
# Transitioning to zero-emission heavy-duty freight vehicles

A system perspective on zero-emission heavy-duty road freight transport and challenges for a successful market entry

Florian Hacker Brussels, 04.12.2018

### Decarbonisation of road freight transport: Long-haul transport of particular importance

- Light & heavy-duty vehicles responsible for about 35 % of EU transport GHG emissions
- Long-distance trucks particularly relevant in terms of GHG emissions due to high annual mileage and high fuel consumption

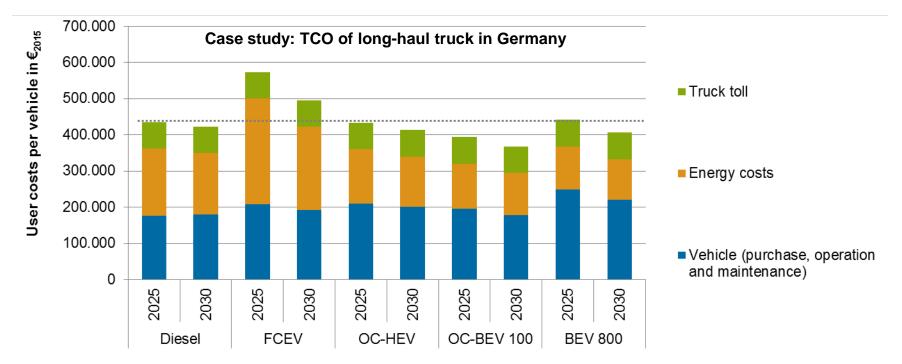


#### Vehicle stock, total mileage and CO<sub>2</sub> emissions of commercial vehicles\*

Transitioning to ZE HDV | Florian Hacker | Brussels | 4.05.2018

**Source:** Fraunhofer-ISI, Öko-Institut, ifeu (2018): Alternative Drives and Fuels in the Road Freight Transport – Recommendations for Action for Germany

2

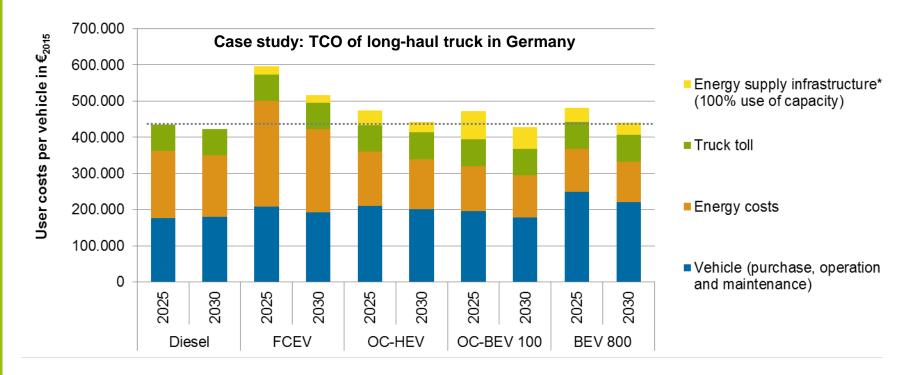

## The challenge of zero emissions freight transport has a number of dimensions

- GHG emissions from road freight transport continue to rise in the EU
- In regional freight transport the battery electric drive is emerging as a possible solution
- Among the possible powertrain alternatives in long-haul transport, there is no clear favourite yet
- In particular long-distance transport requires cross-border solutions
- New propulsion technologies must enable zero-emission road freight transport in the long term – at the lowest possible economic cost

4

## Electric propulsion systems in long-haul transport offer near-term cost advantages

- Lower operating costs compensate for higher vehicle costs
- BUT: uncertainties remain regarding the development of technology costs, energy prices and regulatory / fiscal framework




Assumptions of TCO: operation of a long-haul truck in Germany, user costs excl. VAT, 3,5% discount rate, 5 years of vehicle operation, annual mileage of 120.000 km

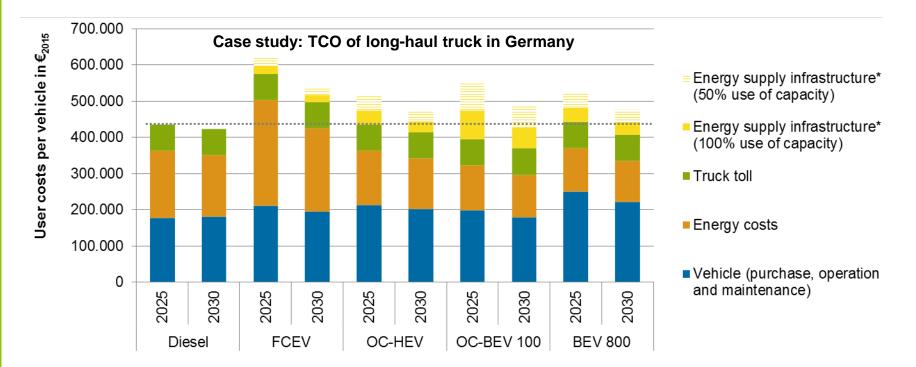
FCEV - fuel cell electric vehicle, OC - overhead catenary, HEV - hybrid electric vehicle, BEV 100 - battery electric vehicle 100 km electric range

