Ressourceneffizienz durch Industrie 4.0?

Jahrestagung Öko-Institut, Berlin 24.10.2019

Prof. Dr. Liselotte Schebek

Institut IWAR
Fachgebiet Stoffstrommanagement und
Ressourcenwirtschaft

Fachbereich Bau- und Umweltingenieurwissenschaften www.iwar.tu-darmstadt.de/sur

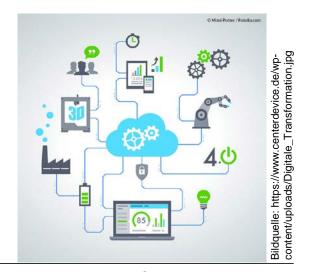
Bildquelle: Dominic Schindler Creations/Igus/VDI nachrichten

Bildquelle: www.vdi.de

Industrie 4.0 vs. Digitale Transformation

Industrie 4.0:

"[…] bezeichnet […] die Verbindung der digitalen Welt des Internets mit den konventionellen Prozessen und Diensten der produzierenden Wirtschaft."


(BMWi 2015)

- Cyber-physische Systeme (CPS)
- Internet der Dinge (Internet of Things, IoT)

Digitale Transformation:

"Übergang zur durchgängigen Vernetzung aller Wirtschaftsbereiche […]."

(Roland Berger Strategy Consultants 2015)

Digitale Transformation und Ressourcen - "Great Expectations" (I)

"Die virtuelle Welt der IT nähert sich der realen Welt der Produktion an. Die wesentlichen Effekte lauten: mehr Flexibilität und Individualität in der Produktion, mehr Ressourceneffizienz und Kosteneinsparungen sowie neue Geschäftsmodelle." (VDMA 2017)

"Die Produktion wird hochflexibel, hochproduktiv (bis zu +50 %), ressourcenschonend (bis zu -50 %) und urbanverträglich."

Digitale Transformation und Ressourcen - "Great Expectations" (II)

"Kaum thematisiert wird hingegen die Nachhaltigkeit der Digitalisierung. Durch die enorme Steigerung des Bedarfs an Energie, Rohstoffen, Logistik und Transport, Produktion und Entsorgung entstehen große Problemfelder." (Sühlmann-Faul & Rammler 2018)

"Gleichzeitig steigt der absolute Energie- und Ressourcenverbrauch mit der zunehmenden Verbreitung von Informations- und Kommunikationstechnologien kontinuierlich an." (Nachhaltigkeitsrat 2019)

Studie "Ressourceneffizienz 4.0"

"Ressourceneffizienz durch Industrie 4.0 – Potenziale für KMU des verarbeitenden Gewerbes"

Projektlaufzeit: 07.03.2016 - 31.03.2017

Beauftragt durch:

Studie "Ressourceneffizienz 4.0": Forschungsfragen

Systematische Untersuchung der Auswirkungen der digitalen Transformation auf die Ressourceneffizienz im verarbeitenden Gewerbe:

- Welches sind "ressourceneffiziente Maßnahmen" der digitalen Transformation und welche Ressourcen werden eingespart?
- Inwieweit sind "ressourceneffiziente Maßnahmen" schon in der Praxis angekommen und welche Erfahrungen gibt es?
- Wie können die Chancen der digitalen Transformation zur Steigerung von Ressourceneffizienz gezielt gefördert werden?
 - "Gute-Praxis-Beispiele" für KMU
 - Handlungsempfehlungen KMU, Wissenschaft, Politik

Studie "Ressourceneffizienz 4.0": Vorgehen und Partner

Workshop &

Tagung

Technologien und Systemlösungen

Recherche und Auswertung Literatur/Experten wissen Fallstudien

Vor-Ort-Untersuchung von Unternehmen (v.a. KMU) Diskussion mit Akteuren in Interaktive Workshops zur Digitalisierung

