966                                                                                                        | 3.636                                                                                     |  |
| MJ                                                         | 94.976                                                                                                     | 15.0735                                                                                   |  |
| MJ                                                         | 57.746                                                                                                     | 11.0613                                                                                   |  |
|                                                            | kung der Fahrzeughe<br>Einheit<br>t CO <sub>2</sub> -eq<br>kg NMVOC-eq<br>kg PM10-eq<br>kg Cu Äquiv.<br>MJ | EinheitDieselmotor (TDI)t CO2-eq5,76kg NMVOC-eq17,82kg PM10-eq9,88kg Cu Äquiv.966MJ94.976 |  |

# 6. Einschätzung der Datenqualität

Die Datenqualität kann aufgrund der Datenherkunft näher diskutiert werden. Dazu können die eingesetzten Daten klassifiziert werden:

- Sekundärdaten aus validierten Datenbanken (Strom, Hilfsstoffe, Metalle etc.),
- Primärdaten von Projektteilnehmern auf Basis von etablierten Prozessen,
- Primärdaten von Projektteilnehmern auf Basis von eigenen Untersuchungen anhand von Labordaten.

Die Datenqualität von Sekundärdaten ist im Allgemeinen angemessen. Teilweise sind die Datensätze schon einige Jahre alt.

Primärdaten auf Basis von etablierten Prozessen sind im Allgemeinen ebenfalls als gut zu bezeichnen.

# 7. Ergebnisse der Wirkungsabschätzung

Die Ergebnisse der Wirkungsabschätzung werden nach den drei Zeithorizonten für den Strommix geordnet: heute, 2030 und 2050. Die berücksichtigten Wirkungskategorien umfassen: GWP, SOP, AP, EP, POCP, PM10, POCP<sub>NMVOC</sub>, CED<sub>total</sub>.
Unter Zugrunde legen des heutigen Strommixes übersteigen die Umweltwirkungen der Nutzung von strombasiertem OME die der Nutzung von fossilem Diesel bei weitem. Daher werden in Kapitel 7.1 die Ergebnisse nur nachrichtlich in aggregierter Form dargestellt. Eine differenzierte Aufteilung der Umweltwirkungen erfolgt für die Zeithorizonte 2030 und 2050 in den Kapiteln 7.2 und 7.3. Für die Diskussion zur Modellierung der Stromherkunft wird auf das Kapitel 4.1 verwiesen.

#### 7.1. Strommix 2018

Abbildung 7-1 bis Abbildung 7-7 zeigen die Ergebnisse der Wirkungsabschätzung für den Strombezug des Jahres 2018 (Durchschnittsmix nach [AG Energiebilanzen 2019]). Die Zahlenwerte sind in Annex II aufgeführt. In allen Umweltwirkungen liegen die Umweltlasten der OME-Routen deutlich höher als die Dieselroute, in den meisten deutlich. Eine Aufgliederung nach Beiträgen wird für das Jahr 2018 nicht gezeigt, für die 2030 und 2050 werden die Ergebnisse detaillierter gezeigt.

#### 7.1.1. Treibhauspotenzial (GWP)





Quelle: Eigene Darstellung

Die Treibhausgasemissionen sind bei allen OME-Routen deutlich höher als höhere Lasten aufweisen als die Dieselroute. Dies liegt insbesondere am hohen Anteil fossiler Energieträger im heutigen Strommix.

#### 7.1.2. Surplus Ore Potential (SOP)



#### Abbildung 7-2: SOP der OME-Routen mit Strombezug 2018

Quelle: Eigene Darstellung

Der Verbrauch mineralischer Ressourcen wird im Wesentlichen dominiert von der Fahrzeugherstellung (vgl. die detaillierte Aufstellung des SOPs für 2030 in Abbildung 7-9 und für 2050 in Abbildung 7-16). Einen geringeren Beitrag liefert die Stromvorkette.

#### 7.1.3. Feinstaub (PM10)





Quelle: Eigene Darstellung

Die Feinstaubemissionen (PM10) sind bei allen OME-Routen deutlich höher als diejenigen der Dieselroute. Auch hier dominiert die Stromvorkette, insbesondere die Kohleverstromung.

#### 7.1.4. Photochemisches Oxidantienbildungspotenzial (NMVOC)





Quelle: Eigene Darstellung

Wie die anderen Umweltwirkungskategorien wird auch das POCP von der Stromvorkette dominiert, so dass die OME-Routen signifikant höhere Lasten ausweisen als die Dieselroute.

#### 7.1.5. Kumulierter Energieaufwand (KEA)





Quelle: Eigene Darstellung

Der Kumulierte Energieaufwand (KEA) wird ebenfalls dominiert von den Lasten aus der Stromvorkette. Zusätzlich zum signifikant höheren Beitrag beim nicht-erneuerbare Kumulierten Energieaufwand kommt hier noch ein deutlich höherer erneuerbarer KEA hinzu.

#### 7.1.6. Versauerungspotenzial (AP)





Quelle: Eigene Darstellung

Aufgrund der Datenlage konnte beim Versauerungspotenzial die Herstellung des PKWs nicht mitbewertet werden. Somit zeigen die Ergebnisse nur die Herstellung (inkl. Vorketten) und Verbrennung des Kraftstoffs. Auch hier weisen die OME-Routen deutlich höhere Lasten auf als die Diesel-Route.

#### 7.1.7. Eutrophierungspotenzial (EP)





Quelle: Eigene Darstellung

Aufgrund der Datenlage konnte beim Eutrophierungspotenzial die Herstellung des PKWs nicht mitbewertet werden. Somit zeigen die Ergebnisse nur die Herstellung (inkl. Vorketten) und Verbrennung des Kraftstoffs. Auch hier weisen die OME-Routen deutlich höhere Lasten auf als die Diesel-Route.

#### 7.2. Strommix 2030

Abbildung 7-8 bis Abbildung 7-14 zeigen die Ergebnisse der Wirkungsabschätzung für den Strombezug des Jahres 2030. Die Zahlenwerte sind in Annex II aufgeführt. Auch hier liegen die Umweltlasten der OME-Routen in allen Umweltwirkungen liegen deutlich höher als die Dieselroute, in den meisten ebenfalls deutlich. Die Grafiken zeigen auch eine Aufgliederung nach einzelnen Beiträgen zur Umweltkategorie.

#### 7.2.1. Treibhauspotenzial (GWP)



#### Abbildung 7-8: GWP der OME-Routen mit Strombezug 2030

Die Treibhausgasemissionen aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen sind bei allen Routen gleich.

Bei der Diesel-Route weisen die direkten Emissionen aus der Dieselverbrennung den größten Beitrag auf, die Dieselvorkette hat hingegen einen geringen Beitrag.

Bei OME<sub>1</sub>-Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere THG-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen signifikant höheren Beitrag zum GWP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an fossilen Energieträgern im Marginalstrommix für 2030, insbesondere an dem deutlich höheren Anteil der Steinkohle bzw. des Erdgases.

Quelle: Eigene Darstellung

#### 7.2.2. Surplus Ore Potential (SOP)



#### Abbildung 7-9: SOP der OME-Routen mit Strombezug 2030

Quelle: Eigene Darstellung

Der Verbrauch mineralischer Ressourcen aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen ist bei allen Routen gleich.

Die Herstellung des PKWs zeigt den mit Abstand größten Beitrag: beim Diesel macht die Herstellung ca. 98 % aus, bei den OME<sub>1</sub>-Routen 83 % bis 85 %, bei OME<sub>3-5</sub> ca. 78 %.

Der Beitrag aus der Dieselvorkette und der Dieselnutzung sind SOP marginal.

Bei den OME1-Routen kommen kleinere Beiträge aus der CO<sub>2</sub>-Abscheidungsanlage, dem H<sub>2</sub>-Speicher und der Stromvorkette für die H<sub>2</sub>-Elektrolyse, bei OME<sub>3-5</sub> zusätzlich noch aus der Stromvorkette für den Wärmebedarf der Trioxansynthese.

Die drei OME1-Routen unterscheiden sich kaum, auch die Stromszenarien (marginal bzw. flexmix) haben nur einen geringen Einfluss auf die Ergebnisse.

#### Abbildung 7-10: AP der OME-Routen mit Strombezug 2030 (ohne Fahrzeugbau) 2.05-03 AP 1,85-03 Diesel-Vorkette / OME-Distribution H2-G-LKW 1,6E-03 CO2-pipeline OME-tyn: Anlage 1,46-03 OME-syn: Strom AP (kg SO, eq/vkm) COME-syn: Wärme/Kälte 1,2E-03 H2: andere (v.a. Speicher) 1,0E-03 H2: Anlage = H2: Stre 8,05-04 CO2: Anlage 6,0E-04 CO2: Strom CO2: Wärme 4,05-04 Betrieb: direkte Emissionen # Betrieb: Straße, Wartung, Abrieb 2,05-04 -0.0E+00 OME3-5-etab Diesel OME1-etab OME1-etab OME1-red, KS95 OME1-red, KS95 OME1-ox, KS95 OME1-ox, KS95 OME3-5-etab 2030, EC flexmix K595 2030, EC K\$95 2030, EC K\$95 2030, EC 2030, EC 2030, EC flexmix 2030, EC K\$95 2030, EC marginal flexmix marginal marginal marginal flexmix

#### 7.2.3. Versauerungspotenzial (AP)



Die Herstellung des Fahrzeugs ist in den Ergebnissen zum AP nicht enthalten, sie würde allerdings bei allen Routen die Ergebnisse um denselben Beitrag erhöhen. Die Säurebildneremissionen aus Bau und Wartung der Straße sind bei allen Routen gleich.

Bei der Diesel-Route weist die Dieselvorkette den größten Beitrag auf, die direkten Emissionen aus der Dieselverbrennung zeigen hingegen einen geringen Beitrag.

Bei OME<sub>1</sub>-Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere AP-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Sowohl bei den  $OME_1$ -Routen als auch bei  $OME_{3-5}$  zeigt die Verwendung des Marginalstroms einen signifikant höheren Beitrag zum AP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an fossilen Energieträgern im Marginalstrommix für 2030, insbesondere an dem deutlich höheren Anteil der Steinkohle bzw. des Erdgases.

#### 7.2.4. Eutrophierungspotenzial (EP)



#### Abbildung 7-11: EP der OME-Routen mit Strombezug 2030 (ohne Fahrzeugbau)

Quelle: Eigene Darstellung

Die Herstellung des Fahrzeugs ist in den Ergebnissen zum EP nicht enthalten, sie würde allerdings bei allen Routen die Ergebnisse um denselben Beitrag erhöhen. Das Eutrophierungspotenzial aus Bau und Wartung der Straße ist bei allen Routen gleich.

Bei der Diesel-Route weisen sowohl die Dieselvorkette als auch die direkten Emissionen aus der Dieselverbrennung nur geringe Beiträge auf.

Bei OME<sub>1</sub>-Routen kommt auch beim EP der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere EP-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Sowohl bei den  $OME_1$ -Routen als auch bei  $OME_{3-5}$  zeigt die Verwendung des Marginalstroms einen signifikant höheren Beitrag zum EP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an fossilen Energieträgern im Marginalstrommix für 2030, insbesondere an dem deutlich höheren Anteil der Steinkohle bzw. des Erdgases.

#### 7.2.5. Feinstaub (PM10)



#### Abbildung 7-12: PM10 der OME-Routen mit Strombezug 2030

Quelle: Eigene Darstellung

Die Feinstaubbildung (PM10) aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen ist bei allen Routen gleich.

Bei der Diesel-Route kommen die direkten Emissionen vor allem aus den Ruß-Emissionen aus der Dieselverbrennung, auch die Dieselvorkette hat einen gewissen Beitrag.

Bei dem OME-Routen sind die direkten Emissionen aus der Kraftstoffverbrennung deutlich geringer als bei der Diesel-Route. Auf der anderen Seite kommen hier deutliche Beiträge aus der Stromvorkette hinzu. Bei OME<sub>1</sub>-Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere PM10-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen signifikant höheren Beitrag zum PM10 als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an fossilen Energieträgern im Marginalstrommix für 2030, insbesondere an dem deutlich höheren Anteil der Steinkohle.

Die verschiedenen Beiträge der PM10-Emissionen sind allerdings nicht vergleichbar. Für die tatsächlichen gesundheitlichen Auswirkungen spielt es eine große Rolle, wo die Emissionen entstehen, z. B. in Siedlungsgebieten oder außerhalb. Weiterhin zeigen die Feinstaubemissionen aus dem Abrieb auf der Straße aufgrund der Größenverteilung der Partikel andere gesundheitliche Auswirkungen.

#### 7.2.6. Photochemisches Oxidantienbildungspotenzial (POCP, NMVOC)



#### Abbildung 7-13: POCP der OME-Routen mit Strombezug 2030

Quelle: Eigene Darstellung

Das Photochemische Oxidantienbildungspotenzial (POCP) aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen sind bei allen Routen gleich.

Bei der Diesel-Route kommen die direkten Emissionen vor allem aus den NO<sub>x</sub>-Emissionen aus der Dieselverbrennung, auch die Dieselvorkette hat einen gewissen Beitrag.

Bei dem OME-Routen sind die direkten Emissionen aus der Kraftstoffverbrennung deutlich geringer als bei der Diesel-Route. Auf der anderen Seite kommen hier deutliche Beiträge aus der Stromvorkette hinzu. Bei OME<sub>1</sub>-Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere POCP-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen signifikant höheren Beitrag zum POCP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an fossilen Energieträgern im Marginalstrommix für 2030, insbesondere an dem deutlich höheren Anteil der Steinkohle.

#### 7.2.7. Kumulierter Energieaufwand (KEA)



#### Abbildung 7-14: KEA der OME-Routen mit Strombezug 2030

Quelle: Eigene Darstellung

Bei der Darstellung des KEAs wird auf die Unterscheidung nach Beiträgen verzichtet (hierfür s. Kapitel 8.2.2.3), ausgewiesen wird hingegen der jeweilige Anteil des Kumulierten Energieaufwands aus erneuerbaren bzw. aus nicht-erneuerbaren Energieträgern. Der Gesamt-KEA ist bei allen OME-Routen deutlich höher als bei der Diesel-Route. Die Unterschiede zwischen den jeweiligen Stromszenarien (marginal bzw. flexmix) zeigen sich vor allem in einer Verschiebung von KEA<sub>nicht erneuerbar</sub> zu KEA<sub>erneuerbar</sub> aufgrund des höheren Anteils an erneuerbaren Energieträgern im flexmix-Szenario.

#### 7.3. Strommix 2050

Abbildung 7-15 bis Abbildung 7-21 zeigen die Ergebnisse der Wirkungsabschätzung für den Strombezug des Jahres 2050. Die Zahlenwerte sind in Annex II aufgeführt.

#### 7.3.1. Treibhauspotenzial (GWP)



#### Abbildung 7-15: GWP der OME-Routen mit Strombezug 2050

Quelle: Eigene Darstellung

Die Treibhausgasemissionen aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen sind bei allen Routen gleich.

Bei der Diesel-Route weisen die direkten Emissionen aus der Dieselverbrennung den größten Beitrag auf, die Dieselvorkette hat hingegen einen geringen Beitrag.

Bei  $OME_1$ -Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei  $OME_1$ Routen unterscheiden sich untereinander wenig,  $OME_1$ -red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere THG-Emissionen. Bei  $OME_{3-5}$  zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Da die Stromvorkette im Szenario "Strommix 2050" nicht mehr so deutlich dominiert, werden bei allen OME-Routen auch andere Beiträge sichtbar, z. B. der Wasserstoff-Transports per LWK.

Sowohl bei den  $OME_1$ -Routen als auch bei  $OME_{3-5}$  zeigt die Verwendung des Marginalstroms einen signifikant höheren Beitrag zum GWP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an Erdgas im Marginalstrommix für 2050.

Die GWP-Werte mit flexmix-Strom liegen unter denen der Dieselroute. Hier zeigt sich, dass die Verwendung von PtX-Kraftstoffen erst dann zu einer Reduktion der Treibhausgasemissionen führt, wenn der Anteil der erneuerbaren Energien am Strommix sehr hoch ist. Solang noch fossile Energieträger, insbesondere Kohle, verwendet wird, können strombasierte Kraftstoffe nicht zu einer Reduktion der Emission von klimarelevanten Gasen beitragen. Ein weiteres Potenzial zur Reduktion der Treibhausgase ergibt sich, wenn die auch Herstellung der Windkraft- und PV-Anlagen mit erneuerbaren Energien betrieben wird.

#### 7.3.2. Surplus Ore Potential (SOP)



#### Abbildung 7-16: SOP der OME-Routen mit Strombezug 2050

Quelle: Eigene Darstellung

Der Verbrauch mineralischer Ressourcen aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen ist bei allen Routen gleich.

Die Herstellung des PKWs zeigt den mit Abstand größten Beitrag: beim Diesel macht die Herstellung ca. 97 % aus, bei den OME<sub>1</sub>-Routen 69 % bis 73 %, bei OME<sub>3-5</sub> ca. 63 %.

Der Beitrag aus der Dieselvorkette und der Dieselnutzung sind SOP marginal.

Bei den OME1-Routen kommen kleinere Beiträge aus der CO<sub>2</sub>-Abscheidungsanlage, dem H<sub>2</sub>-Speicher und der Stromvorkette für die H<sub>2</sub>-Elektrolyse, bei OME<sub>3-5</sub> zusätzlich noch aus der Stromvorkette für den Wärmebedarf der Trioxansynthese.

Die drei OME1-Routen unterscheiden sich kaum, auch die Stromszenarien (marginal bzw. flexmix) haben nur einen geringen Einfluss auf die Ergebnisse.

#### 7.3.3. Versauerungspotenzial (AP)



#### Abbildung 7-17: AP der OME-Routen mit Strombezug 2050 (ohne Fahrzeugbau)

Quelle: Eigene Darstellung

Die Herstellung des Fahrzeugs ist in den Ergebnissen zum AP nicht enthalten, sie würde allerdings bei allen Routen die Ergebnisse um denselben Beitrag erhöhen. Die Säurebildneremissionen aus Bau und Wartung der Straße sind bei allen Routen gleich.

Bei der Diesel-Route weist die Dieselvorkette den größten Beitrag auf, die direkten Emissionen aus der Dieselverbrennung zeigen hingegen einen geringeren Beitrag.

Bei  $OME_1$ -Routen kommt auf 2050 der größte Beitrag aus dem Strombedarf für die Elektrolyse, kleinere Beiträge aus der CO<sub>2</sub>-Abscheidungsanlage und dem H<sub>2</sub>-Speicher. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere AP-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Da die Stromvorkette im Szenario "Strommix 2050" nicht mehr so deutlich dominiert, werden bei allen OME-Routen auch andere Beiträge sichtbar, z. B. der Wasserstoff-Transport per LWK.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen niedrigeren Beitrag zum AP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an Strom aus Photovoltaik flexmix-Strom für 2050.

