
 

w
w

w
.o

ek
o.

de
 

 

 

 
 

Real-world data analysis of energy 
consumption, activity and charging 
patterns of battery electric trucks 
operating in Germany 

 

  

 

 

2nd report of the research project "ELV LIVE - Accompanying 
research on the use of battery-electric heavy duty vehicles in day-
to-day logistics operations" FKZ 16EM6003-1 

Berlin, July 2025  

 
 

 

Authors 
 
Juliette Le Corguillé 
Florian Hacker 
Dr. Katharina Göckeler 
Moritz Mottschall 
Theresa Dolinga 
 

Oeko-Institut e.V. 
info@oeko.de 
www.oeko.de 
 
Office Freiburg 
Merzhauser Straße 173 
79100 Freiburg 
Phone +49 761 45295-0 
 
Office Berlin 
Borkumstraße 2 
13189 Berlin 
Phone +49 30 405085-0 
 
Office Darmstadt 
Rheinstraße 95 
64295 Darmstadt 
Phone +49 6151 8191-0 

 

mailto:info@oeko.de
http://www.oeko.de/


Real-world data analysis of battery electric trucks operating in Germany  
 

2 

 

 

Acknowledgments 

The authors would like to thank the case study partners and the Daimler Truck AG for their 
cooperation and participation in this study. The ELV-LIVE research project is financed by the 
Federal Ministry for Economic Affairs and Energy with funds from the “Erneuerbar Mobil” funding 
programme (https://www.erneuerbar-mobil.de/projekte/elv-live). 

 

Citation recommendation 
 
Juliette Le Corguillé, Florian Hacker, Katharina Göckeler, Moritz Mottschall, Theresa Dolinga 
(2025): Real-world data analysis of energy consumption, activity and charging patterns of 
battery electric trucks operating in Germany. 2nd report of the ELV-LIVE research project. Öko-
Institut. 

https://www.erneuerbar-mobil.de/projekte/elv-live


Real-world data analysis of battery electric trucks operating in Germany  
 

3 

Executive Summary 

This study provides one of the first in-depth analyses of real-world operational and energy 
consumption data from battery electric trucks (BET) in Germany. As part of the ELV-LIVE research 
project, data were collected from 19 Daimler eActros 300 and 400 trucks between 2023 and early 
2025. These vehicles were operated by five case study partners in various regional transport 
applications. The goal was to better understand actual energy consumption under real-world 
conditions, identify influencing factors, analyse charging patterns, and derive initial optimisation 
strategies for vehicle operation and infrastructure planning. 

The motivation behind the study stems from the rapid, yet early-stage, deployment of electric trucks 
in response to European climate policies. Despite increasing sales, there remains considerable 
uncertainty about their real-world performance. Predictable energy consumption and charging 
behaviour are key parameters for logistics planning, infrastructure development, and vehicle fleet 
electrification strategies. 

Methodology 

The analysis was structured around two main axes: 

1. Energy Consumption 

2. Activity and Charging Patterns 

To analyse energy consumption, more than 800 individual driving events were evaluated. Key 
parameters such as average speed, outside temperature, vehicle weight, and altitude difference 
were examined. Due to limited data availability, some potential influences – such as road gradient, 
wind, or driving style – could not be directly assessed. 

A multi-variable Ordinary Least Squares (OLS) regression model was applied to quantify the 
influence of individual factors on average energy consumption. In order to ensure robust results, 
vehicles operating with a Temperature Control Unit (TCU) were initially excluded from the regression 
to avoid confounding temperature effects. 

For the activity and charging pattern analysis, 688 full days of data were visually and statistically 
assessed. After extensive data cleaning to correct sensor errors, only realistic daily profiles were 
retained. A qualitative approach was used to understand usage patterns, while basic metrics like 
charging frequency, duration, and standing times were calculated to draw comparisons between 
one- and two-shift operations. 