Datengrundlagen: Literatur, <u>Fallstudien</u>, Workshop

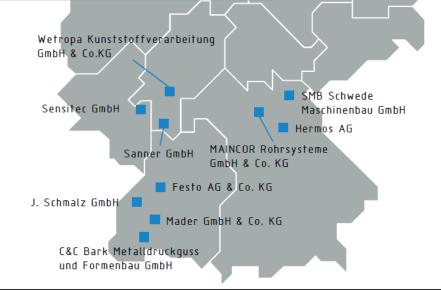
Ressourceneffizienzpotenziale

Methodik zur Bewertung

Ermittlung von RE-Potenzialen Voraussetzung, Herausforderung und Chancen

Analyse von Voraussetzungen, Herausforderungen und Chancen Handlungsfelder

Ableiten von Handlungsfeldern für Unternehmen, Politik und Wissenschaft



Fallstudienanalyse – Branchen und Unternehmen

Fallstudien: 10 Betriebe aus

- Baden-Württemberg
- Bayern
- Hessen
- Rheinland-Pfalz

Einspareffekte betrieblicher Ressourcen in den Fallbeispielen

Einspar- effekte	Praxisanwendungen Praxisanwendungen									
	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10
	Optimierte Geschäfts- prozesse	Druckluft- Leckage- App	One Piece Flow	Warehouse Management System	Data on a Stick	Virtuelle Produkt- simulation	Business- Warehouse- System	Virt. Produkt- fertigung im Prototypenbau	Cloud- basierte Fertigung	Foam Creator
Betriebliche Einsparungen										
Abfall	bis 25%	n. r.	bis 25%	n. r.	bis 25%	n. r.	n. r.	n. r.	k. A.	n. r.
Fehlerrate	bis 25%	n. r.	> 50-75%	n. r.	bis 25%	k. A.	n. r.	n. r.	n. r.	n. r.
Lagerraum	n. r.	n. r.	k. A.	k. A.	n. r.	n. r.	k. A.	k. A.	n. r.	n. r.
Material	n. r.	k. A.	n. r.	k. A.	bis 25%	bis 25%	bis 25%	<50% ^{a)} , k. A. ^{b)}	k. A.	25%
Strom	n. r.	33%	n. r.	n. r.	> 20%	bis 25%	bis 25%	k. A.	k. A.	n. r.
Transport	bis 25%	n. r.	bis 25%	k. A.	n. r.	n. r.	n. r.	n. r.	n. r.	33%

a) Einsparungen durch die reduzierte Anzahl an produzierten Musterwerkzeugen

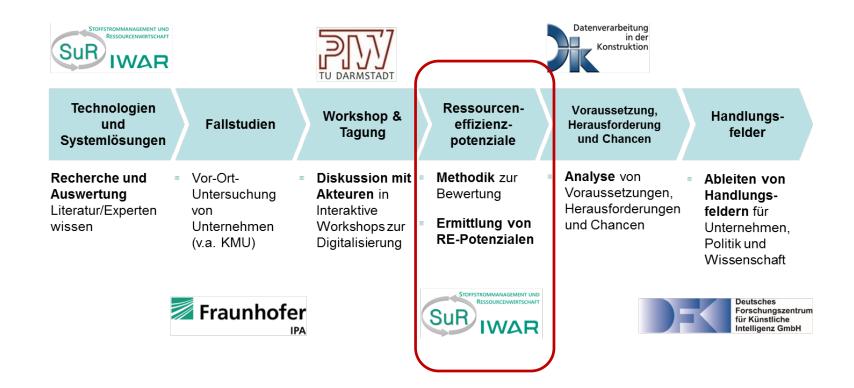
b) Einsparungen durch 3D-Druck-Verfahren

k. A.: Es liegen keine quantitativen Angaben zum jeweiligen Einspareffekt vor

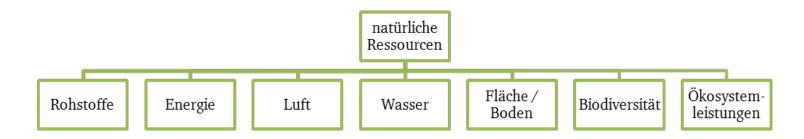
n. r.: Die Maßnahme ist nicht relevant für den jeweiligen Einspareffekt oder die natürlichen Ressourcen