Insgesamt liegen beim AP die Umweltlasten bei allen OME-Routen auch bei hohen Anteilen an erneuerbaren Energien höher als bei der Diesel-Route.

#### 7.3.4. Eutrophierungspotenzial (EP)



#### Abbildung 7-18: EP der OME-Routen mit Strombezug 2050 (ohne Fahrzeugbau)

Quelle: Eigene Darstellung

Die Herstellung des Fahrzeugs ist in den Ergebnissen zum EP nicht enthalten, sie würde allerdings bei allen Routen die Ergebnisse um denselben Beitrag erhöhen. Das Eutrophierungspotenzial aus Bau und Wartung der Straße ist bei allen Routen gleich.

Bei der Diesel-Route weisen sowohl die Dieselvorkette als auch die direkten Emissionen aus der Dieselverbrennung nur geringe Beiträge auf.

Bei  $OME_1$ -Routen kommt auf 2050 der größte Beitrag aus dem Strombedarf für die Elektrolyse, kleinere Beiträge aus der  $CO_2$ -Abscheidungsanlage und dem H<sub>2</sub>-Speicher. Die drei  $OME_1$  Routen unterscheiden sich untereinander wenig,  $OME_1$ -red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere EP-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Sowohl bei den  $OME_1$ -Routen als auch bei  $OME_{3-5}$  zeigt die Verwendung des Marginalstroms einen niedrigeren Beitrag zum EP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an Strom aus Photovoltaik im flexmix-Strom für 2050.

Insgesamt liegen beim EP die Umweltlasten bei allen OME-Routen auch bei hohen Anteilen an erneuerbaren Energien höher als bei der Diesel-Route.

#### 7.3.5. Feinstaub (PM10)



#### Abbildung 7-19: PM10 der OME-Routen mit Strombezug 2050

Quelle: Eigene Darstellung

Die Feinstaubbildung (PM10) aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen ist bei allen Routen gleich.

Bei der Diesel-Route kommen die direkten Emissionen aus den Ruß-Emissionen aus der Dieselverbrennung, auch die Dieselvorkette hat einen deutlichen Beitrag.

Bei dem OME-Routen sind die direkten Emissionen aus der Kraftstoffverbrennung deutlich geringer als bei der Diesel-Route. Auf der anderen Seite kommen hier deutliche Beiträge aus der Stromvorkette hinzu, vor allem aus der Herstellung der Photovoltaikanlagen. Bei OME<sub>1</sub>-Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse, kleinere Beiträge aus der CO<sub>2</sub>-Abscheidungsanlage und dem H<sub>2</sub>-Speicher. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere PM10-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Da die Stromvorkette im Szenario "Strommix 2050" nicht mehr so deutlich dominiert, werden bei allen OME-Routen auch andere Beiträge sichtbar, z. B. der Wasserstoff-Transports per LWK.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen höheren Beitrag zum PM10 als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an Strom aus Photovoltaik flexmix-Strom für 2050.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen niedrigeren Beitrag zu den PM10-Emissionen als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem deutlich höheren Anteil an Strom aus Photovoltaik im flexmix-Strom für 2050.

Insgesamt liegen die PM10-Emissionen bei allen OME-Routen auch bei hohen Anteilen an erneuerbaren Energien höher als bei der Diesel-Route. Die verschiedenen Beiträge zu den PM10-Emissionen sind allerdings nicht vergleichbar. Für die tatsächlichen gesundheitlichen Auswirkungen spielt es eine große Rolle, wo die Emissionen entstehen, z. B. in Siedlungsgebieten oder außerhalb. Weiterhin zeigen die Feinstaubemissionen aus dem Abrieb auf der Straße aufgrund der Größenverteilung der Partikel andere gesundheitliche Auswirkungen.

#### 7.3.6. Photochemisches Oxidantienbildungspotenzial (POCP, NMVOC)



#### Abbildung 7-20: POCP der OME-Routen mit Strombezug 2050

Quelle: Eigene Darstellung

Das Photochemische Oxidantienbildungspotenzial (POCP) aus Herstellung des Fahrzeugs, Bau und Wartung der Straße sowie Abrieb der Reifen sind bei allen Routen gleich.

Bei der Diesel-Route kommen die direkten Emissionen vor allem aus den NO<sub>x</sub>-Emissionen aus der Dieselverbrennung, auch die Dieselvorkette hat einen gewissen Beitrag.

Bei dem OME-Routen sind die direkten Emissionen aus der Kraftstoffverbrennung deutlich geringer als bei der Diesel-Route. Auf der anderen Seite kommen hier deutliche Beiträge aus der Stromvorkette hinzu. Bei OME<sub>1</sub>-Routen kommt der größte Beitrag aus dem Strombedarf für die Elektrolyse. Die drei OME<sub>1</sub> Routen unterscheiden sich untereinander wenig, OME<sub>1</sub>-red hat aufgrund des geringeren H<sub>2</sub>-Bedarfs etwas geringere POCP-Emissionen.

Bei OME<sub>3-5</sub> zeigt sich ein deutlicher Beitrag aus dem Wärmebedarf der Trioxansynthese.

Da die Stromvorkette im Szenario "Strommix 2050" nicht mehr so deutlich dominiert, werden bei allen OME-Routen auch andere Beiträge sichtbar, z. B. der des Wasserstoff-Transports per LWK.

Sowohl bei den OME<sub>1</sub>-Routen als auch bei OME<sub>3-5</sub> zeigt die Verwendung des Marginalstroms einen etwas höheren Beitrag zum POCP als die Verwendung des Durchschnittsmix in den Betriebsstunden der Elektrolyseure. Dies liegt an dem höheren Anteil an Strom aus Erdgas im marginal-Strom für 2050.

Insgesamt liegen die POCP-Emissionen bei allen OME-Routen auch bei hohen Anteilen an erneuerbaren Energien höher als bei der Diesel-Route.

#### 7.3.7. Kumulierter Energieaufwand (KEA)



#### Abbildung 7-21: KEA der OME-Routen mit Strombezug 2050

Quelle: Eigene Darstellung

Bei der Darstellung des KEAs wird auf die Unterscheidung nach Beiträgen verzichtet (hierfür s. Kapitel 8.2.2.3), ausgewiesen wird hingegen der jeweilige Anteil des Kumulierten Energieaufwands aus erneuerbaren bzw. aus nicht-erneuerbaren Energieträgern. Der Gesamt-KEA ist bei allen OME-Routen deutlich höher als bei der Diesel-Route. Die Unterschiede zwischen den jeweiligen Stromszenarien (marginal bzw. flexmix) zeigen sich vor allem in einer Verschiebung von KEA<sub>nicht erneuerbar</sub> zu KEA<sub>erneuerbar</sub> aufgrund des höheren Anteils an erneuerbaren Energieträgern im flexmix-Szenario. Der nicht-erneuerbare KEA ist in allen OME-Routen deutlich niedriger als bei der Diesel-Route.

#### 8. Auswertung der Ökobilanz

#### 8.1. Identifizierung der signifikanten Parameter

Die Ergebnisse der Umweltlasten zeigen in den meisten Umweltwirkungskategorien, abgesehen vom SOP, die Dominanz der Stromvorketten. Der Strombedarf rekrutiert vor allem aus dem Strombedarf für die Elektrolyse sowie für die CO<sub>2</sub>-Abscheidung und die OME-Synthese. Weiterhin wird Strom für die Erzeugung des Wärmebedarfs benötigt. Abbildung 8-1 zeigt die prozentualen Anteile der verschiedenen Prozessschritte nach Energiebedarf. Es zeigt sich, dass die Elektrolyse den höchsten Anteil am Strombedarf hat, bei den OME<sub>1</sub>-Routen  $\geq$  80 %. Bei der OME<sub>3-5</sub>-Routen kommt hinzu der hohe Wärmebedarf im Zwischenschritt der Trioxan-Synthese.

# Abbildung 8-1: Energiebedarf der OME<sub>x</sub>-Produktionsrouten nach Anteilen in %



#### Energiebedarf OME1 reduktiv



#### **Energiebedarf OME1 oxidativ**



#### Energiebedarf OME3-5 etabliert



Systemwirkungsgrad der Elektrolyse 70% LHV-Basis Quelle: eigene Darstellung

#### 8.2. Beurteilung

#### 8.2.1. Vollständigkeitsprüfung

Für die vorliegende Ökobilanz wurden Daten zu allen für die OME-Herstellung relevanten Prozessschritte erhoben. Mit wenigen Ausnahmen wurden nahezu alle Input- und Outputströme erfasst und über die beschriebenen Prozessschritte verfolgt.

#### 8.2.2. Sensitivitätsprüfung

Im Folgenden wird die Sensitivität der Ergebnisse der Ökobilanz gegenüber einer Variation von ausgewählten, ergebnisrelevanten Einflussgrößen dargestellt und diskutiert.

#### 8.2.2.1. Dieselverbrauch

Der Kraftstoffverbrauch in den Basisrechnungen beruht auf Messungen nach dem WLTC-Zyklus [Audi 2019]. Da die Realverbräuche heute insbesondere bei Dieselfahrzeugen deutlich höher liegen (vgl. z. B. [ICCT 2017]), wird in dieser Sensitivitätsrechnung auch ein Verbrauchswert von 1,9 MJ Diesel/km (nach Daten des "Spritmonitors" [Spritmonitor 2019]) betrachtet. Für die Bewertung von OME als Kraftstoff werden jeweils dieselben Verbrauchwerte verwendet. Abbildung 8-2 bis Abbildung 8-5eigen die Ergebnisse für die Wirkungskategorien GWP, SOP, PM10 und POCP. Die Zahlenwerte sind in Annex II aufgeführt.

#### Abbildung 8-2: GWP der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)



Quelle: Eigene Darstellung



Abbildung 8-3: SOP der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)

Quelle: Eigene Darstellung



Abbildung 8-4: PM10 der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)

Quelle: Eigene Darstellung





Quelle: Eigene Darstellung

#### 8.2.2.2. Carbon capture and usage (CCU)

Als Alternative zur Abscheidung von  $CO_2$  aus der Luft (Direct Air Capture, DAC) wird in dieser Sensitivitätsrechnung die Abscheidung von  $CO_2$  aus den Abgasen eines Zementwerks betrachtet, in denen das  $CO_2$  in deutlich höheren Konzentrationen als in der Luft vorliegt..

Der Aufwand für die CO<sub>2</sub>-Abscheidung aus den Zementwerksabgasen wurde [Mathisen et al. 2014] entnommen. Dort werden für die Abscheidung zwei Optionen betrachtet: die konventionelle Verbrennung mit MEA<sup>6</sup>-Wäsche (als die der Kommerzialisierung am nächsten stehende Technologie) und die Oxyverbrennung mit einer nachgeschalteten Kompressions- und Reinigungseinheit für das CO<sub>2</sub> (als eine mögliche Zukunftstechnologie). Für diese Sensitvitätsanalyse wurde der Energiebedarf der Gewinnung nach der Oxyverbrennung (Betrieb einer Luftzerlegungsanlage und einer CO<sub>2</sub>-Kompressions- und Reinigungseinheit) berücksichtigt, da dieser mit insgesamt ca. 0,9 MJ/kg CO<sub>2</sub> deutlich geringer ist als der einer MEA-Wäsche. Letzterer liegt mit ca. 4 MJ/kg CO<sub>2</sub> fast im Bereich des Energiebedarfs der DAC (4,2 MJ/kg CO<sub>2</sub>, bei Annahme einer Wärmepumpe, s. Kapitel 5). Die Vorgehensweise bei der Allokation ist in Kapitel 3.4.1 beschrieben. Die gemeinsam genutzten Rohstoffe und Energieträger wurden mithilfe eines generischen Ökobilanzdatensatzes zur heutigen Klinker-produktion (ecoinvent 3.5) beispielhaft bestimmt und mit einem Klinkerfaktor von 0.68 kg Klinker/kg Zement, einem CO<sub>2</sub>-Abscheidefaktor von 0,96 sowie einem CO<sub>2</sub>-Bedarf von 1.9 kg CO<sub>2</sub>/kg OME umgerechnet (s. Annex I).

Die Ergebnisse werden hier nur für das GWP gezeigt, zum einen in Abbildung 8-6 mit einer Allokation 100:0, d. h. das Zementwerk bekommt die volle Emission angerechnet, die der endgültigen Freisetzung am Ende des PtX Prozesses entspricht, der PtX-Prozess bekommt die vermiedenen Emission angerechnet (-1 kg CO<sub>2</sub>/kg CO<sub>2</sub>), zum zweiten in Abbildung 8-7 mit einer Allokation 50:50, d. h. das Zementwerk und der PtX-Prozess bekommen jeweils die Hälfte der vermiedenen Emission

<sup>&</sup>lt;sup>6</sup> Chemische Absorption mit Monoethanolamin [Mathisen et al. 2014]

angerechnet. Die Zahlenwerte sind in Annex II aufgeführt. Im Fall der 100:0-Allokation trägt der PtX-Prozess die vollen Umweltwirkungen der CO<sub>2</sub>-Abscheidung und –Aufreinigung. Im Fall der 50:50 Allokation werden diese Umweltwirkungen anteilig auf beide Teilsysteme aufgeteilt. Außerdem werden dann die Vorketten der gemeinsam genutzten Rohstoffe (in diesem Fall der Kalkstein und die gemeinsam genutzten Energieträger) auf beide Teilsysteme alloziert.



#### Abbildung 8-6: GWP der OME-Routen mit Strombezug 2050 (100:0)

Quelle: Eigene Darstellung



#### Abbildung 8-7: GWP der OME-Routen mit Strombezug 2050 (50:50)

Quelle: Eigene Darstellung

Während bei einer 100:0 Allokation das GWP niedriger ausfällt als bei der Nutzung von  $CO_2$  aus DAC (siehe Abbildung 7-15), da bei CCU der Aufwand zur Abtrennung des  $CO_2$  deutlich niedriger ist als bei der Luftabscheidung, kommt bei einer 50:50 Allokation die Emission aus dem

Verbrennungsprozess hinzu, so dass hier alle OME-Routen ein höheres GWP, im besten Fall gleiches, aufweisen als die Dieselroute.

#### 8.2.2.3. Batterieelektrisches Fahrzeug

Als Sensitivität wird ein batterieelektrisches Fahrzeug (battery electric vehicle, BEV) verglichen mit der Nutzung von OME<sub>1</sub> (am Beispiel der reduktiven Route) und Diesel in einem Diesel-Pkw. Die Herstellung des Fahrzeugs wurde modelliert nach Angaben von Audi (siehe Kapitel 5). Die Entsorgung für die selbst-modellierten Datensätze ist entsprechend der Recycled-Content-Methode berücksichtigt über die Verwendung der jeweiligen Cut-off Datensätze für die verwendeten Materialien aus ecoinvent. Tabelle 8-1 zeigt den Strombedarf pro vkm für heute (WLTC-Zyklus 2017 nach Angaben von Audi und Angaben zum Realverbrauch nach [Spritmonitor 2019]) sowie für 2030 nach dem WLTC-Zyklus nach Angaben von Audi (für 2050 wurde derselbe Wert zugrunde gelegt). Die Ladeverluste wurden mit 10 % angesetzt, die Ladeinfrastruktur wird zur Vereinfachung weggelassen. Für 2030 und 2050 wurde zum Vergleich das BEV jeweils auch mit den Strommixen flexmix und marginal bewertet, für 2050 wurde auch ein Szenario mit 100 % EE-Strom bewertet (70 % Wind, 30 % PV).

| Tabelle 8-1:   | Stromverbrauch BEV |                     |           |           |                                            |
|----------------|--------------------|---------------------|-----------|-----------|--------------------------------------------|
|                |                    | [Spritmonitor 2019] | WLTC 2017 | WLTC 2030 | WLTC 2050<br>(wie 2030,<br>eigene Annahme) |
| Stromverbrauch | [MJ/vkm]           | 0,54                | 0,50      | 0,48      | 0,48                                       |

Die Ergebnisse (siehe Abbildung 8-8 bis Abbildung 8-10, die Zahlenwerte sind in Annex II aufgeführt) zeigen bei den Wirkungskategorien GWP und KEA für den Strommix 2018 signifikant niedrigere Werte für die verschiedene BEV-Szenarien im Vergleich zum OME-Prozess. Im Vergleich zum fossilen Diesel liegen die BEV bereits heute zwischen den Spritverbrauchszenarien. Die Partikelemissionen liegen beim BEV deutlich niedriger als bei OME, aber etwas höher als beim fossilen Diesel. Dies liegt an den Partikelemissionen aus der Herstellung der PV-Anlagen, deren Energiebedarf heute noch zum großen Teil aus Kohleverstromung gedeckt wird. Beim SOP zeigt das BEV deutlich höhere Umweltlasten als die Nutzung on OME oder fossilem Diesel aufgrund Fahrzeugherstellung.

Auch beim Stromszenario 2030 zeigt sich dieses Bild: GWP und KEA zeigen beim BEV niedrigere Umweltlasten als OME, im Vergleich zum fossilen Diesel liegen sie aber in der gleichen Größenordnung. Hierbei ist allerdings darauf hinzuweisen, dass der Dieselverbrauch für 2030 mit 1 MJ/vkm u. U. eher optimistisch eingeschätzt wurde. Das SOP ist beim BEV aufgrund der Fahrzeugherstellung deutlich höher als bei OME oder fossilem Diesel und die Partikelemissionen liegen deutlich niedriger als bei OME, aber etwas höher als beim fossilen Diesel.

Im Stromszenario 2050 zeigt das BEV beim GWP sowohl im Vergleich zur Nutzung von OME wie auch von fossilem Diesel deutlich niedrigere Werte. Der KEA liegt in der gleichen Größenordnung wie beim fossilen Diesel, während das SOP beim BEV weiterhin deutlich höhere Lasten im Vergleich zu einem Diesel-Pkw aufweist.