Key Findings 

• Energy Consumption: 

o The average real-world consumption was 0.96 kWh/km for a vehicle weight range 
between 11 to 18 tonnes, an outside temperature between 19 and 21°C, and altitude 
difference range lower than 200 m. This is closely aligning with the manufacturer’s 
specification (0.97 kWh/km under these optimal conditions). 



 Real-world data analysis of battery electric trucks operating in Germany 
 

4 

o The OLS regression revealed statistically significant impacts from: 

 Vehicle weight (approx. +0.18 kWh/km per additional 10 tonnes), 

 Ambient temperature (approx. -0.13 kWh/km per additional 10 °C), 

 Altitude difference, and 

 Average speed, with disproportionately high consumption observed at low 
speeds due to start-up energy demand and limited recuperation. 

o Vehicles equipped with a Temperature Control Unit (TCU) showed an average 
additional consumption of 0.092 kWh/km under the specified conditions (weight between 
11 and 19 tonnes, altitude difference lower than 100 m and speed between 40 and 
60 km/h), with no clear correlation to ambient temperature, likely due to preconditioning 
at the depot. 

• Activity & Charging Patterns: 

o All trucks were used exclusively in regional delivery, mostly on weekdays, with 
predefined and relatively inflexible routes. 

o Depot charging was the predominant strategy, with public charging used only in 
isolated cases. 

o In single-shift operations, charging typically occurred once daily after return to the 
depot, often completed well before the next shift. 

o Two-shift operations required more complex strategies, including intermediate 
charging during loading and higher charging power. 

o Despite technological constraints, vehicles demonstrated high reliability, with few 
operational failures or downtimes. 

Optimisation Potentials 

The study identifies significant opportunities to improve energy and charging efficiency, especially 
through load shifting and optimised scheduling. For instance: 

• Nighttime charging often occurs earlier than necessary, resulting in idle time after charging 
is complete. Delayed charging could avoid peak grid loads and reduce infrastructure costs. 

• Intermediate charging at loading bays during the day can reduce night-time dependency, 
though this requires integration with logistics workflows and spatial planning. 

• Case study partners anticipate that next-generation BET with larger battery capacities 
may allow more flexibility in vehicle deployment and reduce infrastructure strain. 

Conclusion 

This research provides valuable early insights into the operation of BET under real-world conditions. 
The findings confirm that manufacturer-reported consumption values are realistic under optimal 
conditions, but also highlight significant variability due to external factors such as speed, 
temperature, and payload. 
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Charging strategies remain conservative, with room for optimisation. As electric trucks make up only 
a small fraction of total fleets today, future challenges will arise from the scaling of depot 
infrastructure, load management, and public charging availability – particularly for long-haul 
operations. Addressing these challenges will require close coordination between fleet operators, 
vehicle manufacturers, infrastructure providers, and policymakers. 

Future studies would benefit from larger and more diverse datasets, additional vehicle types, 
and extended observation periods to further refine energy consumption models and operational 
strategies. Nevertheless, this analysis offers a solid empirical foundation to support the transition to 
electric heavy-duty transport. 
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1 Introduction 

Under the influence of the European Union policies, sales of battery electric trucks (BET) are 
increasing gradually in Europe (IEA - International Energy Agency 2024). From the point of view of 
users, several aspects come into play when considering purchasing a battery electric truck (BET). 
One of the decisive criteria is the vehicle range in kilometres (km), which is a key factor in determining 
whether their delivery tours will be feasible or not. BET sold in Europe in 2023 and early 2024 have 
a range of 300 km to 400 km and are therefore suitable for regional and last mile delivery (IEA - 
International Energy Agency 2024). However, the range of an electric vehicle or, in other words, the 
vehicle total energy consumption is influenced by various parameters, as already observed in 
previous studies (Li et al. 2016), (Xu et al. 2023a).  