Erkenntnisse aus den Fallstudien

- Vielfältige Effizienzsteigerungen und
 Einsparungen von betrieblichen Ressourcen,
 u. a. durch Verringerung von Fehlerraten,
 Ausschuss sowie Stromverbrauch.
- Ressourceneffizienz wird von Betrieben meist als Nebeneffekt der Digitalisierung angesehen, der z. B. mit der Prozess-Automatisierung einhergeht.
- ➤ Es fehlen betriebliche Datengrundlagen zu spezifischen Ressourcenverbräuchen in der Produktion.



Studie "Ressourceneffizienz 4.0": Ermittlung von Ressourceneffizienzpotenzialen



Natürliche Ressourcen

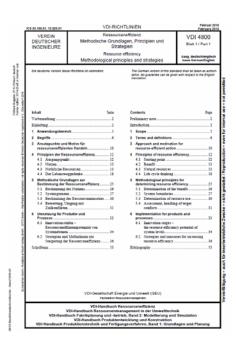
"Ressource, die Bestandteil der Natur ist; hierzu zählen erneuerbare und nicht erneuerbare Primärrohstoffe, physischer Raum (Fläche), Umweltmedien (Wasser, Boden, Luft), strömende Ressourcen (z.B. Erdwärme, Wind-, Gezeiten-und Sonnenenergie) sowie Ökosystemleistungen und Biodiversität." [4]

[in Anlehnung an KOM (2005) 670: Thematische Strategie zur Nutzung natürlicher Ressourcen]

Bildquelle: in Anlehnung an [5]

Ressourceneffizienzpotenzial (REP)

Grundlage: VDI 4800 Ressourceneffizienz


- Ressourceneffizienz: Verhältnis eines bestimmten Nutzens ... zum dafür nötigen Ressourceneinsatz.
- Erfassung des vollständigen Lebenswegs (Ökobilanz)

(VDI 4800 Blatt 1, 2016: Ressourceneffizienz - Methodische Grundlagen, Prinzipien und Strategien)

Ressourceneffizienzpotenzial:

mögliche Steigerung der Ressourceneffizienz durch die digitale Transformation für einen bestimmten Nutzen

Ermittlung von Ressourceneffizienzpotenzialen (REP)

Ermittlung der Veränderung des Ressourceneinsatzes (vgl. VDI 4800)

Einsparungen

- Verbräuche innerhalb des Betriebs
- → z.T. Schätzungen; fehlende Informationen v.a. zu Materialien
- Verbräuche außerhalb des Betriebs
- → Nur qualitative Beschreibung

Aufwände

- Herstellung Hardware
- Betrieb Hardware/Software
- → Literaturrecherche

Ressourceneffizienzpotenzial (REP)

Einsparungen

Aufwände

Ökobilanzielle Studien:

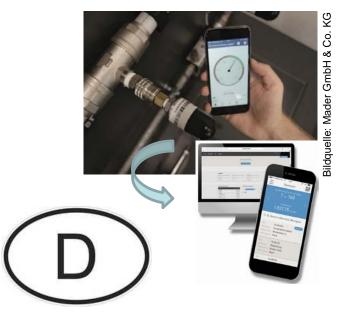
- Schwerpunkt auf verbrauchernahen IKT-Produkten (z.B. Laptop)
- kaum Studien zu Komponenten von CPS (z.B. Sensoren)
- Vielfalt und aktuelle Weiterentwicklung der IKT wird nur punktuell abgedeckt

REP der Praxisanwendung "Druckluft-Leckage-App"

"Druckluft-Leckage-App"

Digitale Dokumentation des Prüfvorganges des Druckluftsystems beim Anwender und Auswertung der gemessenen Daten mittels der Druckluft-Leckage-App.