#### Abbildung 8-8: Vergleich BEV mit OME<sub>1 reductive</sub> und Diesel (2018)



a) Global warming potential (GWP)

#### KEA: BEV, OME<sub>1</sub>, Diesel (2018)



#### c) Kumulierter Energieaufwand (KEA)

Quelle: Eigene Darstellung

62



#### b) Surplus Ore Potential (SOP)



#### d) Feinstaub PM 10

#### 🤴 Öko-Institut e.V.

#### Abbildung 8-9: Vergleich BEV mit OME<sub>1 reductive</sub> und Diesel (2030)



#### GWP: BEV, OME1, Diesel (2030)

#### e) Global warming potential (GWP)



#### g) Kumulierter Energieaufwand (KEA)

Quelle: Eigene Darstellung



#### f) Surplus Ore Potential (SOP)



#### h) Feinstaub PM 10

#### Abbildung 8-10: Vergleich BEV mit OME<sub>1 reductive</sub> und Diesel (2050)



#### i) Global warming potential (GWP)



#### k) Kumulierter Energieaufwand (KEA)

Quelle: Eigene Darstellung



#### j) Surplus Ore Potential (SOP)



#### I) Feinstaub PM 10

#### PM10: BEV, OME1, Diesel (2050)

#### 64

#### 8.2.3. Konsistenzprüfung

In der Datengenese wird eine konsistente Vorgehensweise verfolgt. Das Projekt verbindet unterschiedliche Datenlieferanten mit unterschiedlichem Ansatz. So finden sich automatisierte Pilotanlagen (Industrie) bis zu manuellen Laborversuchen (frühes Forschungsstadium, Universität). Im Hinblick auf das Gesamtergebnis wird der Einfluss als eher gering eingeschätzt.

Im Forschungsverbund P2X sind die Materialflüsse qualitativ gut verfolgbar. Es wurden keine generischen Zwischenschritte modelliert, so dass ein konsistenter Zusammenhang hergestellt wurde. Dadurch kann ein konsistenter Datensatz qualitätsgesichert werden.

Eine Inkonsistenz ergibt sich aus dem prospektiven Charakter der Modellierungen. Neben der Unsicherheit, die in den angesetzten Strommixen der betrachteten Zeithorizonte 2030 und 2050 liegen, wurden auch für zukünftige Betrachtungen die Vorketten von Materialien und Energieträgern mit heutigen Produktionsdatensätzen berechnet. Es ist davon auszugehen, dass künftig insbesondere die Emission von Treibhausgasen aus diesen Vorketten geringer ausfallen wird und teilweise Produktionen auf komplett neue, ebenfalls strombasierte Verfahren umgestellt werden.

Die Charakterisierungsfaktoren für die Umweltwirkungen (WP, AP, EP und SOP sind einer einheitlichen Quelle entnommen [ReCiPe 2016], die Faktoren für PM10 und POCP aus [ReCiPe 2008] v1.13, um Konsistenz mit den von Audi zur Verfügung gestellten Umweltwirkungen der Fahrzeugherstellung zu garantieren.

#### 9. Schlussfolgerungen und Empfehlungen

Die Nutzung von OME als Pkw-Kraftstoff ist in allen Fällen mit einem deutlich höheren kumulierten Energieaufwand als die Nutzung von konventionellem Diesel verbunden, da der strombasierte Kraftstoff erst durch die Integration von Energie in "energielose" Grundstoffe (CO<sub>2</sub> und Wasser) erschaffen werden muss. Bei sehr hohen Anteilen erneuerbaren Stroms in der Herstellung sinkt zwar der nicht-erneuerbare KEA unter den fossilen KEA von Diesel. Dies wird jedoch durch den deutlichen Anstieg des erneuerbaren KEA überkompensiert. Als oxygenierter Kraftstoff kann OME deutlich zur Reduktion von Ruß und NO<sub>x</sub>-Emissionen am Auspuff beitragen. Andererseits können die Feinstaubemissionen an anderen Stellen, insbesondere in der Stromvorkette durch die Produktion von z. B. Photovoltaikanlagen steigen. Dem kann durch Verbesserungen wie, z. B. durch eine Steigerung des erneuerbaren Anteils an der Stromgewinnung in den Herstellungsländern, vor allem in China, wo ein Großteil der heutigen Photovoltaikanlagen hergestellt wird, entgegengewirkt werden. Insgesamt ergeben sich nach der vorliegenden Bilanz mit Ausnahme des Treibhauspotenzials durchgängig höhere Umweltwirkungen für die Bereitstellung und Nutzung von strombasiertem OME im Pkw im Vergleich zu Diesel. Eine Reduktion der Treibhausgasemissionen wird dabei nur bei einem sehr hohen Anteil erneuerbarer Energien am Strommix erreicht oder über eine direkten Kopplung der PtX-Erzeugungsanlagen mit einer Anlage zur Erzeugung Erneuerbarer Energien (z. B. einem Windpark) unter Berücksichtigung der Zusätzlichkeit der EE-Erzeugung. Die beschriebenen Tendenzen zeigen sich für alle untersuchten OME-Syntheserouten. Im Rahmen der Ungenauigkeiten sind dabei die Umweltwirkungen für die drei OME1-Synthesewege vergleichbar groß. Die reduktive OME1-Synthese weist aufgrund des geringeren Wasserstoffbedarfs nach heutigem Stand der Modellierung den niedrigsten Wert auf. Die OME3-5-Synthese ist v.a. aufgrund des hohen Wärmebedarfs der Trioxansynthese mit deutlich höheren Umweltwirkungen verbunden.

Die Nutzung von strombasierten Kraftstoffen, insbesondere OME, führt zu einem signifikant höheren Strombedarf als die direkte Stromnutzung in batterieelektrischen PKW, sofern kein steigender

Speicherbedarf für die Direktelektrifizierung in Form von Power-to-Gas-Anlagen angesetzt wird, um Dunkelflauten zu überbrücken. Dies zeigt sich in den betrachteten Wirkungskategorien insbesondere beim KEA und beim GWP, sowie aufgrund der Emissionen aus den Vorketten auch beim Feinstaub. Beim Verbrauch mineralischer Ressourcen (SOP) führen sowohl OME-Kraftstoffe als auch die Elektrifizierung des Verkehrs zu höheren Umweltlasten als der Einsatz fossilen Diesels aufgrund der Lasten aus der Stromvorkette. Beim BEV kommen zudem deutliche Lasten aus dem Fahrzeug hinzu. Hier sind durch Optimierungen und signifikante Änderungen in der Vorkette, z. B. durch die Verwendung von erneuerbarem Strom in der Herstellung von Wind- und PV-Anlagen und Batteriezellen, deutliche Verbesserungen in der Zukunft nötig. Weiterhin können die Umweltlasten aus der Verwendung von Technologiemetallen, wie z. B. Lithium, Kobalt oder Seltene Erden durch neue Recyclingsysteme verringert werden. Bei den untersuchten Mittelklassewagen weist die Nutzung eines BEV bereits heute ein GWP auf, das in einer ähnlichen Höhe liegt wie das der Nutzung eines Diesel-Pkws.

## Literaturverzeichnis

| AG Energiebilanzen 2019 | Bruttostromerzeugung in Deutschland ab 1990 nach Energieträgern. Ar-<br>beitsgemeinschaft Energiebilanzen e. V. Stand: 06.03.2019                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audi 2019               | Susanne Forster, Audi AG; persönliche Kommunikation, Januar und März 2019                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bareiß et al. 2019      | Bareiß, K.; de la Rua, C.; Möckl, M.; Hamacher, T. (2019): Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems; Applied Energy 237, 862–872; https://doi.org/10.1016/j.apenergy.2019.01.001                                                                                                                                                                                                                                                   |
| Bausa et al. 1998       | Bausa, J., Watzdorf, R. v., Marquardt, W.: Shortcut methods for nonideal multicomponent distillation: I. Simple columns, AIChE Journal, Bd. 44, Nr. 10, S. 2181–2198, Okt. 1998.                                                                                                                                                                                                                                                                                                                      |
| Bertuccioli et al. 2014 | Bertuccioli, L.; Chan, A.; Hart, D.; Lehner, F.; Madden, B.; Standen, E.:<br>Development of Water Electrolysis in the European Union, Fuel Cells and<br>Hydrogen joint Undertaking, Final Report, Feb. 2014                                                                                                                                                                                                                                                                                           |
| BGR 2016                | Bundesanstalt für Geowissenschaften und Rohstoffe, "Platin: Rohstoffwirt-<br>schaftliche Steckbriefe" Hannover, Februar 2016                                                                                                                                                                                                                                                                                                                                                                          |
| Brostow 2007            | Brostow, W. (Hrsg.): Physical properties of polymers handbook. New York, NY: Springer, 2007.                                                                                                                                                                                                                                                                                                                                                                                                          |
| Burger et al. 2012      | Burger, J., Ströfer, E., Hasse, H.: Chemical Equilibrium and Reaction Ki-<br>netics of the Heterogeneously Catalyzed Formation of Poly(oxymethylene)<br>Dimethyl Ethers from Methylal and Trioxane. In: Industrial & Engineering<br>Chemistry Research, 51 (2012), 39, S. 12751–12761                                                                                                                                                                                                                 |
| Burger et al. 2013      | Burger, J., Ströfer, E., Hasse, H.: Production process for diesel fuel com-<br>ponents poly(oxymethylene) dimethyl ethers from methane-based prod-<br>ucts by hierarchical optimization with varying model depth, Chemical Engi-<br>neering Research and Design, Bd. 91, Nr. 12, S. 2648–2662, Dez. 2013.                                                                                                                                                                                             |
| Burre et al. 2018       | Burre, J., Bongartz, D., Mitsos, A.: Modellierung eines Benchmarkprozesses zur Produktion von OME3-5 aus regenerativ erzeugtem H <sub>2</sub> und grünem CO <sub>2</sub> . Frankfurt am Main 2018: RWTH Aachen University, Aachener Verfahrenstechnik, Systemverfahrenstechnik                                                                                                                                                                                                                        |
| Deutz et al. 2018       | Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., Walters, M., Klankermayer, J., Leitner, W., Mitsos, A., Pischinger, S., Bardow, A.: Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO 2 -based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, Bd. 11, Nr. 2, S. 331–343, 2018.                                                                                                                        |
| Drunsel et al. 2012     | Drunsel, JO., Renner, M., Hasse, H.: Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis. Chemical Engineering Research and Design, 90 (2012), 5, S. 696–703.                                                                                                                                                                                                                                                                                           |
| EC 2013                 | European Commission (2013) Commission Recommendation on the use<br>of common methods to measure and communicate the life cycle environ-<br>mental performance of the products and organizations. Annex II: Product<br>Environmental Footprint (PEF) Guide to Commission Recommendation on<br>the use of common methods to measure and communicate the life cycle<br>environmental performance of the products and organizations. Official<br>Journal of the European Union Volume 56, L 124, 4.5.2013 |
| EC 2014                 | European Commission (2014): Environmental Footprint Pilot Guidance document, - Guidance for the implementation of the EU Product Environmental Footprint (PEF) during the Environmental Footprint (EF) pilot phase, v. 4.0, May 2014                                                                                                                                                                                                                                                                  |

| ecoinvent v3.5           | Ökobilanz-Datenbank ecoinvent v3.5; http://www.ecoinvent.org; integriert in Open LCA                                                                                                                                                                                                                                            |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freveland/Hedelund o. J. | Freveland, L. K., Hedelund, J. W.: Process for production of methylal, US 2563742.                                                                                                                                                                                                                                              |
| Fu/Shen 2007             | Fu, Y., & Shen, J. (2007). Selective Oxidation of Methanol to Dimethox-<br>ymethane under Mild Conditions over V2O5/TiO2 with Enhanced Surface<br>Acidity. Chemical Communications, (21), 2172-2174.                                                                                                                            |
| FZJ 2019                 | Petra Zapp, persönliche Kommunikation, Forschungszentrum Jülich, März 2019                                                                                                                                                                                                                                                      |
| Goedkoop/Spriensma 1999  | Goedkoop, M.; Spriensma, R.S., The Eco-indicator 99, a Damage oriented method for LCIA, Ministry VROM, the Hague 1999                                                                                                                                                                                                           |
| Goeppert et al. 2012     | Goeppert, A.; Czaun, M.; Surya Prakash, G. K.; Olah, G. A.: Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. In: Energy & Environmental Science, Bd. 5, Nr. 7, S. 7833, 2012.                                                                                                  |
| Grützner et al. 2007     | Grützner, T., Hasse, H., Lang, N., Siegert, M., Ströfer, E.: Development of a new industrial process for trioxane production, Chemical Engineering Science, Bd. 62, Nr. 18–20, S. 5613–5620, Sep. 2007.                                                                                                                         |
| Guinée et al. 2001       | Guinée J.B., de Bruijn H., van Duin R., Gorrée M., Heijungs R., Huijbregts M.A.J., Huppes G., Kleijn R., de Koning A., van Oers L., Sleeswijk A.W., Suh S., de Haes H.A.U.: Life cycle assessment – an operational guide to the ISO standards, part 2b. Centre of Environ-mental Science (CML), Leiden University, Leiden, 2001 |
| ICCT 2017                | ICCT Whitepaper (2017): From laboratory ro road - a 2017 update of official and "real-world" fuel consumption and CO <sub>2</sub> values for passenger cars in Europe; https://www.theicct.org/sites/default/files/publications/Lab-to-road-2017_ICCT-white %20paper_06112017_vF.pdf                                            |
| ifeu 2018a               | Balint Simon, Institut für Energie- und Umweltforschung Heidelberg, per-<br>sönliche Kommunikation, Februar 2018                                                                                                                                                                                                                |
| ifeu 2018b               | Thomas Fröhlich, Institut für Energie- und Umweltforschung Heidelberg, persönliche Kommunikation, Dezember 2018                                                                                                                                                                                                                 |
| ILCD 2010                | ILCD-Handbook: General guide for Life Cycle Assessment – Detailed guid-<br>ance; European Commission, Joint Research Centre, Institute for Environ-<br>ment and Sustainability; 1st Edition, 2010                                                                                                                               |
| ISO 2006                 | DIN EN ISO 14040:2006-10: Umweltmanagement – Ökobilanz – Grunds-<br>ätze und Rahmenbedingungen (ISO 14040:2006); Deutsche und Engli-<br>sche Fassung EN ISO 14040:2006                                                                                                                                                          |
| ISO 2013                 | ISO/TS 14067:2013 Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification and communication. May 2013                                                                                                                                                                                  |
| ISO 2018                 | DIN EN ISO 14044:2018-05: Umweltmanagement – Ökobilanz – Anforde-<br>rungen und Anleitungen (ISO 14044:2006 + Amd 1:2017); Deutsche Fas-<br>sung EN ISO 14044:2006 + A1:2018, Englische Fassung EN ISO<br>14044:2006 + A1:2018                                                                                                  |
| Klöpffer 2009            | Klöpffer, W.; Grahl, B.: Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf; Wiley-VCH, Weinheim, 2009                                                                                                                                                                                                                     |
| Kopp et al. 2017         | Kopp, M.; Coleman, D.; Stiller, C.; Scheffer, K.; Aichinger, J.; Scheppat, B.:<br>Energiepark Mainz: Technical and economic analysis of the worldwide<br>largest Power-to-Gas plant with PEM electrolysis. In: International Journal<br>of Hydrogen Energy, Bd. 42, Nr. 19, S. 13311–13320, Mai 2017.                           |

| Lehmann 2015         | Lehmann, A., Bach, V., Finkbeiner, M.: Product environmental footprint in policy and market decisions: Applicability and impact assessment. In: Integrated Environmental Assessment and Management 2015 Vol: 11 (3) :417-424. doi: 10.1002/ieam.1658                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Luftl et al. 2014    | Luftl, S.; M., V. P.; Sarathchandran, C. (Hrsg.): Polyoxymethylene hand-<br>book: structure, properties, applications and their nanocomposites. Hobo-<br>ken, New Jersey: Scrivener Publishing/Wiley, 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mathisen et al. 2014 | Mathisen, A.; Skinnemoen, M.M., Nord, L.O.: Evaluating CO2 capture technologies for retrofit in cement plant; Energy Procedia 63 (2014) 6484 – 6491; doi: 10.1016/j.egypro.2014.11.684                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OEKO 2012            | Jenseit, W.; Sutter, J.; Dittrich, S.: LCA-Bewertung einer zukünftigen Was-<br>serstoff-Infrastruktur in Deutschland, USA und China. Im Auftrag der AUDI<br>AG. Darmstadt 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OEKO/ISI 2015        | Repenning, J., Emele, L., Blanck, R., Böttcher, H., Dehoust, G., Förster, H., Greiner, B., Harthan, R., Hennenberg, K., Hermann, H., Jörß, W., Loreck, C., Ludig, S., Scheffler, M., Schumacher, K., Wiegmann, K., Zell-Ziegler, C., Braungardt, S., Eichhammer, W., Elsland, R., Fleiter, T., Hartwig, J., Kockat, J., Pfluger, B., Schade, W., Schlomann, B., Sensfuß, F., Ziesing, H., Matthes, F.: Klimaschutzszenario 2050 - 2. Endbericht, 2015; Öko-Institut, Fraunhofer-ISI; im Auftrag des Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit; 2015; https://www.oeko.de/publikationen/p-details/klimaschutzszenario-2050-2-endbericht/ |
| OEKO/ZSW 2016        | Stahl, H.; Bauknecht, D.; Hermann, A.; Jenseit, W.; Köhler, A.; Merz, C. (2016): Ableitung von Recycling - und Umweltanforderungen und Strate-<br>gien zur Vermeidung von Versorgungsrisiken bei innovativen Energiespei-<br>chern. Unter Mitarbeit von L. Jörissen und U. Storr. Hg. v. Umweltbundes-<br>amt. Öko-Institut e.V.; Zentrum für Sonnenenergie- und Wasserstoff-For-<br>schung Baden-Württemberg. Dessau-Roßlau (UBA Texte). Online verfüg-<br>bar unter <u>https://www.umweltbundesamt.de/sites/default/files/me-<br/>dien/378/publikationen/texte 07_2016_ableitung_von_recycling-und_um-<br/>weltanforderungen.pdf</u>                             |
| Omari et al. 2017    | Omari, A., B. Heuser, B., Pischinger, S.: Potential of oxymethylenether-<br>diesel blends for ultra-low emission engines, Fuel, Bd. 209, S. 232–237,<br>Dez. 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ouda et al. 2018     | Ouda, M., Mantei, F., Hesterwerth, K., Bargiacchi, E., Klein, H., & White, R. J. (2018). A hybrid description and evaluation of oxymethylene dimethyl ethers synthesis based on the endothermic dehydrogenation of methanol. Reaction Chemistry & Engineering, 3(5), 676-695.                                                                                                                                                                                                                                                                                                                                                                                      |
| Pontzen et al. 2011  | Pontzen, F., Liebner, W., Gronemann, V., Rothaemel, M., & Ahlers, B. (2011). CO2-based methanol and DME–Efficient technologies for industrial scale production. Catalysis Today, 171(1), 242-250.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ReCiPe 2008          | Goedkoop, M., Heijungs, R., Huijbregts, M., de Schryver, A., Struijs, J. & van Zelm, R., 2009. ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition. Report 1: characterisation.                                                                                                                                                                                                                                                                                                                                                                                |
| ReCiPe 2013          | Goedkoop M.J. / Heijungs, R. / Huijbregts, M. u.a.: ReCiPe 2008 - First Edition. Report I: Characterisation - May 2013. Amersfoort / Leiden / Nijmegen / Bilthoven 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ReCiPe 2016          | Huijbregts, M. A. J.; Steinmann, J.N.; Elshout, P. M. F.; Stam, G.; Verones, F.; Vieira, M. D. M.; Hollander, A.; Zijp, M.; van Zelm, R.: ReCiPe 2016. A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characterization. RIVM Report 2016-0104                                                                                                                                                                                                                                                                                                                                                                          |