The first objective of this study is to quantify the influence of several parameters on the total energy 
consumption of BET based on real-world data. Key questions in this context are: What are the orders 
of magnitude of the variations? Which parameter has the greatest influence on total energy 
consumption? Is there a gap between real-world consumption and consumption figures provided by 
the manufacturers? A better understanding of these matters is of a particular relevance, as better 
predicting energy consumption plays a key role in ensuring that range requirements can be met, and 
journey planning software predicts accurate ranges for instance.  

Another important aspect for BET first users is the predictability of their journey and charging times. 
First users who took part in this study indicated that they currently consider recharging at the BET 
depot to be a practical and less expensive option than public charging. In this context, the following 
questions are the key to determining the feasibility of depot charging: How long are the vehicles 
usually parked at the depot? At what time of day and/or night can they recharge? Does this vary 
considerably over the months? This information is useful not only for users, but also for journey 
planning software developers, public authorities or other stakeholders planning public charging 
infrastructure for instance. 

Several studies analyse real-world data for electric light-duty vehicles and buses (Xu et al. 2023a) 
(Xu et al. 2023b). Yet, as BET have only recently come onto the market, few studies based on real-
world BET data are available. Two published studies are of particular interest: (1) The ICCT analysed 
real-world data of more than 10 000 heavy-duty vehicles operating in China in 2021, focusing on the 
effect of temperature on the consumption and charging patterns (Mao et al. 2023) and (2) Cenex 
analysed real-world data of 20 BET operating in the UK in 2022 and 2023 focusing on factors 
affecting energy consumption such as the drive cycle, ancillaries, weight, and temperature (Cenex 
2024).  

This study analyses real-world data collected from some of the first series battery-electric heavy-
duty vehicles operating in Germany, in 2023 and 2024. It is important to note that the basis of this 
study is a data set from only 19 vehicles, of the same model, which is not a representative sample. 
Consequently, it is not appropriate to generalise the observations made. Nevertheless, the results 
obtained can complement and consolidate previous findings of the two aforementioned studies. 
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2 Data availability, data treatment and limitations 

2.1 Data availability 

As part of the ELV-LIVE project, real-world data from several BET operating in Germany has been 
collected and analysed1. This project was funded by the German Federal Ministry for Economic 
Affairs and Climate Action (BMWK) and was carried out in cooperation with the Daimler Truck Group 
AG, which enabled the data collection of several Daimler BET through their telematic system, the 
FleetBoard software. 

The battery electric vehicle models analysed are Daimler’s eActros 300 or eActros 400 BET, which 
fall into the N3 category (maximum mass exceeding 12 tonnes). These rigid lorries, used for regional 
delivery, belong to five case study partners of the ELV-LIVE research project, that operate in diverse 
market categories. To maintain the confidentiality of the case study partners and protect the privacy 
of drivers, the data collected has been anonymised. During the study, contact was kept with the 
partners and site visits were organised to gain a better understanding of the framework conditions 
in which the vehicles were put into operation. Thus, it has been established that most partners are 
operating in flat or slightly hilly areas, with a single partner operating in a mountainous region. Plus, 
while some of them use the lorries to transport their own goods, most of the partners provide hire or 
reward transport services and therefore carry goods on behalf of third parties. Finally, the partners 
have vehicles with different axle combinations: 4x2, 6x2, and lorry carrying a trailer. A summary of 
relevant information communicated by the study partners is shown in the following table. 

Table 2-1: Case study partner activities and vehicles’ operating conditions. 

Case study 
partner 

Topography Transport type Use of temperature 
control units (TCU) 

A Mostly flat Hire and reward 
services 

No 

B Mostly flat Own goods Sometimes 

C Mostly flat Hire and reward 
services 

Yes 

D Mostly flat/Hilly Hire and reward 
services 

No 

E Mountainous Own goods No 

Source: own illustration 

The data was collected between September 2023 and January 2025, at the frequency of 
approximately one week of real data downloaded per month. Data was collected from a total of 
nineteen vehicles, operating in different regions of Germany. At the start date of the study data from 
only six vehicles was available. Over the year, new BET were put into operation by the case study 
partners and joined the pool of studied vehicles. The amount of nineteen vehicles was reached in 
August 2024.  