Einsparungen:


- Bis 35 % Druckluft
- Bis 35 % Energie
- Material (Papier, Verschleißteile)

Einsparungen

Aufwände:

- Smartphone
- Computer
- Sensoren

Aufwände

Abschätzung REP Deutschland

- ⇒ Erhebliche Netto-Einsparungen
 - Robuste Abschätzung:
 - sehr konservative Betrachtung der Aufwände
 - Ggf. weitere Einspareffekte

REP der Praxisanwendung "Data on a Stick"

"Data on a Stick"

 Daten werden an Stelle von Reinraumpapier auf digitalem Datenträger gespeichert, der

 mit dem Werkstückträger fest verbunden – durch die Produktion reist.

Einsparungen:

- 100% Reinraumpapier
- Bis 20 % Energie
- Jeweils bis zu 25 % Abfall, Fehlerrate, Material

Einsparungen

Aufwände:

- USB-Sticks
- Server
- Computer
- Software

Aufwände

Abschätzung REP Deutschland

- ⇒ Aufwände überwiegen, aber:
 - Sehr konservative Betrachtung der Aufwände
 - Weitere Einspareffekte nicht berücksichtigt

Handlungsempfehlungen...

...für KMU:

- Maßnahmen der digitalen Transformation können branchenübergreifend zur Steigerung der Ressourceneffizienz genutzt werden:
 - → Umsetzung auf Basis des Reifegrads des Unternehmens
- Industrie 4.0 bietet neue Möglichkeiten für die anlagen- und prozessbezogene Erfassung von Daten zu Ressourcenverbräuchen:
 - → Nutzung zur Identifikation von Ressourceneffizienzpotenzialen
- ➤ Die Steigerung der Ressourceneffizienz ist mehr als ein "Mitnahmeeffekt" von Industrie 4.0:
 - → gezielte Strategie für Ressourceneffizienz entwickeln

Handlungsempfehlungen...

...für die Politik:

- ➤ Beratungsangebote existieren einerseits im Bereich Industrie 4.0, andererseits im Bereich Produktionsintegrierter Umweltschutz (PIUS):
 - → Vernetzung und Intensivierung der Beratungsangebote zu einem "Baukasten Ressourceneffizienz 4.0" mit Fokus auf KMU
- ➤ Gesamtwirtschaftlich wird steigender Strombedarf v.a. durch externe Rechenzentren/Cloud-Computing erwartet:
 - → Förderung von Kennzeichnung/Labeling für Strom-Verbrauchswerte von IKT und Internetdiensten
- > Forschungsförderung kann neue Themen adressieren:
 - → Ausrichtung zur Verknüpfung von Industrie 4.0 mit Ressourceneffizienz

Fazit

Die Digitale Transformation der Industrie birgt sowohl Chancen als auch Risiken für die Ressourceneffizienz und muss daher aktiv gestaltet werden:

- Wissens- und Informationsgrundlagen: Methodik und Daten zur Verbindung betrieblicher Kenngrößen mit Indikatoren für natürliche Ressourcen; Identifikation "ressourceneffizienter" Maßnahmen
- ➤ Erfassung von Wirkungen auf Gesamtwirtschaft und Gesellschaft:

 Labelling für Energieverbräuche IT, Untersuchung von Rebound-Effekten,

 Analyse des Verbrauchs spezifischer Rohstoffe
- Aktive Strategien der Ressourceneffizienz: gezielte Nutzung der Digitalisierung z.B. für langlebige Produkte und Kreislaufwirtschaft

Danke für die Aufmerksamkeit!

Prof. Dr. rer. nat. Liselotte Schebek

Technische Universität Darmstadt

Institut IWAR

Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft

E-mail: l.schebek@iwar.tu-darmstadt.de
Web: www.iwar.tu-darmstadt.de/sur