| Reuss et al. 2012           | Reuss, G., Disteldorf, W., Gamer, A. O., Hilt, A.: Formaldehyde. In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Hrsg. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.                                                                                                                                                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roadmap 1.0                 | Ausfelder, F.; Dura, H. E. (Hrsg.): 1. Roadmap des Kopernikus-Projektes "Power-to-X": Flexible Nutzung erneuerbarer Ressourcen (P2X). Optionen für ein nachhaltiges Energiesystem mit Power-to-X Technologien. Heraus-forderungen – Potentiale – Methoden – Auswirkungen. Bundesministerium für Bildung und Forschung. 2018. Online unter https://www.kopernikus-projekte.de/projekte/power-to-x |
| Roadmap 2.0                 | Ausfelder, F.; Dura, H. E. (Hrsg.): 2. Roadmap des Kopernikus-Projektes<br>"Power-to-X": Flexible Nutzung erneuerbarer Ressourcen (P2X). Optionen<br>für ein nachhaltiges Energiesystem mit Power-to-X Technologien. Bundes-<br>ministerium für Bildung und Forschung. (in prep.)                                                                                                                |
| RWTH AVT.SVT 2019           | Dominik Bongartz, Jannik Burre, RWTH Aachen AVT.SVT, persönliche Kommunikation, Februar 2019                                                                                                                                                                                                                                                                                                     |
| RWTH LTT 2019               | Sarah Deutz, RWTH Aachen LTT, persönliche Kommunikation, 2019                                                                                                                                                                                                                                                                                                                                    |
| RWTH VKA 2019               | Ahmad Omari, RWTH Aachen VKA, persönliche Kommunikation, 2019                                                                                                                                                                                                                                                                                                                                    |
| Schieweck/Klankermayer 2017 | Schieweck, B. G. Klankermayer, J.: Tailor-made Molecular Cobalt Catalyst<br>System for the Selective Transformation of Carbon Dioxide to Dial-<br>koxymethane Ethers, Angewandte Chemie International Edition, Bd. 56,<br>Nr. 36, S. 10854–10857, Aug. 2017.                                                                                                                                     |
| Schmid 2006                 | Schmid, J. et al.: Gefährdungspotenzial durch Cyclopentan aus der Be-<br>hand-lung von VOC-Kühlgeräten. Im Auftrag des Umweltministeriums Ba-<br>den-Württemberg. 2006                                                                                                                                                                                                                           |
| Smolinka et al. 2018        | Smolinka, T.: Wiebe, N.; Sterchele, P.; Palzer, A.; Lehner, F.; Jansen, M.;<br>Kiemel, S.; Miehe, R.; Wahren, S.; Zimmermann, F.: Studie IndWEDe. In-<br>dustrialisierung der Wasserelektrolyse in Deutschland: Chancen und Her-<br>ausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und<br>Wärme. Fraunhofer-Institut für Solare Energiesysteme ISE 2018                          |
| Spritmonitor 2019           | Spritmonitor. Verbrauchswerte real erfahren. Online unter https://www.spritmonitor.de. Abgerufen im Mai 2019                                                                                                                                                                                                                                                                                     |
| Thenert et al. 2016         | Thenert, K. Beydoun, K., Wiesenthal, J., Leitner, W., Klankermayer, J.: Ru-<br>thenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon<br>Dioxide and Molecular Hydrogen, Angewandte Chemie International Edi-<br>tion, Bd. 55, Nr. 40, S. 12266–12269, Sep. 2016.                                                                                                                |
| Töpler & Lehmann 2014       | Töpler, J.; Lehmann, J. (Hrsg.): Wasserstoff und Brennstoffzelle. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.                                                                                                                                                                                                                                                                          |
| UBA 1995                    | Methodik der produktbezogenen Ökobilanzen – Wirkungsbilanz und Be-<br>wertung. Umweltbundesamt; Gesellschaft für Consulting und Analytik im<br>Umweltbereich (C.A.U.); ifeu. Umweltbundesamt Texte, 23/95. 1995                                                                                                                                                                                  |
| UNEP 2013                   | Reuter, M.; Hudson, C.; Schaik, A. van; Heiskanen, K.; Meskers, C.; Ha-<br>gelüken, C.: Metal Recycling - Opportunities, Limits, Infrastructure; Hrsg.<br>UNEP, International Resource Panel, Working Group on the Global Metal<br>Flows, 2013                                                                                                                                                   |
| Van-Dal/Bouallou 2013       | Van-Dal, É. S.; Bouallou, C.: Design and simulation of a methanol produc-<br>tion plant from CO2 hydrogenation, Journal of Cleaner Production, Bd. 57,<br>S. 38–45, Okt. 2013.                                                                                                                                                                                                                   |
| VW 2019                     | Von der Wiege bis zur Bahre: Konsequent von Anfang bis zum Ende den-<br>ken. Volkswagen 2019. Online verfügbar unter <u>https://www.volkswage-<br/>nag.com/de/news/stories/2019/04/from-the-well-to-the-wheel.html</u> ; abge-<br>rufen am 10.09.2019                                                                                                                                            |

| Weger et al. 2017   | Weger, L.; Abánades, A.; Butler, T.: Methane cracking as a bridge technol-<br>ogy to the hydrogen economy. International Journal of Hydrogen Energy,<br>Bd. 42, Nr. 1, S. 720–731, Jan. 2017.                                                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weidert et al. 2017 | Weidert, JO., Burger, J., Renner, M., Blagov, S., Hasse, H.: Development<br>of an Integrated Reaction–Distillation Process for the Production of Meth-<br>ylal, Industrial & Engineering Chemistry Research, Bd. 56, Nr. 2, S. 575–<br>582, Jan. 2017. |
| Wu et al. 2018      | Wu, L., Li, B., & Zhao, C. (2018). Direct Synthesis of Hydrogen and Di-<br>methoxylmethane from Methanol on Copper/Silica Catalysts with Optimal<br>Cu+/Cu0 Sites. ChemCatChem, 10(5), 1140-1147.                                                      |

### Annex I: Parameterliste

| Parameterliste | Parameter                                                                                               | Wert               | Einheit       | Quelle/Kommentar                                                                                                     |  |
|----------------|---------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------|--|
| Allgemein      | Heizwert, Wasserstoff                                                                                   | 120                | MJ/kg         |                                                                                                                      |  |
|                | Heizwert, OME <sub>1</sub>                                                                              | 23,3               | MJ/kg         |                                                                                                                      |  |
|                | Heizwert, OME <sub>3-5</sub>                                                                            | 19,2               | MJ/kg         | Mischung nach Burger<br>et al. 2013, mit 43 %<br>OME <sub>3</sub> , 34 % OME <sub>4</sub> , 23 %<br>OME <sub>5</sub> |  |
|                | Realer Wirkungsgrad<br>Wärmepumpe & Kälte-<br>maschine                                                  | 60 %               |               | RWTH LTT 2019                                                                                                        |  |
|                |                                                                                                         |                    |               |                                                                                                                      |  |
|                | Übertragungsverluste<br>Stromnetz                                                                       | 4 %                |               | eigene Abschätzung                                                                                                   |  |
|                |                                                                                                         |                    |               |                                                                                                                      |  |
| Fahrzeug       | für Diesel: ecoinvent-Dat<br>EURO 5" mit Adaptierung                                                    | ensatz "trans<br>: | sport, passen | ger car, small size, diesel,                                                                                         |  |
|                | Diesel-Pkw                                                                                              | Golf 7 TDI         |               | Audi 2019                                                                                                            |  |
|                | Laufleistung                                                                                            | 200.000            | km            | Audi 2019                                                                                                            |  |
|                | Kraftstoffverbrauch, real, heute                                                                        | 1,9                | MJ/vkm        | Spritmonitor 2019                                                                                                    |  |
|                | Kraftstoffverbrauch,<br>WLTC, heute                                                                     | 1,3                | MJ/vkm        | Audi 2019                                                                                                            |  |
|                | Kraftstoffverbrauch,<br>WLTC, 2030 & 2050                                                               | 1                  | MJ/vkm        | Audi 2019                                                                                                            |  |
|                | CO <sub>2</sub> -Emissionen                                                                             | berechnet          |               | stöchiometrisch aus Ver-<br>brauch                                                                                   |  |
|                | NO <sub>x</sub>                                                                                         | 80                 | mg/vkm        | EURO 6                                                                                                               |  |
|                | PM2.5                                                                                                   | 4,5                | mg/vkm        | EURO 6                                                                                                               |  |
|                |                                                                                                         |                    |               |                                                                                                                      |  |
|                | für OME: ecoinvent-Datensatz "transport, passenger car, small size, diesel,<br>EURO 5" mit Adaptierung: |                    |               |                                                                                                                      |  |
|                | Diesel-Pkw                                                                                              | Golf 7 TDI         |               | Audi 2019                                                                                                            |  |
|                | Laufleistung                                                                                            | 200.000            | km            | Audi 2019                                                                                                            |  |
| Kraftstoffverbrauch, real, heute             | 1,9       | MJ/vkm | Spritmonitor 2019                  |  |  |
|----------------------------------------------|-----------|--------|------------------------------------|--|--|
| Kraftstoffverbrauch,<br>WLTC, heute          | 1,3       | MJ/vkm | Audi 2019                          |  |  |
| Kraftstoffverbrauch,<br>WLTC, 2030 & 2050    | 1         | MJ/vkm | Audi 2019                          |  |  |
| CO <sub>2</sub> -Emissionen                  | berechnet |        | stöchiometrisch aus Ver-<br>brauch |  |  |
| NO <sub>x</sub>                              | 40        | mg/vkm | RWTH VKA 2019; ange-<br>passt      |  |  |
| PM2.5                                        | 0         |        | RWTH VKA 2019; ange-<br>passt      |  |  |
| SO <sub>2</sub> - und Metall-emissio-<br>nen | 0         |        | angepasst                          |  |  |
|                                              |           |        |                                    |  |  |
| Batterieelektrischer<br>Pkw                  |           |        |                                    |  |  |
| Modell                                       | e-Golf 7  |        | Audi 2019                          |  |  |
| Laufleistung                                 | 200.000   | km     | Audi 2019                          |  |  |
| Stromverbrauch, real,<br>heute               | 0,54      | MJ/vkm | Spritmonitor 2019                  |  |  |
| Stromverbrauch, WLTC, heute                  | 0,5       | MJ/vkm | Audi 2019                          |  |  |
| Stromverbrauch, WLTC, 2030 & 2050            | 0,48      | MJ/vkm | Audi 2019                          |  |  |
| Ladeverluste                                 | 10 %      |        |                                    |  |  |
|                                              |           |        |                                    |  |  |
| Wartung, Pkw                                 | 6,5E-06   |        | ecoinvent 3.5, wie Die-<br>sel-Pkw |  |  |
| Straße (Bau)                                 | 7,0E-04   | m*a    | ecoinvent 3.5, wie Die-<br>sel-Pkw |  |  |
| Straßenabrieb                                | -1,3E-05  | kg/vkm | ecoinvent 3.5, wie Die-<br>sel-Pkw |  |  |
| Bremsabrieb                                  | -5,8E-06  | kg/vkm | ecoinvent 3.5, wie Die-<br>sel-Pkw |  |  |

|                                | Reifenabrieb                                            | -7,4E-05 | kg/vkm     | ecoinvent 3.5, wie Die-<br>sel-Pkw                                                                               |  |  |
|--------------------------------|---------------------------------------------------------|----------|------------|------------------------------------------------------------------------------------------------------------------|--|--|
|                                |                                                         |          |            |                                                                                                                  |  |  |
| Wasserstoffbereitstel-<br>lung |                                                         |          |            |                                                                                                                  |  |  |
| Elektrolyseur                  | Vollaststunden, 2030 & 2050                             | 5000     | h/a        | eigene Annahme                                                                                                   |  |  |
|                                | Systemwirkungsgrad,<br>heizwertbasiert, heute           | 60 %     |            | Bareiß et al. 2019, Smo-<br>linka et al. 2018                                                                    |  |  |
|                                | Systemwirkungsgrad,<br>heizwertbasiert, 2030            | 70 %     |            | eigene Annahme                                                                                                   |  |  |
|                                | Systemwirkungsgrad,<br>heizwertbasiert, 2050            | 70 %     |            | eigene Annahme, Smo-<br>linka et al. 2018                                                                        |  |  |
|                                | Materialzusammenset-<br>zung der Anlage, heute          |          |            | s. Bareiß et al. 2019 Ta-<br>ble 2 "today" und Ta-<br>ble 3                                                      |  |  |
|                                | Materialzusammenset-<br>zung der Anlage, 2030 &<br>2050 |          |            | s. Bareiß et al. 2019 Ta-<br>ble 2 "near future" und<br>Table 3                                                  |  |  |
|                                | Recyclinganteil Platin                                  | 23 %     |            | BGR 2016                                                                                                         |  |  |
|                                | Recyclinganteil Iridium                                 | 10 %     |            | UNEP 2013 untere<br>Grenze; Iridium mit<br>ecoinvent-Datensatz für<br>Platin, nur Recyclingan-<br>teil angepasst |  |  |
|                                | Lebensdauer des Stacks,<br>heute                        | 7        | а          | Bareiß et al. 2019                                                                                               |  |  |
|                                | Lebensdauer des Stacks,<br>2030 & 2050                  | 10       | а          | Bareiß et al. 2019                                                                                               |  |  |
|                                | Lebensdauer der restli-<br>chen Anlage                  | 20       | а          | Bareiß et al. 2019                                                                                               |  |  |
|                                |                                                         |          |            |                                                                                                                  |  |  |
| Wasserstoffkompres-<br>sion    | Strombedarf                                             | 3        | MJ/kg H2   | von 30 auf 200 bar, ei-<br>gene Abschätzung                                                                      |  |  |
| Wasserstofftransport           | Druckgas-Lkw bei<br>200bar                              | 2,3E-14  | item/MJ-H2 | Modellierung nach<br>OEKO 2012                                                                                   |  |  |

|                                 | Kraftstoffverbrauch           | 0,002            | kg/MJ-H2   | OEKO 2012, vereinfa-<br>chend fossiler Diesel                                                                  |
|---------------------------------|-------------------------------|------------------|------------|----------------------------------------------------------------------------------------------------------------|
|                                 | Transportdistanz              | 200              | km         | eigene Annahme                                                                                                 |
| Wasserstoffspeicher             | Standard-Niederdruck-<br>Tank | 4,8E-06          | item/kg H2 | Materialzusammenset-<br>zung s. OEKO/ZSW 2015                                                                  |
|                                 |                               |                  |            |                                                                                                                |
| CO2-Bereitstellung              |                               |                  |            |                                                                                                                |
| CO2-Abscheidung aus<br>der Luft | Vollaststunden                | 8400             | h/a        | ifeu 2018b                                                                                                     |
|                                 | Strombedarf                   | 1,8              | MJ/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Wärmebedarf                   | 5,4              | MJ/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Wärmepumpe                    | 2,63 MJ_th/MJ_el |            | zwischen 15°C und<br>100°C; RWTH LTT 2019:<br>technisch möglich, aber<br>bisher nicht kommerziell<br>verfügbar |
|                                 |                               |                  |            |                                                                                                                |
|                                 | Adsorbent                     | 0,00776          | kg/kg CO2  | ifeu 2018a basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Betonfundament                | 0,00511          | kg/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Legierter Stahl               | 0,00351          | kg/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Niedriglegierter Stahl        | 0,00287          | kg/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Aluminium                     | 0,00253          | kg/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |
|                                 | Kupfer                        | 6,9E-05          | kg/kg CO2  | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                               |

|                                  | Ethylenglycol 100 %                                                                                                                                                                              | 0,00145                                        | kg/kg CO2                                       | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                                                                                                                                                   |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                  | Lebensdauer der Anlage                                                                                                                                                                           | 12                                             | a                                               | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                                                                                                                                                   |  |  |  |  |
|                                  | Anlagenkapazität                                                                                                                                                                                 | 1800                                           | t CO2/a                                         | ifeu 2018b basierend auf<br>Daten der Firma clime-<br>works 2017                                                                                                                                                                   |  |  |  |  |
|                                  | CO2-Kompression                                                                                                                                                                                  | 0,368                                          | MJ/kg CO2                                       | von 1 auf 70bar, RWTH<br>AVT.SVT 2019                                                                                                                                                                                              |  |  |  |  |
| CO2-Abscheidung au<br>Zementwerk | s Strombedarf (Air separa-<br>tion unit & compression<br>and purification unit)                                                                                                                  | 0,9                                            | MJ/kg CO2                                       | Mathisen et al. 2014                                                                                                                                                                                                               |  |  |  |  |
|                                  | Bau ASU                                                                                                                                                                                          | 1,1E-09                                        | items/kg O2                                     | ecoinvent 3.5; Bau CPU<br>vernachlässigt                                                                                                                                                                                           |  |  |  |  |
|                                  | Abscheidefaktor CO2                                                                                                                                                                              | 0,96                                           | kg/kg emit-<br>tiert                            | Mathisen et al. 2014                                                                                                                                                                                                               |  |  |  |  |
|                                  | Klinkerherstellung: ecoinvent-Datensatz "clinker production, cutoff, Europe wit-<br>hout Switzerland" zur Allokation der CO2-Emissionen und der Vorketten der ge-<br>meinsam genutzten Rohstoffe |                                                |                                                 |                                                                                                                                                                                                                                    |  |  |  |  |
|                                  | 6                                                                                                                                                                                                | one                                            |                                                 |                                                                                                                                                                                                                                    |  |  |  |  |
|                                  | Klinkerfaktor                                                                                                                                                                                    | 0,684                                          | kg/kg Ze-<br>ment                               | ecoinvent 3.5; "cement<br>production, alternative<br>constituents 21-35 %,<br>cutoff, Europe without<br>Switzerland"                                                                                                               |  |  |  |  |
|                                  | Klinkerfaktor                                                                                                                                                                                    | 0,684                                          | kg/kg Ze-<br>ment                               | ecoinvent 3.5; "cement<br>production, alternative<br>constituents 21-35 %,<br>cutoff, Europe without<br>Switzerland"                                                                                                               |  |  |  |  |
| CO2-Transport                    | Klinkerfaktor<br>CO2 Transport Pipeline<br>200 km ohne Rekom-<br>pression                                                                                                                        | 0,684<br>Modellie-<br>rung FZJ                 | kg/kg Ze-<br>ment                               | ecoinvent 3.5; "cement<br>production, alternative<br>constituents 21-35 %,<br>cutoff, Europe without<br>Switzerland"<br>FZJ 2019                                                                                                   |  |  |  |  |
| CO2-Transport                    | Klinkerfaktor         CO2 Transport Pipeline         200 km ohne Rekom-         pression         Transportdistanz                                                                                | 0,684<br>Modellie-<br>rung FZJ<br>200          | kg/kg Ze-<br>ment                               | ecoinvent 3.5; "cement<br>production, alternative<br>constituents 21-35 %,<br>cutoff, Europe without<br>Switzerland"<br>FZJ 2019<br>eigene Annahme                                                                                 |  |  |  |  |
| CO2-Transport                    | Klinkerfaktor         CO2 Transport Pipeline         200 km ohne Rekom-         pression         Transportdistanz                                                                                | 0,684<br>Modellie-<br>rung FZJ<br>200          | kg/kg Ze-<br>ment                               | ecoinvent 3.5; "cement<br>production, alternative<br>constituents 21-35 %,<br>cutoff, Europe without<br>Switzerland"<br>FZJ 2019<br>eigene Annahme                                                                                 |  |  |  |  |
| CO2-Transport<br>OME-Synthese    | Klinkerfaktor CO2 Transport Pipeline 200 km ohne Rekom- pression Transportdistanz Anlage, organische Syn- these                                                                                  | 0,684<br>Modellie-<br>rung FZJ<br>200<br>4E-11 | kg/kg Ze-<br>ment<br>km<br>km<br>item/kg<br>OME | ecoinvent 3.5; "cement<br>production, alternative<br>constituents 21-35 %,<br>cutoff, Europe without<br>Switzerland"<br>FZJ 2019<br>eigene Annahme<br>ecoinvent 3.5 "chemical<br>factory construction, or-<br>ganics, cutoff, RER" |  |  |  |  |