 
1  https://www.erneuerbar-mobil.de/projekte/elv-live, last accessed on 2025-04-11 

https://www.erneuerbar-mobil.de/projekte/elv-live
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Although the number and type of vehicles (19, only eActros lorries) is not large enough to 
produce representative results, findings can provide initial indications and give an estimate of 
the order of magnitude of fluctuations in energy consumption values for the case of first BET 
operating in regional delivery in Europe.  

The Daimler’s telematic software “Fleetboard” displays the data in the form of a succession of events 
corresponding to three types of activities: vehicle driving, standing, and charging. For each event a 
summary is available, containing the following information:  

• the activity: vehicle driving, standing or charging 

• the vehicle weight (in tonnes), that is the gross combination weight, including the vehicle 
body weight and payload without body 

• the start and end positions (GPS coordinates) 

• the start and end time 

• the kilometres covered (in km) 

• the total energy consumption (in kWh) measured directly on the vehicle, meaning that 
charging losses are not taken into account.  

• the average energy consumption (in kWh/km) is derived from these latter values  

• the battery Status of Charge (SoC) at the beginning and end of activity. 

Figure 2-1:  Schematic representation of data available 

 
Source: own illustration 

Some relevant data are not available from the telematic system, such as the actual vehicle 
speed measured over the course of the event, the topography or the outside temperature. Yet, 
temperatures and altitudes of the start and end points could be retrieved from existing open 
databases as described in the following paragraph, enabling the partial analysis of these 
parameters effect. 
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2.2 Data quality, data treatment and limitations  

Energy consumption analysis 

The consumption as main dependent variable that will be explained by different parameters was 
taken directly from the telematic system. For each driving event, the average energy consumption 
per kilometre was calculated. Accordingly, each observation of the dependent variable corresponds 
to a single driving event and its associated mean consumption per kilometre no matter its duration 
or distance. Consequently, this analysis focuses on identifying parameters and their influence on the 
mean energy consumption per driving event. 

Some parameters influencing the consumption are not recorded by the telematic software and could 
hence not be examined, such as weather conditions (wind, rainfalls etc), road conditions, tyres 
pressure, ambient temperature, the route topography, and the nominal vehicle speed/driving style. 
The absence of this later value makes it practically impossible to analyse the effect of the drive cycle 
on consumption. It is however possible to calculate the average speed of the driving event (in km/h), 
to get a rough indication of the vehicle driving situation. The external air temperatures of the starting 
points were retrieved from the German weather service (DWD) open database2, as an indicator of 
the outdoor temperature during the BET journey. For the topography, the exact route taken by the 
vehicle between the starting and ending point is not recorded by the system, only the GPS 
coordinates of the start and end point are available. Although the altitude difference between these 
points is not a perfectly reliable measure of the effect of the slope on consumption, it can 
nevertheless give an indication of the minimum difference in altitude travelled. The altitude of the 
starting and ending points were obtained using the EU-DEM digital surface model3, enabling the 
calculation of the total altitude difference per driving activity. It is important to note that only one case 
study partner operates in a region characterised by consistent and substantial altitude variations. 
This may introduce a confounding effect, making it difficult to distinguish between the influence of 
altitude and the specific characteristics of the case study partner. 

What’s more, the software displaying only the total vehicle consumption, it is not possible to 
differentiate between the energy used for driving and that used for other purposes, such as heating 
the driver’s cabin, controlling the tail-lift, using cooling units etc. Likewise, it is not possible to quantify 
the amount of energy recovered through recuperation. Because the presence/absence of cooling 
units, also known as vehicle temperature control units, has been specified by the study partners, this 
parameter could be nonetheless examined in greater detail. To summarise, this study investigates 
the effect of different parameters on overall energy consumption. If the effect of the tail-lift use can 
be considered negligible compared with other energy uses, as mentioned in the BETT final report 
(Cenex 2024), the overall energy consumption corresponds roughly to the combination of the energy 
used for driving, including the recuperation effects, and the energy used for driver’s cab 
heating/cooling, as well as the use of the temperature regulation unit. 