5

## The roll-out of alternative energy supply infrastructure needs to be pre-financed



Assumptions of TCO: operation of a long-haul truck in Germany, user costs excl. VAT, 3,5% discount rate, 5 years of vehicle operation, annual mileage of 120.000 km


\*Energy supply infrastructure: hydrogen filling station, overhead line system or station-based charging infrastructure

#### Transitioning to ZE HDV | Florian Hacker | Brussels | 4.05.2018

**Source:** Öko-Institut (2018): Oberleitungs-Lkw im Kontext weiterer Antriebsund Energieversorgungsoptionen für den Straßengüterfernverkehr. Ein Technologie- und Wirtschaftlichkeitsvergleich. Subreport of StratON project

## The roll-out of alternative energy supply infrastructure needs to be pre-financed

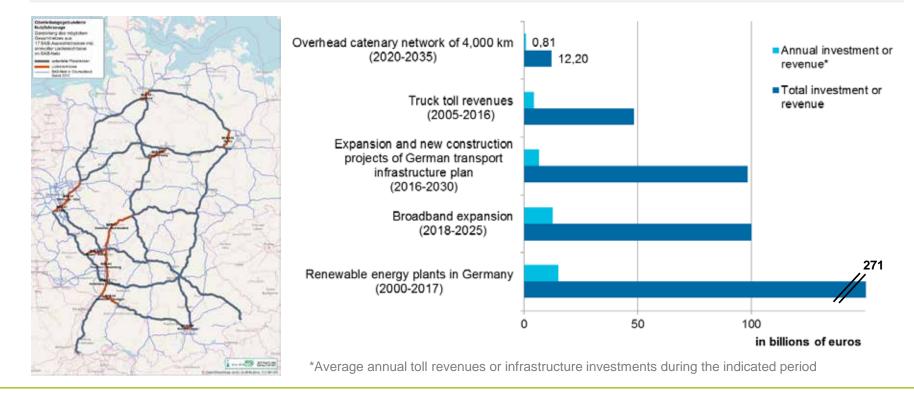
- Availability of energy supply infrastructure is key to market ramp-up of alternative drives
- If early users fully carry infrastructure cost, this will hinder economic operation



Assumptions of TCO: operation of a long-haul truck in Germany, user costs excl. VAT, 3,5% discount rate, 5 years of vehicle operation, annual mileage of 120.000 km

\*Energy supply infrastructure: hydrogen filling station, overhead line system or station-based charging infrastructure

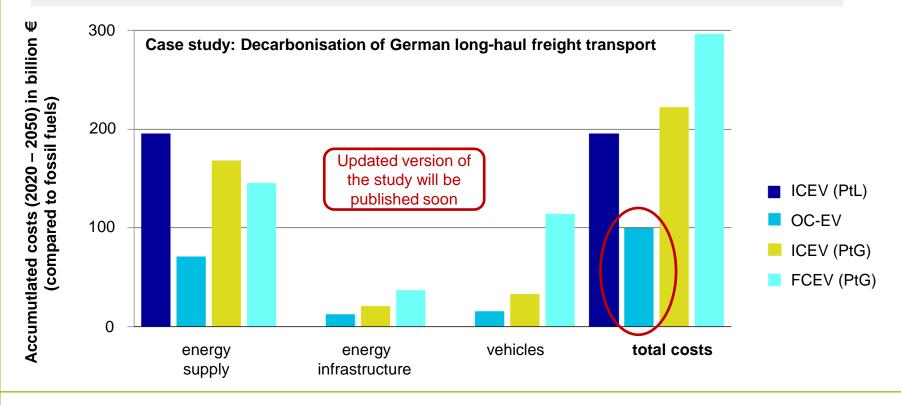
#### Transitioning to ZE HDV | Florian Hacker | Brussels | 4.05.2018


**Source:** Öko-Institut (2018): Oberleitungs-Lkw im Kontext weiterer Antriebsund Energieversorgungsoptionen für den Straßengüterfernverkehr. Ein Technologie- und Wirtschaftlichkeitsvergleich. Subreport of StratON project

6

7

## Example of overhead catenary core network (4.000 km) in Germany: relatively low investment required

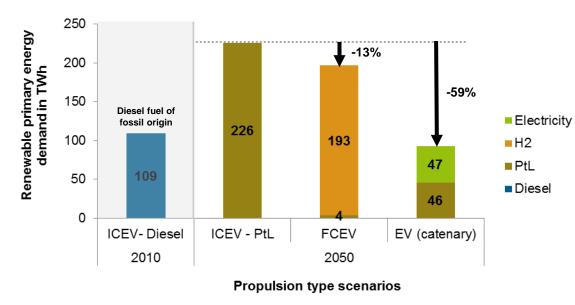

- All alternative propulsion systems require a reliable energy supply infrastructure
- In road freight transport, a relatively low network density along corridors could already be attractive for a variety of applications
- Investment needed is moderate compared to other expenditures for future technologies