|                                        | CO2           | 1,9  | kg/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|----------------------------------------|---------------|------|-------------|-------------------------------------------------------------------------------------------------------------------|--|
|                                        | Strom         | 1,4  | MJ/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|                                        | Wärme         | 1,2  | MJ/kg OME   | RWTH AVT.SVT 2019;<br>vollständige Wärmein-<br>tegration                                                          |  |
|                                        | Wärmepumpe    | 2,84 | MJ_th/MJ_el | zwischen 15°C und 92°C;<br>RWTH LTT 2019: tech-<br>nisch möglich, aber bis-<br>her nicht kommerziell<br>verfügbar |  |
| OME3-5-Synthese, eta-<br>blierte Route | Wasserstoff   | 0,25 | kg/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|                                        | CO2           | 1,8  | kg/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|                                        | Strom         | 2,5  | MJ/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|                                        | Wärme         | 17,9 | MJ/kg OME   | RWTH AVT.SVT 2019;<br>vollständige Wärmein-<br>tegration                                                          |  |
|                                        | Wärmepumpe    | -    |             | entfällt; Temperaturni-<br>veau zu hoch                                                                           |  |
| OME1-Synthese, oxida-<br>tive Route    | Wasserstoff   | 0,26 | kg/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|                                        | CO2           | 1,9  | kg/kg OME   | RWTH AVT.SVT 2019                                                                                                 |  |
|                                        | Strom         | -    | MJ/kg OME   | nicht modelliert                                                                                                  |  |
|                                        | Wärme         | 0    | MJ/kg OME   | RWTH AVT.SVT 2019;<br>Minimum energy de-<br>mand calculation & voll-<br>ständige Wärmeintegra-<br>tion            |  |
|                                        | Kälte @ -23°C | 2,1  | MJ/kg OME   | RWTH AVT.SVT 2019;<br>Minimum energy de-<br>mand calculation & voll-<br>ständige Wärmeintegra-<br>tion            |  |
|                                        | Kältemaschine | 3,95 | MJ_th/MJ_el | zwischen 15°C und -23°C                                                                                           |  |
|                                        | Kälte @ -87°C | 0,46 | MJ/kg OME   | RWTH AVT.SVT 2019;<br>Minimum energy de-<br>mand calculation & voll-<br>ständige Wärmeintegra-<br>tion            |  |

|                             | Kältemaschine  | 1,47 | MJ_th/MJ_el      | zwischen 15°C und -87°C                                                                                        |  |  |
|-----------------------------|----------------|------|------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| OME1-Synthese, ro<br>duktiv | e- Wasserstoff | 0,22 | kg/kg OME        | RWTH AVT.SVT 2019                                                                                              |  |  |
|                             | CO2            | 1,9  | kg/kg OME        | RWTH AVT.SVT 2019                                                                                              |  |  |
|                             | Strom          | -    | nicht modelliert |                                                                                                                |  |  |
|                             | Wärme          | 6,23 | MJ/kg OME        | RWTH AVT.SVT 2019;<br>Minimum energy de-<br>mand calculation & voll-<br>ständige Wärmeintegra-<br>tion         |  |  |
|                             | Wärmepumpe     | 2,52 | MJ_th/MJ_el      | zwischen 15°C und<br>105°C; RWTH LTT 2019:<br>technisch möglich, aber<br>bisher nicht kommerziell<br>verfügbar |  |  |

## Annex II: Ergebnisse der LCA

#### Ergebnisse der Wirkungsabschätzung der OME-Routen mit Strombezug 2018

|          |                | Diesel   | OME1-etab OME1-red |          | OME1-ox  | OME3-5   |
|----------|----------------|----------|--------------------|----------|----------|----------|
|          |                | Diesel   | OME1-etab          | OME1-red | OME1-ox  | OME3-5   |
| GWP      | kg CO2-eq/vkm  | 1,42E-01 | 6,83E-01           | 6,05E-01 | 6,52E-01 | 1,02E+00 |
| SOP      | kg Cu-eq/vkm   | 4,92E-03 | 6,26E-03           | 6,11E-03 | 6,21E-03 | 6,73E-03 |
| PM10     | kg PM10.eq/vkm | 1,70E-04 | 7,90E-04           | 7,20E-04 | 7,66E-04 | 1,11E-03 |
| AP       | kg SO2.eq/vkm  | 1,09E-04 | 2,41E-03           | 2,13E-03 | 2,79E-03 | 3,60E-03 |
| EP       | kg P.eq/vkm    | 5,53E-06 | 8,10E-04           | 7,10E-04 | 7,68E-04 | 1,24E-03 |
| РОСР     | kg NMVOC/vkm   | 3,58E-04 | 1,22E-03           | 1,10E-03 | 1,17E-03 | 1,67E-03 |
| KEA n.e. | MJ/vkm         | 2,4      | 7,6                | 6,8      | 7,3      | 11,1     |
| KEA e.   | MJ/vkm         | 0,3      | 2,1                | 1,8      | 2,0      | 3,0      |

# Ergebnisse der Wirkungsabschätzung der OME-Routen mit Strombezug 2030

|                        |                                       | Diesel   | OME1-etab,<br>KS95 2030, EC<br>marginal | OME1-etab,<br>KS95 2030, EC<br>flexmix | OME1-red,<br>KS95 2030, EC<br>marginal | OME1-red,<br>KS95 2030, EC<br>flexmix | OME1-ox,<br>KS95 2030, EC<br>marginal | OME1-ox,<br>KS95 2030, EC<br>flexmix | OME3-5-etab,<br>KS95 2030, EC<br>marginal | OME3-5-etab,<br>KS95 2030, EC<br>flexmix |
|------------------------|---------------------------------------|----------|-----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|
| GWP<br>(kg CO2-eq/vkm) |                                       |          |                                         |                                        |                                        |                                       |                                       |                                      |                                           |                                          |
| Vehicle                | Herstellung Fahrzeug                  | 2,88E-02 | 2,88E-02                                | 2,88E-02                               | 2,88E-02                               | 2,88E-02                              | 2,88E-02                              | 2,88E-02                             | 2,88E-02                                  | 2,88E-02                                 |
|                        | Betrieb: Straße, War-<br>tung, Abrieb | 1,58E-02 | 1,58E-02                                | 1,58E-02                               | 1,58E-02                               | 1,58E-02                              | 1,58E-02                              | 1,58E-02                             | 1,58E-02                                  | 1,58E-02                                 |
|                        | Betrieb: direkte Emis-<br>sionen      | 7,52E-02 |                                         |                                        |                                        |                                       |                                       |                                      |                                           |                                          |
| CO2                    | CO2: Wärme                            |          | 2,36E-02                                | 2,36E-02                               | 2,29E-02                               | 2,29E-02                              | 2,29E-02                              | 2,29E-02                             | 2,72E-02                                  | 2,72E-02                                 |
|                        | CO2: Strom                            |          | 2,24E-02                                | 2,24E-02                               | 2,17E-02                               | 2,17E-02                              | 2,17E-02                              | 2,17E-02                             | 2,59E-02                                  | 2,59E-02                                 |
|                        | CO2: Anlage                           |          | 6,91E-03                                | 6,91E-03                               | 6,69E-03                               | 6,69E-03                              | 6,69E-03                              | 6,69E-03                             | 7,97E-03                                  | 7,97E-03                                 |
| H2                     | H2: Strom                             |          | 4,04E-01                                | 2,42E-01                               | 3,40E-01                               | 2,04E-01                              | 3,91E-01                              | 2,34E-01                             | 4,65E-01                                  | 2,79E-01                                 |
|                        | H2: Anlage                            |          | 3,33E-04                                | 3,33E-04                               | 2,85E-04                               | 2,85E-04                              | 3,22E-04                              | 3,22E-04                             | 3,81E-04                                  | 3,81E-04                                 |

Öko-Institut e.V.

#### Ökobilanz der Herstellung und Nutzung von Oxymethylenether

|                          | H2: andere (v.a. Spei-<br>cher)       |          | 1,18E-02 | 8,95E-03 | 9,92E-03 | 7,54E-03 | 1,14E-02 | 8,67E-03 | 1,36E-02 | 1,03E-02 |
|--------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| OMEsyn                   | OME-syn:<br>Wärme/Kälte               |          | 2,51E-03 | 2,51E-03 | 1,48E-02 | 1,48E-02 | 4,49E-03 | 4,49E-03 | 1,30E-01 | 1,30E-01 |
|                          | OME-syn: Strom                        |          | 7,65E-03 | 7,65E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,62E-02 | 1,62E-02 |
|                          | OME-syn: Anlage                       |          | 2,30E-04 | 2,30E-04 | 2,30E-04 | 2,30E-04 | 2,30E-04 | 2,30E-04 | 2,80E-04 | 2,80E-04 |
| Distribution             | CO2-pipeline                          |          | 7,91E-05 | 7,91E-05 | 7,66E-05 | 7,66E-05 | 7,66E-05 | 7,66E-05 | 9,13E-05 | 9,13E-05 |
|                          | H2-G-LKW                              |          | 1,11E-02 | 1,11E-02 | 9,36E-03 | 9,36E-03 | 1,08E-02 | 1,08E-02 | 1,28E-02 | 1,28E-02 |
|                          | Diesel-Vorkette /<br>OME-Distribution | 1,28E-02 | 1,34E-03 | 1,34E-03 | 1,34E-03 | 1,34E-03 | 1,34E-03 | 1,34E-03 | 1,63E-03 | 1,63E-03 |
|                          | Total                                 | 1,33E-01 | 5,37E-01 | 3,72E-01 | 4,73E-01 | 3,34E-01 | 5,11E-01 | 3,52E-01 | 7,47E-01 | 5,57E-01 |
| SOP<br>(kg Cu-eq/vkm)    |                                       |          |          |          |          |          |          |          |          |          |
| Vehicle                  | Herstellung Fahrzeug                  | 4,83E-03 |
|                          | Betrieb: Straße, War-<br>tung, Abrieb | 8,98E-05 |
|                          | Betrieb: direkte Emis-<br>sionen      |          |          |          |          |          |          |          |          |          |
| <u></u>                  | CO2: Wärme                            |          | 3,65E-05 | 3,65E-05 | 3,53E-05 | 3,53E-05 | 3,53E-05 | 3,53E-05 | 4,21E-05 | 4,21E-05 |
|                          | CO2: Strom                            |          | 3,46E-05 | 3,46E-05 | 3,36E-05 | 3,36E-05 | 3,35E-05 | 3,35E-05 | 4,00E-05 | 4,00E-05 |
|                          | CO2: Anlage (Pipe-<br>line vern.b)    |          | 1,77E-04 | 1,77E-04 | 1,76E-04 | 1,76E-04 | 1,76E-04 | 1,76E-04 | 2,13E-04 | 2,13E-04 |
| H2                       | H2: Strom                             |          | 2,90E-04 | 3,80E-04 | 2,50E-04 | 3,20E-04 | 2,80E-04 | 3,70E-04 | 3,40E-04 | 4,40E-04 |
|                          | H2: Anlage                            |          | 2,06E-05 | 2,06E-05 | 1,74E-05 | 1,74E-05 | 1,99E-05 | 1,99E-05 | 2,38E-05 | 2,38E-05 |
|                          | H2: andere (v.a. Spei-<br>cher)       |          | 2,36E-04 | 2,37E-04 | 1,95E-04 | 1,96E-04 | 2,26E-04 | 2,27E-04 | 2,77E-04 | 2,79E-04 |
| OMEsyn                   | OME-syn:<br>Wärme/Kälte               |          | 3,88E-06 | 3,88E-06 | 2,29E-05 | 2,29E-05 | 6,93E-06 | 6,93E-06 | 2,00E-04 | 2,00E-04 |
|                          | OME-syn: Strom                        |          | 1,18E-05 | 1,18E-05 |          |          |          |          | 2,49E-05 | 2,49E-05 |
|                          | OME-syn: Anlage                       |          | 9,36E-06 | 9,36E-06 | 9,36E-06 | 9,36E-06 | 9,36E-06 | 9,36E-06 | 1,14E-05 | 1,14E-05 |
| Distribution             | CO2-pipeline                          |          | 3,20E-06 | 3,20E-06 | 3,10E-06 | 3,10E-06 | 3,09E-06 | 3,09E-06 | 3,69E-06 | 3,69E-06 |
|                          | H2-G-LKW                              |          | 2,65E-06 | 2,65E-06 | 2,23E-06 | 2,23E-06 | 2,56E-06 | 2,56E-06 | 3,05E-06 | 3,05E-06 |
|                          | Diesel-Vorkette /<br>OME-Distribution | 2,16E-05 | 3,46E-06 | 3,46E-06 | 3,46E-06 | 3,46E-06 | 3,46E-06 | 3,46E-06 | 4,20E-06 | 4,20E-06 |
|                          | Total                                 | 4,94E-03 | 5,75E-03 | 5,84E-03 | 5,67E-03 | 5,74E-03 | 5,71E-03 | 5,80E-03 | 6,09E-03 | 6,19E-03 |
| PM10<br>(kg PM10 eg/y/m) |                                       |          |          |          |          |          |          |          |          |          |
| Vehicle                  | Herstellung Fahrzeug                  | 4,94E-05 |
|                          | Betrieb: Straße, War-<br>tung, Abrieb | 7,11E-05 |

