

서울국제안전포럼

Seoul International Safety Forum

2017. 11. 23(목) | 서울 중구 프레지던트 호텔 31층 슈벨트홀

23rd November(Thu), 2017 31F, Schubert Hall, Hotel President, Seoul, Korea

Response systems to risks and accidents of nuclear power plants

Challenges of the early phase after an accident

Veronika Ustohalova Öko-Institut e.V. Darmstadt, Germany

- The nuclear reactors in South Korea and neighboring countries
- Response systems to nuclear accident: a border-crossing issue
- Causes of nuclear accidents and radiological release scenarios
- Phases of response and measures
- Past experiences and communication challenges
- Multifunctional response systems
- Conclusions

Nuclear Reactors South Korea and neighbouring regions of China

- South Korea
 - 24 reactors providing about 30% of its electricity demand
 - Net capacity 22,505 MWe
- Neighbouring regions in China
 - Tianwan 1&2 net capacity 990 MWe each
 - Hongyanhe 1-4 net capacity 1061 MWe each
 - Distance to Seoul about 480 km
- Neighbouring regions in Japan
 - Sendai 1&2 restarted in 2015, net capacity 846 MWe each
 - Ikata 3 restarted in 2016, net capacity 836 MWe
 - Distance Busan Sendai about 370 km

The task of response systems to nuclear accident: border crossing issue

- The consequence of a nuclear accident is the release of radionuclides into the environment (soil, water and air) with negative effects to health of human but also of other living organisms.
- The nuclear accident occurs suddenly and the consequent release processes, mainly via air, are very fast and hardly predictable.
- These consequences are *long term and far reaching and border-crossing*
- Responding to a nuclear accident requires radiation protection measures
 - to reduce the health and other effects caused by already occurred radionuclide releases,
 - to estimate and to reduce the risk of further releases of radionuclides from the facility.
- The response systems must be extraordinary well developed in advance and should also involve efficient transboundary communication and help.

Causes of nuclear accidents and release scenarios

- Natural catastrophe Earthquake/Tsunami (e.g. Fukushima/Japan)
- Accident in the course of technical defects and human errors (e.g. Three Mile Island/USA, Chernobyl/Soviet Union, Chalk River/Canada)
- Accident in the course of a conflict (e.g. bombardement of nuclear reactor Osirak/Iraq, no fuels in reactor no radioation release)
- Worst case scenario of explosion with far reaching fall- and washout (Fukushima, Chernobyl)
 - depends on inventory, explosion strength and athmospheric conditions
 - release mainly of noble gases, lodine-131, Caesium 137/134
- Worst case scenario of core meltdown
 - several radionuclides released
 - high contamination of groundwater, soil, sea (above mentioned cases)

- Early phase: response measures to happen very fast but limited information regarding accident condition and limited time for analyzing options
 - Atmospheric modeling and radiation monitoring and analysis
 - Protective actions
 - Population monitoring
 - Medical planning and response
 - Biodosimetry
- Intermediate and late phase: more time to plan the response and to analyze the options
 - Planning follow-up and health risk studies regarding exposed populations and workers
 - Transition to recovery

Early phase: response measures (1)

- Atmospheric modeling and radiation monitoring and analysis
 - information/data about the nuclear reactor status and relevant inventories, atmospheric data and weather prognosis, aerial and ground/sea based monitoring of large areas
- Protective actions options: evacuations (psychosocial and socioeconomic effects) versus sheltering in place, decision must consider sensitive populations (fetuses/children)
 - Evacuation in advance if safely practicable: preferable from areas at risk of high contamination, questionable in areas with dense population and large cities (*emergency plan*)
 - Sheltering-in-place (intake ventilation off, windows closed) to avoid the radioactive plume
 - Immediate medical countermeasures (Potassium Iodide)
 - Identification/interdiction of contaminated or potentially contaminated food and delivery of non (or low) contaminated food and *drinking water*
 - Dose limits for emergency situation should be fixed in advance (workers and population, recommendations of International Commission for Radiation Protection ICRP)

- Population monitoring for preventing radiation effects includes mainly
 - People needing immediate medical attention irrespective if exposed to radiation or not.
 - People who have been exposed (or who think that they have been exposed) to radiation
 or radioactive materials.
- Medical planning and response
 - Chernobyl and Fukushima showed the indispensability of well developed medical preparedness and response in case of nuclear accidents.
 - This has to involve activities including bioassays and other methods with the aim to
 - reassure people that they are not at risk,
 - provide medical care as regard acute radiation syndrome casualties.
- Biodosimetry: diagnostic to identify the radiation exposure and involving distribution of detection devices for workers and population.

Contamination release fall/wash-out Past experiences with accident INES 7 Chernobyl

Chernobyl (Chernobyl 4, net capacity 925 MWe)

- Very far reaching but evacuation over large areas possible
- Chernobyl Tula about 600 km
- Chernobyl Cherykow about 270 km

Source: UNSCEAR Surface ground deposition of caesium-137 released in the Chernobyl accident

Contamination release fall/wash-out Past experiences with accident INES 7 Fukushima

Fukushima

- In 30 km downdraft
 > 3,000,000 Bq/m² Cs-137 measured
- The advantageous wind direction prevented further contamination of large areas but limited areas for evacuation available.

Past Experience Challenge of risk perception and communication

- Radiation is invisible, most people are unfamiliar with the issue.
- Radiation is seen as representing special danger to children and pregnant women.
- Radiation is associated with cancer and death and other negative health unknown effects.
- The threat seems to be unbounded or open-ended.
- The people fear the potential for long-term contamination and that it causes hidden damage.
- People evacuated from contaminated areas are stigmatized.
- The clear communication and information with promoting confidence are crucial 1) in advance, 2) in the course of and 3) after an accident.

Response systems (beyond the desaster emergency response)

- Involve emergency and evacuation plan to be developed in advance (extent dependence).
- Must be adaptable to continuously changing conditions.
- Clear responsibilities of institutions and their staff (state/local-city) in decision making and efficient communication structure; system of information exchange between responsible institutions but also border-crossing crucial.
- Establishment of dedicated (emergency) technical staff on site and at supporting institutions also providing periodic updates to state and local officials.
- Fast development of technical solutions on site; international cooperation essential.
- System assuring to gather and to provide information on the nuclear reactor status and release inventories, radiation monitoring, modelling etc...
- System assuring biodosimetry and system of medical centers.
- Communication to public in advance and by nuclear accident, e.g. call centers (confidence!)
- System of drinking water and nutrients supply (fixed contamination limits).

- The severe nuclear accidents are border-crossing and long term and are possible in every operating reactor worldwide.
- To be well prepared: emergency and evacuation plan with optimizing procedure according to several scenarios must be developed in advance, in coordination with desaster emergency response but radiation protection requires specific response measures.
- Effective response systems require technical and scientific international cooperation.
- No financial limits.
- Communication with public is crucial.
- The best option is: accident never occurs but the reality is different.

Thank you for your attention!

Veronika Ustohalova

Öko-Institut e.V. Nuclear Engineering & Facility Safety Division Rheinstrasse 95 64295 Darmstadt Germany v.ustohalova@oeko.de Homepage: http://www.oeko.de/en/