**Source:** Öko-Institut (2018): Oberleitungs-Lkw im Kontext weiterer Antriebsund Energieversorgungsoptionen für den Straßengüterfernverkehr. Ein Technologie- und Wirtschaftlichkeitsvergleich. Subreport of StratON project

## Overall costs of carbon neutral road freight transport until 2050: energy costs of particular importance

- Decarbonisation of freight transport is related with considerable economic costs
- Total costs are determined by the energy costs
- Costs of infrastructure and vehicles are less important from this perspective
- Direct use of electricity shows economic cost advantages




Transitioning to ZE HDV | Florian Hacker | Brussels | 4.05.2018

**Source:** Öko-Institut et al. (2016): Erarbeitung einer fachlichen Strategie zur Energieversorgung des Verkehrs bis zum Jahr 2050. Study commissioned by the Federal Environment Agency (UBA)

### Decarbonisation of the freight transport sector by 2050: Demand of renewable energy depends on propulsion system

- Decarbonisation of long-haul freight transport requires high amount of renewable energy
- Highest energy efficiency for direct use of electricity results in lowest additional demand
- Use of synthetic fuels (PtL, H<sub>2</sub>) requires energy imports
- Use of synthetic fuels must be combined with sustainability criteria at an early stage



#### Case study: Decarbonisation of German long-haul freight transport

Net electricity generation from renewable energies in Germany 2017: **210 TWh** 

ビ Öko-Institut e.V.

Scenario assumptions:

- All scenarios: complete decarbonisation of long-haul freight transport
- ICEV PtL: Diesel replaced by imported synthetic fuel based on renewable energy –> WTT efficiency: 49%
- FCEV: imported hydrogen (electrolysis, liquefaction and transport) à WTT efficiency: 48%
- **EV (catenary):** OC-vehicles with 75% electric mode and 25 % conventional mode (PtL); WTT erfficiency of electricity: 85 %

#### Long-term framework conditions are needed to encourage the deployment of zero emission HDV in Europe

- Pressure to decarbonise road freight transport is high
- Direct use of electricity, as in passenger transport, also has advantages in road freight transport
- Depending on the application, synergies and various combinations of different drive technologies are also conceivable
- Parties involved need planning security, therefore strong state incentives for alternative drives and infrastructure development are necessary
  - ø e.g. CO<sub>2</sub>-based truck toll, ambitious efficiency standards

### Infrastructure development requires government action and pre-financing

- Competitive alternatives to diesel propulsion require a reliable basic energy supply network
- In the early market phase, the costs can neither be passed on to the (few) users, nor does a privately financed implementation appear realistic
- State initiative and takeover of investment risks related to infrastructure deployment is therefore necessary in this early stage

Large demonstration projects are necessary to gain practical experience and create acceptance

- New drive technologies create numerous practical challenges for all the players involved
- Near-market technologies should therefore be tested on a larger scale as soon as possible
- The aim of the pilot tests should be to develop a long-term strategy for road freight transport on the basis of experience gained
  - *including an infrastructure development strategy for HDV*
- Cross-border projects should be taken into account at an early stage

### Further reading – recent publications of Oeko-Institut

StratON project report (09/2018)

www.oeko.de



**Policy paper (10/2018)** on overhead catenary heavy-duty vehicles on alternative drive trains and fuels for HDV

| o-hanity eX. 🔀 📷 📰 Fraunhofe                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                  |
| Alternative drive trains and fuels                                                                                                               |
| in road freight transport –                                                                                                                      |
| recommendations for action in                                                                                                                    |
| Germany                                                                                                                                          |
| Paintik Mills, Till Shann, Martin Wetscher, Millige Kuisthur, Sales Joll<br>Fraueholfer Incider for Surgens and Innovation Revench 12, Karlander |
| Norian Hackor, North Eserch, Swen Hallweil<br>Debo-institut, Berlin                                                                              |
| John Hähnen, Hovah Helm, Ulk Landenski, frank Dännabal<br>(Nov - Holla de for Drange and Environmental Research, heldeberg                       |
|                                                                                                                                                  |
| Katiculus Betler, Heidelberg<br>Dissise 2008                                                                                                     |
|                                                                                                                                                  |

Available on our website: www.oeko.de Ø

### Thank you for your attention!

#### **Florian Hacker**

**Deputy Head Resources & Transport Division** 

**Oeko-Institut e.V.** Schicklerstr. 5-7 10179 Berlin

phone: +49 30 405085-373 email: f.hacker@oeko.de