| Ökobilanz der H                                                             | Herstellung und Nutzung               | von Oxymeth | ylenether |          |          | Öko-Instit | ut e.X.  |          |          |          |
|-----------------------------------------------------------------------------|---------------------------------------|-------------|-----------|----------|----------|------------|----------|----------|----------|----------|
|                                                                             | Betrieb: direkte Emis-                | 2,28E-05    | 9,07E-06  | 8,93E-06 | 8,97E-06 | 8,93E-06   | 9,10E-06 | 8,97E-06 | 9,00E-06 | 9,04E-06 |
| CO2                                                                         | CO2: Wärme                            |             | 2,15E-05  | 2,15E-05 | 2,08E-05 | 2,08E-05   | 2,08E-05 | 2,08E-05 | 2,48E-05 | 2,48E-05 |
|                                                                             | CO2: Strom                            |             | 2,04E-05  | 2,04E-05 | 1,98E-05 | 1,98E-05   | 1,97E-05 | 1,97E-05 | 2,35E-05 | 2,35E-05 |
|                                                                             | CO2: Anlage (Pipe-<br>line vern.b)    |             | 1,83E-05  | 1,83E-05 | 1,77E-05 | 1,77E-05   | 1,77E-05 | 1,77E-05 | 2,11E-05 | 2,11E-05 |
| H2                                                                          | H2: Strom                             |             | 2,80E-04  | 2,20E-04 | 2,30E-04 | 1,90E-04   | 2,70E-04 | 2,10E-04 | 3,20E-04 | 2,50E-04 |
|                                                                             | H2: Anlage                            |             | 1,67E-06  | 1,67E-06 | 1,41E-06 | 1,41E-06   | 1,62E-06 | 1,62E-06 | 1,93E-06 | 1,93E-06 |
|                                                                             | H2: andere (v.a. Spei-<br>cher)       |             | 2,41E-05  | 2,31E-05 | 2,03E-05 | 1,95E-05   | 2,33E-05 | 2,24E-05 | 2,78E-05 | 2,66E-05 |
| OMEsyn                                                                      | OME-syn:<br>Wärme/Kälte               |             | 2,28E-06  | 2,28E-06 | 1,35E-05 | 1,35E-05   | 4,03E-06 | 4,03E-06 | 1,20E-04 | 1,20E-04 |
|                                                                             | OME-syn: Strom                        |             | 6,96E-06  | 6,96E-06 |          |            |          |          | 1,47E-05 | 1,47E-05 |
|                                                                             | OME-syn: Anlage                       |             | 8,94E-07  | 8,94E-07 | 8,94E-07 | 8,94E-07   | 8,94E-07 | 8,94E-07 | 1,09E-06 | 1,09E-06 |
| Distribution CO2-pipelin<br>H2-G-LKW<br>Diesel-Vork<br>OME-Distrik<br>Total | CO2-pipeline                          |             | 3,26E-07  | 3,26E-07 | 3,16E-07 | 3,16E-07   | 3,16E-07 | 3,16E-07 | 3,76E-07 | 3,76E-07 |
|                                                                             | H2-G-LKW                              |             | 1,51E-05  | 1,51E-05 | 1,27E-05 | 1,27E-05   | 1,46E-05 | 1,46E-05 | 1,74E-05 | 1,74E-05 |
|                                                                             | Diesel-Vorkette /<br>OME-Distribution | 3,44E-05    | 3,12E-06  | 3,12E-06 | 3,12E-06 | 3,12E-06   | 3,12E-06 | 3,12E-06 | 3,79E-06 | 3,79E-06 |
|                                                                             | Total                                 | 2,00E-04    | 5,40E-04  | 4,80E-04 | 4,90E-04 | 4,40E-04   | 5,20E-04 | 4,60E-04 | 7,20E-04 | 6,60E-04 |
| POCP<br>(kg NMVOC/ykm)                                                      |                                       |             |           |          |          |            |          |          |          |          |
| Vehicle                                                                     | Herstellung Fahrzeug                  | 8,91E-05    | 8,91E-05  | 8,91E-05 | 8,91E-05 | 8,91E-05   | 8,91E-05 | 8,91E-05 | 8,91E-05 | 8,91E-05 |
|                                                                             | Betrieb: Straße, War-<br>tung, Abrieb | 1,18E-04    | 1,18E-04  | 1,18E-04 | 1,18E-04 | 1,18E-04   | 1,18E-04 | 1,18E-04 | 1,18E-04 | 1,18E-04 |
|                                                                             | Betrieb: direkte Emis-<br>sionen      | 1,16E-04    | 5,28E-05  | 5,26E-05 | 5,27E-05 | 5,22E-05   | 5,28E-05 | 5,24E-05 | 5,28E-05 | 5,26E-05 |
| CO2                                                                         | CO2: Wärme                            |             | 3,98E-05  | 3,98E-05 | 3,85E-05 | 3,85E-05   | 3,85E-05 | 3,85E-05 | 4,59E-05 | 4,59E-05 |
|                                                                             | CO2: Strom                            |             | 3,78E-05  | 3,78E-05 | 3,66E-05 | 3,66E-05   | 3,66E-05 | 3,66E-05 | 4,36E-05 | 4,36E-05 |
|                                                                             | CO2: Anlage (Pipe-<br>line vern.b)    |             | 2,15E-05  | 2,15E-05 | 2,08E-05 | 2,08E-05   | 2,08E-05 | 2,08E-05 | 2,48E-05 | 2,48E-05 |
| H2                                                                          | H2: Strom                             |             | 6,30E-04  | 4,10E-04 | 5,30E-04 | 3,40E-04   | 6,10E-04 | 3,90E-04 | 7,30E-04 | 4,70E-04 |
|                                                                             | H2: Anlage                            |             | 1,82E-06  | 1,82E-06 | 1,54E-06 | 1,54E-06   | 1,76E-06 | 1,76E-06 | 2,10E-06 | 2,10E-06 |
|                                                                             | H2: andere (v.a. Spei-<br>cher)       |             | 3,37E-05  | 2,97E-05 | 2,84E-05 | 2,50E-05   | 3,26E-05 | 2,88E-05 | 3,89E-05 | 3,43E-05 |
| OMEsyn                                                                      | OME-syn:<br>Wärme/Kälte               |             | 4,23E-06  | 4,23E-06 | 2,49E-05 | 2,49E-05   | 7,55E-06 | 7,55E-06 | 2,20E-04 | 2,20E-04 |
|                                                                             | OME-syn: Strom                        |             | 1,29E-05  | 1,29E-05 |          |            |          |          | 2,72E-05 | 2,72E-05 |
|                                                                             | OME-syn: Anlage                       |             | 9,84E-07  | 9,84E-07 | 9,84E-07 | 9,84E-07   | 9,84E-07 | 9,84E-07 | 1,19E-06 | 1,19E-06 |
| Distribution                                                                | CO2-pipeline                          |             | 5,98E-07  | 5,98E-07 | 5,80E-07 | 5,80E-07   | 5,79E-07 | 5,79E-07 | 6,90E-07 | 6,90E-07 |
|                                                                             | H2-G-LKW                              |             | 6,46E-05  | 6,46E-05 | 5,44E-05 | 5,44E-05   | 6,25E-05 | 6,25E-05 | 7,45E-05 | 7,45E-05 |
|                                                                             | Diesel-Vorkette /<br>OME-Distribution | 7,57E-05    | 7,83E-06  | 7,83E-06 | 7,83E-06 | 7,83E-06   | 7,83E-06 | 7,83E-06 | 9,50E-06 | 9,50E-06 |

| 4            | <b>Ö</b> ko | Inct   | ita at | ۵V   |
|--------------|-------------|--------|--------|------|
| $\mathbf{-}$ | UKU         | וכווךי |        | C.V. |

## Ökobilanz der Herstellung und Nutzung von Oxymethylenether

|                       | Total                                 | 4,00E-04 | 1,12E-03 | 8,90E-04 | 1,01E-03 | 8,10E-04 | 1,08E-03 | 8,50E-04 | 1,48E-03 | 1,21E-03 |
|-----------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                       |                                       |          |          |          |          |          |          |          |          |          |
| EP<br>(kg P.eg/ykm)   |                                       |          |          |          |          |          |          |          |          |          |
| Vehicle               | Herstellung Fahrzeug                  |          |          |          |          |          |          |          |          |          |
|                       | Betrieb: Straße, War-<br>tung, Abrieb | 5,53E-06 |
|                       | Betrieb: direkte Emis-                | 0,00E+00 |
| CO2                   | CO2: Wärme                            |          | 6,26E-06 | 6,26E-06 | 6,07E-06 | 6,07E-06 | 6,06E-06 | 6,06E-06 | 7,23E-06 | 7,23E-06 |
|                       | CO2: Strom                            |          | 5,95E-06 | 5,95E-06 | 5,77E-06 | 5,77E-06 | 5,76E-06 | 5,76E-06 | 6,87E-06 | 6,87E-06 |
|                       | CO2: Anlage (Pipe-<br>line vern.b)    |          | 2,92E-06 | 2,92E-06 | 2,83E-06 | 2,83E-06 | 2,83E-06 | 2,83E-06 | 3,37E-06 | 3,37E-06 |
| H2                    | H2: Strom                             |          | 1,10E-04 | 6,47E-05 | 9,18E-05 | 5,45E-05 | 1,10E-04 | 6,26E-05 | 1,30E-04 | 7,46E-05 |
|                       | H2: Anlage                            |          | 6,65E-07 | 6,65E-07 | 5,60E-07 | 5,60E-07 | 6,44E-07 | 6,44E-07 | 7,66E-07 | 7,66E-07 |
|                       | H2: andere (v.a. Spei-<br>cher)       |          | 6,23E-06 | 5,45E-06 | 5,25E-06 | 4,60E-06 | 6,03E-06 | 5,28E-06 | 7,18E-06 | 6,29E-06 |
| OMEsyn                | OME-syn:<br>Wärme/Kälte               |          | 6,66E-07 | 6,66E-07 | 3,93E-06 | 3,93E-06 | 0,00E+00 | 1,24E-06 | 3,46E-05 | 3,46E-05 |
|                       | OME-syn: Strom                        |          | 2,03E-06 | 2,03E-06 |          |          |          |          | 4,28E-06 | 4,28E-06 |
|                       | OME-syn: Anlage                       |          | 4,54E-07 | 4,54E-07 | 4,54E-07 | 4,54E-07 | 4,54E-07 | 4,54E-07 | 5,51E-07 | 5,51E-07 |
| Distribution          | CO2-pipeline                          |          |          |          |          |          |          |          |          |          |
|                       | H2-G-LKW                              |          | 2,01E-07 | 2,01E-07 | 1,69E-07 | 1,69E-07 | 1,94E-07 | 1,94E-07 | 2,31E-07 | 2,31E-07 |
|                       | Diesel-Vorkette /<br>OME-Distribution | 1,63E-06 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 3,18E-07 | 3,18E-07 |
|                       | Total                                 | 7,16E-06 | 1,40E-04 | 9,51E-05 | 1,20E-04 | 8,46E-05 | 1,30E-04 | 8,96E-05 | 2,00E-04 | 1,40E-04 |
| AP<br>(kg SO2.eq/vkm) |                                       |          |          |          |          |          |          |          |          |          |
| Vehicle               | Herstellung Fahrzeug                  |          |          |          |          |          |          |          |          |          |
|                       | Betrieb: Straße, War-<br>tung, Abrieb | 6,83E-05 |
|                       | Betrieb: direkte Emis-<br>sionen      | 3,10E-05 | 1,57E-05 | 1,58E-05 | 1,59E-05 | 1,58E-05 | 1,57E-05 | 1,58E-05 | 1,60E-05 | 1,58E-05 |
| CO2                   | CO2: Wärme                            |          | 7,23E-05 | 7,23E-05 | 7,37E-05 | 7,37E-05 | 7,36E-05 | 7,36E-05 | 8,78E-05 | 8,78E-05 |
|                       | CO2: Strom                            |          | 1,16E-05 | 1,16E-05 | 7,00E-05 | 7,00E-05 | 7,00E-05 | 7,00E-05 | 8,34E-05 | 8,34E-05 |
|                       | CO2: Anlage (Pipe-<br>line vern.b)    |          | 9,09E-05 | 9,09E-05 | 2,56E-05 | 2,56E-05 | 2,56E-05 | 2,56E-05 | 3,05E-05 | 3,05E-05 |
| H2                    | H2: Strom                             |          | 9,10E-04 | 7,80E-04 | 7,70E-04 | 6,60E-04 | 8,80E-04 | 7,50E-04 | 1,05E-03 | 9,00E-04 |
|                       | H2: Anlage                            |          | 3,55E-06 | 3,55E-06 | 2,99E-06 | 2,99E-06 | 3,44E-06 | 3,44E-06 | 4,09E-06 | 4,09E-06 |
|                       | H2: andere (v.a. Spei-<br>cher)       |          | 3,32E-05 | 3,09E-05 | 2,80E-05 | 2,60E-05 | 3,22E-05 | 2,99E-05 | 3,83E-05 | 3,56E-05 |

#### Ökobilanz der Herstellung und Nutzung von Oxymethylenether

Öko-Institut e.V.

| OMEsyn       | OME-syn:<br>Wärme/Kälte               |          | 8,09E-06 | 8,09E-06 | 4,77E-05 | 4,77E-05 | 0,00E+00 | 1,45E-05 | 4,20E-04 | 4,20E-04 |
|--------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|              | OME-syn: Strom                        |          | 2,47E-05 | 2,47E-05 |          |          |          |          | 5,20E-05 | 5,20E-05 |
|              | OME-syn: Anlage                       |          | 1,89E-06 | 1,89E-06 | 1,89E-06 | 1,89E-06 | 1,89E-06 | 1,89E-06 | 2,30E-06 | 2,30E-06 |
| Distribution | CO2-pipeline                          |          | 2,15E-07 | 2,15E-07 | 2,09E-07 | 2,09E-07 | 2,08E-07 | 2,08E-07 | 2,48E-07 | 2,48E-07 |
|              | H2-G-LKW                              |          | 3,14E-05 | 3,14E-05 | 2,64E-05 | 2,64E-05 | 3,04E-05 | 3,04E-05 | 3,62E-05 | 3,62E-05 |
|              | Diesel-Vorkette /<br>OME-Distribution | 1,10E-04 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 6,02E-06 | 6,02E-06 |
|              | Total                                 | 2,40E-04 | 1,31E-03 | 1,17E-03 | 1,17E-03 | 1,05E-03 | 1,24E-03 | 1,11E-03 | 1,93E-03 | 1,77E-03 |

### Ergebnisse der Wirkungsabschätzung der OME-Routen mit Strombezug 2050

|                        |                                       | Diesel   | OME1-etab,     | OME1-etab,    | OME1-red,      | OME1-red,     | OME1-ox,       | OME1-ox,      | OME3-5-etab,   | OME3-5-etab,  |
|------------------------|---------------------------------------|----------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|
|                        |                                       |          | 2050, marginal | 2050, flexmix |
| GWP<br>(kg CO2-eq/vkm) |                                       |          |                |               |                |               |                |               |                |               |
| Vehicle                | Herstellung Fahrzeug                  | 2,88E-02 | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      |
| Vehicle                | Herstellung Fahrzeug                  | 2,90E-02 | 2,90E-02       | 2,90E-02      | 2,90E-02       | 2,90E-02      | 2,90E-02       | 2,90E-02      | 2,90E-02       | 2,90E-02      |
|                        | Betrieb: Straße, War-<br>tung, Abrieb | 1,60E-02 | 1,60E-02       | 1,60E-02      | 1,60E-02       | 1,60E-02      | 1,60E-02       | 1,60E-02      | 1,60E-02       | 1,60E-02      |
|                        | Betrieb: direkte<br>Emissionen        | 7,50E-02 |                |               |                |               |                |               |                |               |
| CO2                    | CO2: Wärme                            |          | 3,50E-03       | 3,50E-03      | 3,40E-03       | 3,40E-03      | 3,40E-03       | 3,40E-03      | 4,10E-03       | 4,10E-03      |
|                        | CO2: Strom                            |          | 3,30E-03       | 3,30E-03      | 3,20E-03       | 3,20E-03      | 3,20E-03       | 3,20E-03      | 3,90E-03       | 3,90E-03      |
|                        | CO2: Anlage                           |          | 6,90E-03       | 6,90E-03      | 6,70E-03       | 6,70E-03      | 6,70E-03       | 6,70E-03      | 8,00E-03       | 8,00E-03      |
| H2                     | H2: Strom                             |          | 6,80E-02       | 3,70E-02      | 5,70E-02       | 3,10E-02      | 6,50E-02       | 3,60E-02      | 7,80E-02       | 4,30E-02      |
|                        | H2: Anlage                            |          | 3,30E-04       | 3,30E-04      | 2,80E-04       | 2,80E-04      | 3,20E-04       | 3,20E-04      | 3,80E-04       | 3,80E-04      |
|                        | H2: andere (v.a. Spei-<br>cher)       |          | 5,90E-03       | 5,40E-03      | 5,00E-03       | 4,50E-03      | 5,70E-03       | 5,20E-03      | 6,80E-03       | 6,20E-03      |
| OMEsyn                 | OME-syn:<br>Wärme/Kälte               |          | 3,70E-04       | 3,70E-04      | 2,20E-03       | 2,20E-03      | 8,10E-04       | 8,10E-04      | 1,90E-02       | 1,90E-02      |
|                        | OME-syn: Strom                        |          | 1,10E-03       | 1,10E-03      |                |               |                |               | 2,40E-03       | 2,40E-03      |
|                        | OME-syn: Anlage                       |          | 2,30E-04       | 2,30E-04      | 2,30E-04       | 2,30E-04      | 2,30E-04       | 2,30E-04      | 2,80E-04       | 2,80E-04      |
| Distribution           | CO2-pipeline                          |          | 7,90E-05       | 7,90E-05      | 7,70E-05       | 7,70E-05      | 7,70E-05       | 7,70E-05      | 9,10E-05       | 9,10E-05      |
|                        | H2-G-LKW                              |          | 1,10E-02       | 1,10E-02      | 9,40E-03       | 9,40E-03      | 1,10E-02       | 1,10E-02      | 1,30E-02       | 1,30E-02      |
|                        | Diesel-Vorkette /<br>OME-Distribution | 1,30E-02 | 1,30E-03       | 1,30E-03      | 1,30E-03       | 1,30E-03      | 1,30E-03       | 1,30E-03      | 1,60E-03       | 1,60E-03      |
| Total                  |                                       | 0,133    | 0,147          | 0,116         | 0,134          | 0,108         | 0,142          | 0,113         | 0,183          | 0,147         |

| SOP<br>(ka Cu-ea/vkm)    |                                       |          |          |          |          |          |          |          |          |          |
|--------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Vehicle                  | Herstellung Fahrzeug                  | 4,80E-03 |
|                          | Betrieb: Straße, War-<br>tung, Abrieb | 9,00E-05 |
|                          | Betrieb: direkte<br>Emissionen        |          |          |          |          |          |          |          |          |          |
| CO2                      | CO2: Wärme                            |          | 4,90E-05 | 4,90E-05 | 4,70E-05 | 4,70E-05 | 4,70E-05 | 4,70E-05 | 5,60E-05 | 5,60E-05 |
|                          | CO2: Strom                            |          | 4,60E-05 | 4,60E-05 | 4,50E-05 | 4,50E-05 | 4,50E-05 | 4,50E-05 | 5,40E-05 | 5,40E-05 |
|                          | CO2: Anlage (Pipe-<br>line vern.b)    |          | 1,80E-04 | 1,80E-04 | 1,80E-04 | 1,80E-04 | 1,80E-04 | 1,80E-04 | 2,10E-04 | 2,10E-04 |
| H2                       | H2: Strom                             |          | 4,40E-04 | 5,00E-04 | 3,70E-04 | 4,20E-04 | 4,30E-04 | 4,90E-04 | 5,10E-04 | 5,80E-04 |
|                          | H2: Anlage                            |          | 2,10E-05 | 2,10E-05 | 1,70E-05 | 1,70E-05 | 2,00E-05 | 2,00E-05 | 2,40E-05 | 2,40E-05 |
|                          | H2: andere (v.a. Spei-<br>cher)       |          | 2,40E-04 | 2,40E-04 | 2,00E-04 | 2,00E-04 | 2,30E-04 | 2,30E-04 | 2,80E-04 | 2,80E-04 |
| OMEsyn                   | OMÉ-syn:<br>Wärme/Kälte               |          | 5,20E-06 | 5,20E-06 | 3,10E-05 | 3,10E-05 | 9,20E-06 | 9,20E-06 | 2,70E-04 | 2,70E-04 |
|                          | OME-syn: Strom                        |          | 1,60E-05 | 1,60E-05 |          |          |          |          | 3,30E-05 | 3,30E-05 |
|                          | OME-syn: Anlage                       |          | 9,40E-06 | 9,40E-06 | 9,40E-06 | 9,40E-06 | 9,40E-06 | 9,40E-06 | 1,10E-05 | 1,10E-05 |
| Distribution             | CO2-pipeline                          |          | 3,20E-06 | 3,20E-06 | 3,10E-06 | 3,10E-06 | 3,10E-06 | 3,10E-06 | 3,70E-06 | 3,70E-06 |
|                          | H2-G-LKW                              |          | 2,60E-06 | 2,60E-06 | 2,20E-06 | 2,20E-06 | 2,60E-06 | 2,60E-06 | 3,10E-06 | 3,10E-06 |
|                          | Diesel-Vorkette /<br>OME-Distribution | 2,20E-05 | 3,50E-06 | 3,50E-06 | 3,50E-06 | 3,50E-06 | 3,50E-06 | 3,50E-06 | 4,20E-06 | 4,20E-06 |
| Total                    |                                       | 4,90E-03 | 5,90E-03 | 6,00E-03 | 5,80E-03 | 5,90E-03 | 5,90E-03 | 5,90E-03 | 6,40E-03 | 6,40E-03 |
| PM10<br>(ka PM10.ea/vkm) |                                       |          |          |          |          |          |          |          |          |          |
| Vehicle                  | Herstellung Fahrzeug                  | 4,90E-05 |
|                          | Betrieb: Straße, War-<br>tung, Abrieb | 7,10E-05 |
|                          | Betrieb: direkte<br>Emissionen        | 2,30E-05 | 9,10E-06 | 9,00E-06 | 8,90E-06 | 8,90E-06 | 9,00E-06 | 8,90E-06 | 9,00E-06 | 9,10E-06 |
| CO2                      | CO2: Wärme                            |          | 7,20E-06 | 7,20E-06 | 6,90E-06 | 6,90E-06 | 6,90E-06 | 6,90E-06 | 8,30E-06 | 8,30E-06 |
|                          | CO2: Strom                            |          | 6,80E-06 | 6,80E-06 | 6,60E-06 | 6,60E-06 | 6,60E-06 | 6,60E-06 | 7,90E-06 | 7,90E-06 |
|                          | CO2: Anlage (Pipe-<br>line vern.b)    |          | 1,80E-05 | 1,80E-05 | 1,80E-05 | 1,80E-05 | 1,80E-05 | 1,80E-05 | 2,10E-05 | 2,10E-05 |
| H2                       | H2: Strom                             |          | 6,20E-05 | 7,50E-05 | 5,30E-05 | 6,30E-05 | 6,00E-05 | 7,20E-05 | 7,20E-05 | 8,60E-05 |
|                          | H2: Anlage                            |          | 1,70E-06 | 1,70E-06 | 1,40E-06 | 1,40E-06 | 1,60E-06 | 1,60E-06 | 1,90E-06 | 1,90E-06 |
|                          | H2: andere (v.a. Spei-<br>cher)       |          | 2,00E-05 | 2,10E-05 | 1,70E-05 | 1,70E-05 | 2,00E-05 | 2,00E-05 | 2,30E-05 | 2,40E-05 |
| OMEsyn                   | OME-syn:<br>Wärme/Kälte               |          | 7,60E-07 | 7,60E-07 | 4,50E-06 | 4,50E-06 | 1,40E-06 | 1,40E-06 | 4,00E-05 | 4,00E-05 |
|                          | OME-syn: Strom                        |          | 2,30E-06 | 2,30E-06 |          |          |          |          | 4,90E-06 | 4,90E-06 |

