

Synthetic fuels – How can they support climate protection efficiently?

Requirements and needs for regulation supporting a sustainable use of synthetic fuels

Peter Kasten, Christof Timpe "Fuels of the Future" conference Berlin, 21 January 2019

For decarbonisation, many sectors need renewable electricity or e-fuels

www.oeko.de

Own illustration.

The demand for RES electricity and e-fuels will grow significantly

Analysis of a range of decarbonisation scenarios (TWh_{el})

www.oeko.de

A large scale provision of e-fuels and e-products is needed after 2030, and most of these will be imported

- The challenge is a sustainable production of e-fuels, "sector integration" is not an adequate term for this
- Imports will play a major role
 - Expansion of RES-E generation in DE limited by available land and public acceptability
 - Imported e-fuels expected to have lower cost than domestic production

But prices will differ from cost!

 e-fuels will most likely remain more expensive than fossil fuels

Estimated costs of PtG/PtL

ビ Öko-Institut e.V.

4

e-fuels are not inherently sustainable: Impact on electricity generation

- The CO₂ effect is determined by the electricity used
- Societal perspective: How does the production of e-fuels change electricity generation?
 - Unless the power sector is largely decarbonised, fossil power plants may ramp up generation
 - Thus, new additional RES capacities are needed for, ensuring that the additional demand is covered by RES
 - A flexible operation of e-fuel plants should support the management of power grids and the use of RES electricity
- Individual perspective: Which type of electricity has been purchased by the e-fuel plant operator?
 - Electricity disclosure and green power markets allow differentiation in an individual perspective
 - But: The purchase of green power usually has no relevant impact on electricity generation due to an oversupply of green power

- CO₂ supply source must not delay the path to decarbonisation
 - Direct Air Capture is the most sustainable CO₂ source for the future
- Social aspects have to be considered for acceptance of e-fuels
 - Water and energy poverty, local/regional development
- Impact on regional energy system has to be considered

Lessons learned from biofuel uptake:

- → Sustainability assessment at global level needed to estimate global potential of <u>sustainable</u> e-fuels
- Sustainability criteria needed for positive impact and market certainty
- No rollout without established long-term sustainability criteria

e-fuels are the most expensive GHG mitigation measure in transport: Less is more

- Challenge for e-fuel strategies:
 - e-fuels require support to become a real climate protection option
 - Support strategies for e-fuels must not offset measures w.r.t. modal shift and energy efficiency gains (including e-mobility)
- The less e-fuels are used, the smaller the GHG mitigation cost for the society!

www.oeko.de

Until 2030: Reduction of energy demand in transport + cost reduction and technology development for e-fuels

- Focus on reducing transport demand as well as supporting modal shift and energy efficiency improvements (incl. e-mobility)
 - Inclusion of externalities in transport cost
 → carbon pricing
 - Increasing transport cost
 - Supporting transformation into livable cities
- e-fuels: focus on cost reduction and technology development
 - Technology and market roadmap
 - Cost reduction and upscaling of technology requires appropriate support
 - Support measures should "make polluters pay"

Transport CO₂ emissions 2030 (DE)

🖌 Öko-Institut e.V.

e-fuels are needed for reaching the long-term climate protection goals in transport (and other sectors), <u>but</u> ...

- e-fuels are not inherently sustainable
 - Additional RES generation required \rightarrow Purchase of green power not sufficient!
 - Comprehensive sustainability criteria must be the basis for support strategies
 - No estimate of global potential for sustainable e-fuels available
- e-fuels are the most expensive GHG mitigation measure in transport
 - e-fuels will mostly be imported due to lower cost and less constraints
 - Support schemes must not offset other climate protection measures (e.g. modal shift, efficiency gains) → less e-fuels is more!
- Priorities until 2030:

www.oeko.de

- Reducing energy demand in transport (e.g. e-mobility, modal shift)
- Cost reduction and upscaling of e-fuel technologies requires appropriate support → "make polluters pay"!

Contact

Peter Kasten Senior Researcher Resources & Transport

Öko-Institut e.V. Office Berlin Schicklerstraße 5 - 7 D-10179 Berlin

Phone: +49 30 405085-349 email: <u>p.kasten@oeko.de</u>

Christof Timpe

Head of Division Energy & Climate

Öko-Institut e.V. Office Freiburg Postfach 17 71 D-79017 Freiburg

Phone : +49 761 45295-225 email: <u>c.timpe@oeko.de</u>