#### Ökobilanz der Herstellung und Nutzung von Oxymethylenether 🤴 Öko-Institut e.V. **OME-syn:** Anlage 8,90E-07 8,90E-07 8,90E-07 8,90E-07 8,90E-07 8,90E-07 1,10E-06 1,10E-06 3.80E-07 Distribution CO2-pipeline 3,30E-07 3.30E-07 3,20E-07 3,20E-07 3,20E-07 3.20E-07 3,80E-07 H2-G-LKW 1,50E-05 1,30E-05 1,30E-05 1,70E-05 1,70E-05 1,50E-05 1,50E-05 1,50E-05 Diesel-Vorkette / 3,40E-05 3,80E-06 3,10E-06 3,10E-06 3,10E-06 3,10E-06 3,10E-06 3,10E-06 3,80E-06 **OME-Distribution** Total 2,00E-04 2,90E-04 3,00E-04 2,70E-04 2,80E-04 2,80E-04 2,90E-04 3,50E-04 3,70E-04 POCP (kg NMVOC/vkm) Vehicle Herstellung Fahrzeug 8.90E-05 8.90E-05 8.90E-05 8.90E-05 8.90E-05 8.90E-05 8.90E-05 8.90E-05 8.90E-05 Betrieb: Straße, War-1,20E-04 1,20E-04 1,20E-04 1,20E-04 1,20E-04 1,20E-04 1,20E-04 1,20E-04 1,20E-04 tung, Abrieb Betrieb: direkte 1,20E-04 5,30E-05 5,30E-05 5,20E-05 5,30E-05 5,20E-05 5,20E-05 7,50E-05 7,50E-05 Emissionen CO2 1,20E-05 CO2: Wärme 1,00E-05 1,00E-05 1,00E-05 1,00E-05 1,00E-05 1,00E-05 1,20E-05 CO2: Strom 9,90E-06 9,90E-06 9,60E-06 9,60E-06 9,60E-06 9,60E-06 1,10E-05 1,10E-05 CO2: Anlage (Pipe-2,10E-05 2,50E-05 2,10E-05 2,10E-05 2,10E-05 2,10E-05 2,10E-05 2,50E-05 line vern.b) H2 H2: Strom 1,30E-04 1,10E-04 1,10E-04 9,20E-05 1,30E-04 1,10E-04 1,50E-04 1,30E-04 H2: Anlage 1.80E-06 1.80E-06 1,50E-06 1,50E-06 1.80E-06 1,80E-06 2,10E-06 2.10E-06 H2: andere (v.a. Spei-2,50E-05 2,50E-05 2,10E-05 2,10E-05 2,40E-05 2,40E-05 2,90E-05 2,80E-05 cher) OMEsyn OME-syn: 1,10E-06 1,10E-06 6,50E-06 6,50E-06 2,20E-06 2,20E-06 5,80E-05 5,80E-05 Wärme/Kälte OME-svn: Strom 3.40E-06 3.40E-06 7.10E-06 7,10E-06 **OME-syn: Anlage** 9,80E-07 9,80E-07 9,80E-07 9,80E-07 9,80E-07 9,80E-07 1,20E-06 1,20E-06 CO2-pipeline Distribution 6,00E-07 6,00E-07 5,80E-07 5,80E-07 5,80E-07 5,80E-07 6,90E-07 6,90E-07 H2-G-LKW 6,50E-05 6,50E-05 5,40E-05 5,40E-05 6,30E-05 6,30E-05 7,40E-05 7,40E-05 7,60E-05 7,80E-06 7.80E-06 7,80E-06 9,50E-06 9,50E-06 Diesel-Vorkette / 7,80E-06 7,80E-06 7,80E-06 **OME-Distribution** 5,40E-04 5,00E-04 4,90E-04 5,20E-04 6,20E-04 Total 4,00E-04 5,20E-04 5,30E-04 6,60E-04 FD

| Herstellung Fahrzeug                  |                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Betrieb: Straße, War-<br>tung, Abrieb | 5,53E-06                                                                                                                                                                        | 5,53E-06                                                                                                                                                                  | 5,53E-06                                                                                                                                                                              | 5,53E-06                                                                                                                                                                                                                                                                                                                | 5,53E-06                                                                                                                                                                                                                                                                                                                                                                                    | 5,53E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,53E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,53E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,53E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Betrieb: direkte<br>Emissionen        |                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CO2: Wärme                            |                                                                                                                                                                                 | 2,38E-06                                                                                                                                                                  | 2,38E-06                                                                                                                                                                              | 2,30E-06                                                                                                                                                                                                                                                                                                                | 2,30E-06                                                                                                                                                                                                                                                                                                                                                                                    | 2,30E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,30E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,74E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,74E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CO2: Strom                            |                                                                                                                                                                                 | 2,26E-06                                                                                                                                                                  | 2,26E-06                                                                                                                                                                              | 2,19E-06                                                                                                                                                                                                                                                                                                                | 2,19E-06                                                                                                                                                                                                                                                                                                                                                                                    | 2,19E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,19E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,61E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,61E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CO2: Anlage (Pipe-<br>line vern.b)    |                                                                                                                                                                                 | 2,92E-06                                                                                                                                                                  | 2,92E-06                                                                                                                                                                              | 2,83E-06                                                                                                                                                                                                                                                                                                                | 2,83E-06                                                                                                                                                                                                                                                                                                                                                                                    | 2,83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,37E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,37E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | Herstellung Fahrzeug<br>Betrieb: Straße, War-<br>tung, Abrieb<br>Betrieb: direkte<br>Emissionen<br>CO2: Wärme<br>CO2: Strom<br>CO2: Strom<br>CO2: Anlage (Pipe-<br>line vern.b) | Herstellung FahrzeugBetrieb: Straße, War-<br>tung, Abrieb5,53E-06Betrieb: direkte<br>EmissionenCO2: WärmeCO2: WärmeCO2: StromCO2: Anlage (Pipe-<br>line vern.b)CO2: Marce | Herstellung FahrzeugBetrieb: Straße, War-<br>tung, Abrieb5,53E-06Betrieb: direkte<br>Emissionen2,38E-06CO2: Wärme2,38E-06CO2: Strom2,26E-06CO2: Anlage (Pipe-<br>line vern.b)2,92E-06 | Herstellung Fahrzeug           Betrieb: Straße, War-<br>tung, Abrieb         5,53E-06         5,53E-06           Betrieb: direkte<br>Emissionen         2,38E-06         2,38E-06           CO2: Wärme         2,26E-06         2,26E-06           CO2: Anlage (Pipe-<br>line vern.b)         2,92E-06         2,92E-06 | Herstellung Fahrzeug           Betrieb: Straße, War-<br>tung, Abrieb         5,53E-06         5,53E-06         5,53E-06           Betrieb: direkte<br>Emissionen         2,38E-06         2,38E-06         2,30E-06           CO2: Wärme         2,26E-06         2,26E-06         2,19E-06           CO2: Anlage (Pipe-<br>line vern.b)         2,92E-06         2,92E-06         2,83E-06 | Herstellung Fahrzeug           Betrieb: Straße, War-         5,53E-06         5,53E-06         5,53E-06         5,53E-06           tung, Abrieb         Betrieb: direkte         5,53E-06         5,53E-06         5,53E-06           Betrieb: direkte         2,38E-06         2,38E-06         2,30E-06         2,30E-06           CO2: Wärme         2,26E-06         2,26E-06         2,19E-06         2,19E-06           CO2: Anlage (Pipe-         2,92E-06         2,92E-06         2,83E-06         2,83E-06 | Herstellung Fahrzeug           Betrieb: Straße, War-<br>tung, Abrieb         5,53E-06         5,53E-06         5,53E-06         5,53E-06         5,53E-06           Betrieb: direkte<br>Emissionen         2,38E-06         2,38E-06         2,30E-06         2,30E-06         2,30E-06         2,30E-06           CO2: Wärme         2,26E-06         2,26E-06         2,19E-06         2,19E-06         2,19E-06         2,19E-06           CO2: Anlage (Pipe-<br>line vern.b)         2,92E-06         2,92E-06         2,83E-06         2,83E-06         2,83E-06 | Herstellung Fahrzeug           Betrieb: Straße, War-<br>tung, Abrieb         5,53E-06         2,30E-06         2,30E-06         2,30E-06         2,30E-06         2,30E-06         2,30E-06         2,30E-06         2,30E-06         2,33E-06         2,83E-06         2,83 | Herstellung Fahrzeug           Betrieb: Straße, War-<br>tung, Abrieb         5,53E-06         2,30E-06         2,30 |

Öko-Institut e.V.

#### Ökobilanz der Herstellung und Nutzung von Oxymethylenether

| H2                    | H2: Strom                             |          | 1,60E-05 | 2,41E-05 | 1,34E-05 | 2,03E-05 | 1,54E-05 | 2,33E-05 | 1,84E-05 | 2,78E-05 |
|-----------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                       | H2: Anlage                            |          | 6,65E-07 | 6,65E-07 | 5,60E-07 | 5,60E-07 | 6,44E-07 | 6,44E-07 | 7,66E-07 | 7,66E-07 |
|                       | H2: andere (v.a. Spei-<br>cher)       |          | 4,60E-06 | 4,74E-06 | 3,88E-06 | 4,00E-06 | 4,46E-06 | 4,59E-06 | 5,31E-06 | 5,47E-06 |
| OMEsyn                | OME-syn:<br>Wärme/Kälte               |          | 2,53E-07 | 2,53E-07 | 1,49E-06 | 1,49E-06 | 4,40E-07 | 4,40E-07 | 1,31E-05 | 1,31E-05 |
|                       | OME-syn: Strom                        |          | 7,70E-07 | 7,70E-07 |          |          |          |          | 1,63E-06 | 1,63E-06 |
|                       | OME-syn: Anlage                       |          | 4,54E-07 | 4,54E-07 | 4,54E-07 | 4,54E-07 | 4,54E-07 | 4,54E-07 | 5,51E-07 | 5,51E-07 |
| Distribution          | CO2-pipeline                          |          |          |          |          |          |          |          |          |          |
|                       | H2-G-LKW                              |          | 2,01E-07 | 2,01E-07 | 1,69E-07 | 1,69E-07 | 1,94E-07 | 1,94E-07 | 2,31E-07 | 2,31E-07 |
|                       | Diesel-Vorkette /<br>OME-Distribution | 1,63E-06 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 2,62E-07 | 3,18E-07 | 3,18E-07 |
| Total                 |                                       | 7,16E-06 | 3,62E-05 | 4,45E-05 | 3,31E-05 | 4,01E-05 | 3,43E-05 | 4,23E-05 | 5,46E-05 | 6,41E-05 |
| AP<br>(kg SO2.eq/vkm) |                                       |          |          |          |          |          |          |          |          |          |
| Vehicle               | Herstellung Fahrzeug                  |          |          |          |          |          |          |          |          |          |
|                       | Betrieb: Straße, War-<br>tung, Abrieb | 6,83E-05 |
|                       | Betrieb: direkte<br>Emissionen        | 3,10E-05 | 1,60E-05 | 1,58E-05 | 1,59E-05 | 1,59E-05 | 1,57E-05 | 1,56E-05 | 1,59E-05 | 1,57E-05 |
| CO2                   | CO2: Wärme                            |          | 1,23E-05 | 1,23E-05 | 1,26E-05 | 1,26E-05 | 1,26E-05 | 1,26E-05 | 1,50E-05 | 1,50E-05 |
|                       | CO2: Strom                            |          | 1,16E-05 | 1,16E-05 | 1,19E-05 | 1,19E-05 | 1,19E-05 | 1,19E-05 | 1,42E-05 | 1,42E-05 |
|                       | CO2: Anlage (Pipe-<br>line vern.b)    |          | 2,78E-05 | 2,78E-05 | 2,56E-05 | 2,56E-05 | 2,56E-05 | 2,56E-05 | 3,05E-05 | 3,05E-05 |
| H2                    | H2: Strom                             |          | 1,20E-04 | 1,40E-04 | 1,00E-04 | 1,20E-04 | 1,20E-04 | 1,40E-04 | 1,40E-04 | 1,60E-04 |
|                       | H2: Anlage                            |          | 3,55E-06 | 3,55E-06 | 2,99E-06 | 2,99E-06 | 3,44E-06 | 3,44E-06 | 4,09E-06 | 4,09E-06 |
|                       | H2: andere (v.a. Spei-<br>cher)       |          | 1,94E-05 | 1,98E-05 | 1,63E-05 | 1,67E-05 | 1,88E-05 | 1,92E-05 | 2,24E-05 | 2,28E-05 |
| OMEsyn                | OME-syn:<br>Wärme/Kälte               |          | 1,38E-06 | 1,38E-06 | 8,14E-06 | 8,14E-06 | 2,80E-06 | 2,80E-06 | 7,17E-05 | 7,17E-05 |
|                       | OME-syn: Strom                        |          | 4,21E-06 | 4,21E-06 |          |          |          |          | 8,88E-06 | 8,88E-06 |
|                       | OME-syn: Anlage                       |          | 1,89E-06 | 1,89E-06 | 1,89E-06 | 1,89E-06 | 1,89E-06 | 1,89E-06 | 2,30E-06 | 2,30E-06 |
| Distribution          | CO2-pipeline                          |          | 2,15E-07 | 2,15E-07 | 2,09E-07 | 2,09E-07 | 2,08E-07 | 2,08E-07 | 2,48E-07 | 2,48E-07 |
|                       | H2-G-LKW                              |          | 3,14E-05 | 3,14E-05 | 2,64E-05 | 2,64E-05 | 3,04E-05 | 3,04E-05 | 3,62E-05 | 3,62E-05 |
|                       | Diesel-Vorkette /<br>OME-Distribution | 1,10E-04 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 4,96E-06 | 6,02E-06 | 6,02E-06 |
| Total                 |                                       | 0,00024  | 3,60E-04 | 3,80E-04 | 3,30E-04 | 3,50E-04 | 3,40E-04 | 3,60E-04 | 4,70E-04 | 4,90E-04 |

Ergebnisse der OME-Routen mit Diesel-Realverbrauch (Bezugsjahr 2018)

#### Öko-Institut e.V.

#### Diesel OME1-etab OME1-red OME1-ox OME3-5

| GWP  | kg CO2-eq/vkm  | 1,87E-01 | 9,78E-01 | 8,64E-01 | 9,32E-01 | 1,47E+00 |
|------|----------------|----------|----------|----------|----------|----------|
| SOP  | kg Cu-eq/vkm   | 4,92E-03 | 6,88E-03 | 6,66E-03 | 6,80E-03 | 7,57E-03 |
| PM10 | kg PM10.eq/vkm | 1,84E-04 | 1,09E-03 | 9,88E-04 | 1,05E-03 | 1,56E-03 |
| AP   | kg SO2.eq/vkm  | 1,27E-04 | 3,49E-03 | 3,08E-03 | 4,05E-03 | 5,23E-03 |
| EP   | kg P.eq/vkm    | 5,53E-06 | 1,18E-03 | 1,04E-03 | 1,12E-03 | 1,81E-03 |
| POCP | kg NMVOC/vkm   | 4,28E-04 | 1,69E-03 | 1,51E-03 | 1,61E-03 | 2,35E-03 |

#### Ergebnisse der OME-Routen mit CCU (Zementwerk), Strombezug 2050 (Allokation 100:0)

|                        |                                       | Diesel   | OME1-etab,     | OME1-etab,    | OME1-red,      | OME1-red,     | OME1-ox,       | OME1-ox,      | OME3-5-etab,   | OME3-5-etab,  |
|------------------------|---------------------------------------|----------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|
|                        |                                       |          | 2050, marginal | 2050, flexmix |
| GWP<br>(kg CO2-eq/vkm) |                                       |          |                |               |                |               |                |               |                |               |
| Vehicle                | Herstellung Fahr-<br>zeug             | 2,88E-02 | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      |
|                        | Betrieb: Straße, War-<br>tung, Abrieb | 1,58E-02 | 1,58E-02       | 1,58E-02      | 1,58E-02       | 1,58E-02      | 1,58E-02       | 1,58E-02      | 1,58E-02       | 1,58E-02      |
|                        | Betrieb: direkte<br>Emissionen        | 7,52E-02 |                |               |                |               |                |               | 7,31E-04       | 7,22E-04      |
| CO2                    | CO2: gem. VK                          |          | 2,95E-03       | 2,95E-03      | 2,95E-03       | 2,95E-03      | 2,95E-03       | 2,95E-03      | 3,58E-03       | 3,58E-03      |
|                        | CO2: Strom                            |          | 6,70E-04       | 6,70E-04      | 6,49E-04       | 6,49E-04      | 6,47E-04       | 6,47E-04      | 7,72E-04       | 7,72E-04      |
|                        | CO2: Emission                         |          | 3,93E-02       | 3,93E-02      | 3,93E-02       | 3,93E-02      | 3,93E-02       | 3,93E-02      | 4,77E-02       | 4,77E-02      |
| H2                     | H2: Strom                             |          | 6,75E-02       | 3,73E-02      | 5,69E-02       | 3,15E-02      | 6,54E-02       | 3,61E-02      | 7,79E-02       | 4,30E-02      |
|                        | H2: Anlage                            |          | 3,33E-04       | 3,33E-04      | 2,85E-04       | 2,85E-04      | 3,22E-04       | 3,22E-04      | 3,81E-04       | 3,81E-04      |
|                        | H2: andere (v.a.<br>Speicher)         |          | 5,90E-03       | 5,37E-03      | 4,97E-03       | 4,52E-03      | 5,71E-03       | 5,20E-03      | 6,80E-03       | 6,19E-03      |
| OMEsyn                 | OME-syn: Wärme                        |          | 3,70E-04       | 3,70E-04      | 2,20E-03       | 2,20E-03      |                |               | 1,94E-02       | 1,94E-02      |
|                        | OME-syn: Strom                        |          | 1,14E-03       | 1,14E-03      |                |               |                |               | 2,40E-03       | 2,40E-03      |
|                        | OME-syn: Anlage                       |          | 2,30E-04       | 2,30E-04      | 2,30E-04       | 2,30E-04      | 2,30E-04       | 2,30E-04      | 2,80E-04       | 2,80E-04      |
| Distribution           | CO2-pipeline                          |          | 7,91E-05       | 7,91E-05      | 7,66E-05       | 7,66E-05      | 7,66E-05       | 7,66E-05      | 9,13E-05       | 9,13E-05      |
|                        | H2-G-LKW                              |          | 1,11E-02       | 1,11E-02      | 9,36E-03       | 9,36E-03      | 1,08E-02       | 1,08E-02      | 1,28E-02       | 1,28E-02      |
|                        | Diesel-Vorkette /<br>OME-Distribution | 1,28E-02 | 1,34E-03       | 1,34E-03      | 1,34E-03       | 1,34E-03      | 1,34E-03       | 1,34E-03      | 1,63E-03       | 1,63E-03      |
| Total                  |                                       | 1,33E-01 | 1,76E-01       | 1,45E-01      | 1,63E-01       | 1,37E-01      | 1,71E-01       | 1,42E-01      | 2,19E-01       | 1,84E-01      |

#### Ergebnisse der OME-Routen mit CCU (Zementwerk), Strombezug 2050 (Allokation 50:50)

|                        |                                       | Diesel   | OME1-etab,     | OME1-etab,    | OME1-red,      | OME1-red,     | OME1-ox,       | OME1-ox,      | OME3-5-etab,   | OME3-5-etab,  |
|------------------------|---------------------------------------|----------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|
|                        |                                       |          | 2050, marginal | 2050, flexmix |
| GWP<br>(kg CO2-eq/vkm) |                                       |          |                |               |                |               |                |               |                |               |
| Vehicle                | Herstellung Fahr-<br>zeug             | 2,88E-02 | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      | 2,88E-02       | 2,88E-02      |
|                        | Betrieb: Straße, War-<br>tung, Abrieb | 1,58E-02 | 1,58E-02       | 1,58E-02      | 1,58E-02       | 1,58E-02      | 1,58E-02       | 1,58E-02      | 1,58E-02       | 1,58E-02      |
|                        | Betrieb: direkte<br>Emissionen        | 7,52E-02 |                |               |                |               |                |               | 7,31E-04       | 7,22E-04      |
| CO2                    | CO2: Wärme                            |          |                |               |                |               |                |               |                |               |
|                        | CO2: Strom                            |          | 1,34E-03       | 1,34E-03      | 1,30E-03       | 1,30E-03      | 1,29E-03       | 1,29E-03      | 1,54E-03       | 1,54E-03      |
|                        | CO2: Anlage                           |          |                |               |                |               |                |               |                |               |
| H2                     | H2: Strom                             |          | 6,75E-02       | 3,73E-02      | 5,69E-02       | 3,15E-02      | 6,54E-02       | 3,61E-02      | 7,79E-02       | 4,30E-02      |
|                        | H2: Anlage                            |          | 3,33E-04       | 3,33E-04      | 2,85E-04       | 2,85E-04      | 3,22E-04       | 3,22E-04      | 3,81E-04       | 3,81E-04      |
|                        | H2: andere (v.a. Spei-<br>cher)       |          | 5,90E-03       | 5,37E-03      | 4,97E-03       | 4,52E-03      | 5,71E-03       | 5,20E-03      | 6,80E-03       | 6,19E-03      |
| OMEsyn                 | OME-syn: Wärme                        |          | 3,70E-04       | 3,70E-04      | 2,20E-03       | 2,20E-03      |                |               | 1,94E-02       | 1,94E-02      |
|                        | OME-syn: Strom                        |          | 1,14E-03       | 1,14E-03      |                |               |                |               | 2,40E-03       | 2,40E-03      |
|                        | OME-syn: Anlage                       |          | 2,30E-04       | 2,30E-04      | 2,30E-04       | 2,30E-04      | 2,30E-04       | 2,30E-04      | 2,80E-04       | 2,80E-04      |
| Distribution           | CO2-pipeline                          |          | 7,91E-05       | 7,91E-05      | 7,66E-05       | 7,66E-05      | 7,66E-05       | 7,66E-05      | 9,13E-05       | 9,13E-05      |
|                        | H2-G-LKW                              |          | 1,11E-02       | 1,11E-02      | 9,36E-03       | 9,36E-03      | 1,08E-02       | 1,08E-02      | 1,28E-02       | 1,28E-02      |
|                        | Diesel-Vorkette /<br>OME-Distribution | 1,28E-02 | 1,34E-03       | 1,34E-03      | 1,34E-03       | 1,34E-03      | 1,34E-03       | 1,34E-03      | 1,63E-03       | 1,63E-03      |
| Total                  |                                       | 1,33E-01 | 1,34E-01       | 1,03E-01      | 1,21E-01       | 9,53E-02      | 1,30E-01       | 9,99E-02      | 1,68E-01       | 1,33E-01      |

#### Ergebnisse der Wirkungsabschätzung des Vergleichs BEV mit OME1 reductive und Diesel (2018)

BEV, WLTC BEV, real OME1-red 1.3MJ/vkm Diesel 1.3MJ/vkm Diesel 1.9MJ/vkm

| GWP<br>(kg CO2-eq/vkm)  |          |          |          |          |          |
|-------------------------|----------|----------|----------|----------|----------|
| Bau                     | 5,68E-02 | 5,68E-02 |          | 2,88E-02 | 2,88E-02 |
| Straße, Wartung, Abrieb | 1,58E-02 | 1,58E-02 |          | 1,58E-02 | 1,58E-02 |
| Strom/Kraftstoff        | 9,42E-02 | 1,02E-01 |          | 1,14E-01 | 1,67E-01 |
| Total                   | 1,67E-01 | 1,74E-01 | 6,05E-01 | 1,59E-01 | 2,12E-01 |

| Ökobilanz der Herstellung und Nut |          | 💛 Öko-Institut e.V. |          |          |          |
|-----------------------------------|----------|---------------------|----------|----------|----------|
| SOP                               |          |                     |          |          |          |
| Bau                               | 1,82E-02 | 1,82E-02            |          | 4,83E-03 | 4.83E-03 |
| Straße, Wartung, Abrieb           | 8,98E-05 | 8,98E-05            |          | 0,00E+00 | 0,00E+00 |
| Strom/Kraftstoff                  | 1,04E-04 | 1,12E-04            |          | 2,80E-05 | 4,10E-05 |
| Total                             | 1,84E-02 | 1,84E-02            | 6,11E-03 | 4,86E-03 | 4,87E-03 |
| PM10<br>(kg PM10.eg/ykm)          |          |                     |          |          |          |
| Bau                               | 1,22E-04 | 1,22E-04            |          | 4,94E-05 | 4,94E-05 |
| Straße, Wartung, Abrieb           | 7,11E-05 | 7,11E-05            |          | 7,11E-05 | 7,11E-05 |
| Strom/Kraftstoff                  | 8,75E-05 | 9,45E-05            |          | 7,44E-05 | 1,09E-04 |
| Total                             | 2,81E-04 | 2,88E-04            | 7,20E-04 | 1,95E-04 | 2,29E-04 |
| KEA<br>(MJ/ykm)                   |          |                     |          |          |          |
| KEA n.e. Bau                      | 7,54E-01 | 7,54E-01            | 4,75E-01 | 4,75E-01 | 4,75E-01 |
| KEA n.e. Straße, Wartung, Abrieb  | 3,22E-01 | 3,22E-01            | 3,22E-01 | 3,22E-01 | 3,22E-01 |
| KEA n.e. Strom/Kraftstoff         | 9,98E-01 | 1,08E+00            | 5,96E+00 | 1,57E+00 | 2,29E+00 |
| KEA e. Bau                        | 5,53E-01 | 5,53E-01            | 2,89E-01 | 2,89E-01 | 2,89E-01 |
| KEA e. Straße, Wartung, Abrieb    | 1,39E-02 | 1,39E-02            | 1,39E-02 | 1,39E-02 | 1,39E-02 |
| KEA e. Strom/Kraftstoff           | 2,68E-01 | 2,90E-01            | 1,53E+00 | 6,21E-03 | 9,07E-03 |

## Ergebnisse der Wirkungsabschätzung des Vergleichs BEV BEV mit OME1 reductive und Diesel (2030)

|                         | BEV, EC marginal | BEV, Gesamtmix | BEV, EC flexmix | OME1-red, EC marginal | ONE1-red, EC flexmix | Diesel 1MJ/vkm |
|-------------------------|------------------|----------------|-----------------|-----------------------|----------------------|----------------|
| GWP                     |                  |                |                 |                       |                      |                |
| (kg CO2-eq/vkm)         |                  |                |                 |                       |                      |                |
| Bau                     | 5,68E-02         | 5,68E-02       | 5,68E-02        | 2,88E-02              | 2,88E-02             | 2,88E-02       |
| Straße, Wartung, Abrieb | 1,58E-02         | 1,58E-02       | 1,58E-02        | 1,58E-02              | 1,58E-02             | 1,58E-02       |
| Strom/Kraftstoff        | 1,11E-01         | 6,70E-02       | 6,64E-02        | 4,26E-01              | 2,87E-01             | 8,79E-02       |
| Gesamt                  | 1,83E-01         | 1,40E-01       | 1,39E-01        | 1,63E-01              | 1,59E-01             | 1,32E-01       |
| SOP                     |                  |                |                 |                       |                      |                |
| (kg Cu-eg/vkm)          |                  |                |                 |                       |                      |                |
| Bau                     | 1,82E-02         | 1,82E-02       | 1,82E-02        | 4,83E-03              | 4,83E-03             | 4,83E-03       |
| Straße, Wartung, Abrieb | 8,98E-05         | 8,98E-05       | 8,98E-05        | 8,98E-05              | 8,98E-05             | 0,00E+00       |
| Strom/Kraftstoff        | 8,05E-05         | 1,00E-04       | 1,00E-04        | 7,45E-04              | 8,16E-04             | 2,16E-05       |
|                         |                  |                |                 |                       |                      |                |

DEV SCHWINGLE DEV SCHWING DEV SCHWING OMSTAND SCHWINGLE OMSTAND SCHWING DISORDANIA

| 📛 Öko-Institut e.V.              |          | Ökobilanz der Herstellung und Nutzung von Oxymethylenether           1,84E-02         1,84E-02         1,84E-02         1,84E-02           1,22E-04         1,22E-04         1,22E-04         4,94E-05         4,94E-05 |          |          |          |          |  |  |  |  |
|----------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|--|--|--|--|
| Gesamt                           | 1,84E-02 | 1,84E-02                                                                                                                                                                                                                | 1,84E-02 | 1,84E-02 | 1,84E-02 | 4,85E-03 |  |  |  |  |
| PM10<br>(kg PM10.eg/ykm)         |          |                                                                                                                                                                                                                         |          |          |          |          |  |  |  |  |
| Bau                              | 1,22E-04 | 1,22E-04                                                                                                                                                                                                                | 1,22E-04 | 4,94E-05 | 4,94E-05 | 4,94E-05 |  |  |  |  |
| Straße, Wartung, Abrieb          | 7,11E-05 | 7,11E-05                                                                                                                                                                                                                | 7,11E-05 | 7,11E-05 | 7,11E-05 | 7,11E-05 |  |  |  |  |
| Strom/Kraftstoff                 | 7,61E-05 | 6,09E-05                                                                                                                                                                                                                | 6,04E-05 | 3,46E-04 | 3,05E-04 | 5,72E-05 |  |  |  |  |
| Gesamt                           | 3,10E-04 | 2,90E-04                                                                                                                                                                                                                | 2,90E-04 | 3,20E-04 | 3,20E-04 | 1,78E-04 |  |  |  |  |
| KEA<br>(MJ/vkm)                  |          |                                                                                                                                                                                                                         |          |          |          |          |  |  |  |  |
| KEA n.e. Bau                     | 7,54E-01 | 7,54E-01                                                                                                                                                                                                                | 7,54E-01 | 4,75E-01 | 4,75E-01 | 4,75E-01 |  |  |  |  |
| KEA n.e. Straße, Wartung, Abrieb | 3,22E-01 | 3,22E-01                                                                                                                                                                                                                | 3,22E-01 | 3,22E-01 | 3,22E-01 | 3,22E-01 |  |  |  |  |
| KEA n.e. Strom/Kraftstoff        | 6,41E-01 | 3,54E-01                                                                                                                                                                                                                | 3,51E-01 | 2,56E+00 | 1,66E+00 | 1,20E+00 |  |  |  |  |
| KEA e. Bau                       | 5,53E-01 | 5,53E-01                                                                                                                                                                                                                | 5,53E-01 | 2,89E-01 | 2,89E-01 | 2,89E-01 |  |  |  |  |
| KEA e. Straße, Wartung, Abrieb   | 1,39E-02 | 1,39E-02                                                                                                                                                                                                                | 1,39E-02 | 1,39E-02 | 1,39E-02 | 1,39E-02 |  |  |  |  |
| KEA e. Strom/Kraftstoff          | 9,05E-02 | 3,02E-01                                                                                                                                                                                                                | 3,05E-01 | 5,66E-01 | 1,23E+00 | 4,77E-03 |  |  |  |  |

## Ergebnisse der Wirkungsabschätzung des Vergleichs BEV BEV mit OME1 reductive und Diesel (2050)

|                              | BEV, EE 100 | BEV, EC margi<br>nal | - BEV, Gesamt-<br>mix | BEV, EC<br>flexmix | OME1-red,<br>marginal | OME1-red,<br>flexmix | Diesel<br>1MJ/vkm |
|------------------------------|-------------|----------------------|-----------------------|--------------------|-----------------------|----------------------|-------------------|
| GWP<br>(kg CO2-eq/vkm)       |             |                      |                       |                    |                       |                      |                   |
| Bau                          | 5,68E-02    | 5,68E-02             | 2 5,68E-02            | 5,68E-02           | 2,88E-02              | 2,88E-02             | 2,88E-02          |
| Straße, War-<br>tung, Abrieb | 1,58E-02    | 1,58E-02             | 2 1,58E-02            | 1,58E-02           | 1,58E-02              | 1,58E-02             | 1,58E-02          |
| Strom/Kraftstoff             | 6,46E-03    | 1,85E-02             | 2 1,21E-02            | 1,02E-02           | 8,74E-02              | 6,15E-02             | 8,79E-02          |
| Gesamt                       | 7,90E-02    | 9,11E-02             | 2 8,46E-02            | 8,28E-02           | 1,83E-01              | 1,40E-01             | 1,32E-01          |
| SOP<br>(kg Cu-eq/vkm)        |             |                      |                       |                    |                       |                      |                   |
| Bau                          | 1,82E-02    | 1,82E-02             | 2 1,82E-02            | 1,82E-02           | 4,83E-03              | 4,83E-03             | 4,83E-03          |
| Straße, War-<br>tung, Abrieb | 8,98E-05    | 8,98E-0              | 5 8,98E-05            | 8,98E-05           | 8,98E-05              | 8,98E-05             | 8,98E-05          |
| Strom/Kraftstoff             | 1,00E-04    | 1,20E-04             | 1,40E-04              | 1,40E-04           | 8,98E-04              | 9,50E-04             | 2,16E-05          |
| Gesamt                       | 1,84E-02    | 1,84E-02             | 2 1,84E-02            | 1,84E-02           | 1,84E-02              | 1,84E-02             | 4,94E-03          |
|                              |             |                      |                       |                    |                       |                      | 0,00E+00          |

#### Ökobilanz der Herstellung und Nutzung von Oxymethylenether

#### Öko-Institut e.V.

| PM10<br>(kg PM10.eq/vkm)                 |          |          |          |          |          |          |          |
|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Bau                                      | 1,22E-04 | 1,22E-04 | 1,22E-04 | 1,22E-04 | 4,94E-05 | 4,94E-05 | 4,94E-05 |
| Straße, War-<br>tung, Abrieb             | 7,11E-05 |
| Strom/Kraftstoff                         | 1,90E-05 | 1,71E-05 | 2,11E-05 | 2,05E-05 | 1,81E-04 | 1,64E-04 | 5,72E-05 |
| Gesamt                                   | 2,50E-04 | 2,50E-04 | 2,50E-04 | 2,50E-04 | 3,10E-04 | 2,90E-04 | 1,78E-04 |
|                                          |          |          |          |          |          |          |          |
| KEA<br>(MJ/vkm)                          |          |          |          |          |          |          |          |
| KEA n.e. Bau                             | 7,54E-01 | 7,54E-01 | 7,54E-01 | 7,54E-01 | 4,75E-01 | 4,75E-01 | 4,75E-01 |
| KEA n.e.<br>Straße, War-<br>tung, Abrieb | 3,22E-01 |
| KEA n.e.<br>Strom/Kraftstoff             | 6,47E-02 | 7,69E-02 | 7,04E-02 | 6,47E-02 | 5,47E-01 | 5,10E-01 | 1,20E+00 |
| KEA e. Bau                               | 5,53E-01 | 5,53E-01 | 5,53E-01 | 5,53E-01 | 2,89E-01 | 2,89E-01 | 2,89E-01 |
| KEA e. Straße,<br>Wartung, Ab-<br>rieb   | 1,39E-02 |
| KEA e.<br>Strom/Kraftstoff               | 6,08E-01 | 5,17E-01 | 5,65E-01 | 5,77E-01 | 2,34E+00 | 2,26E+00 | 4,77E-03 |

Annex III: Externes kritisches Gutachten