Finally, it should be underlined that it is not feasible to verify the accuracy of the data transmitted by 
the software. Nevertheless, any missing or implausible data can be excluded from the dataset. After 
an initial check of the data, some inconsistencies were identified and attributed to sensor detection 
errors which occasionally led to invalid or erroneous values. For the consumption analysis, the data 
has been cleaned to address this issue. The cleaning process included omitting missing values from 
the dataset, as well as rows containing outliers such as exceptionally high average speed values 

 
2  https://www.dwd.de/EN/ourservices/opendata/opendata.html  
3  https://www.eea.europa.eu/en/datahub/datahubitem-view/d08852bc-7b5f-4835-a776-08362e2fbf4b  

https://www.dwd.de/EN/ourservices/opendata/opendata.html
https://www.eea.europa.eu/en/datahub/datahubitem-view/d08852bc-7b5f-4835-a776-08362e2fbf4b
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(average speed of more than 90 km/h). To sum up, given the rather limited reliability of the primary 
data, and the limited ways to check their accuracy, it is possible that other incorrect values have not 
been detected during the data cleaning phase. 

Activity pattern analysis 

For the activity pattern analysis, the charging times and the duration of charging events for various 
vehicles are examined, along with their evolution over time. Due to the limited data quality of this 
dataset described below, the analysis has been primarily carried out using a qualitative approach, 
based on the visualisation of each day’s activity pattern. Additionally, some statistical figures were 
calculated for each day and vehicle. 

Prior to the analysis, the dataset underwent a cleaning process that differed slightly from the 
approach used in the energy consumption analysis. While the latter focused exclusively on driving 
events, the charging pattern analysis required a comprehensive dataset encompassing all vehicle 
activities – driving, charging, and stationary periods – over the course of entire days. Due to 
uncertainties in the recorded start and end times of charging and standing events, the data cleaning 
process emphasised the reconstruction of realistic and plausible daily activity patterns, while 
eliminating anomalous or erroneous entries. 

Two primary types of data quality issues were identified. First, certain vehicles exhibited implausible 
daily activity profiles, characterised by significant data gaps or evident measurement errors. To 
address this, entire days were excluded from the analysis if they met any of the following criteria: 
absence of any driving activity, total driving duration of less than one hour, presence of unassignable 
activity labels, or recorded activity durations summing to less than 10 hours or more than 35 hours. 
These thresholds were established for two reasons. First of all, a significant number of days exhibited 
missing data, particularly during nighttime hours, and in some cases, also during the day. Missing 
values occurring overnight were interpreted as prolonged stationary periods. In order to retain days 
with plausible, yet undetected, extended standing times – while simultaneously excluding days with 
excessive data loss – a lower threshold of 10 hours of total recorded activity was established. 
Secondly, many days contained overlapping activity entries extending over multiple hours, resulting 
in total daily activity durations significantly exceeding 24 hours. To avoid excluding otherwise 
plausible days affected by minor overlaps – particularly during nighttime transitions – a maximum 
threshold of 35 hours of cumulative activity duration per day was applied. 

The second category of errors involved implausible or physically impossible events, such as 
unrealistic average speeds or overlapping activity labels. To correct these issues, all events lacking 
labels or reporting speeds exceeding 120 km/h were removed. Additionally, instances where 
stationary events overlapped with either charging or driving events were resolved by prioritizing 
driving and charging activities. This was achieved by inspecting the three events preceding and 
following each instance of overlap and adjusting the activity labels accordingly. 

Even though many days were excluded due to implausibility, it is still possible that days with data 
and measurement mistakes are left in the dataset and distort the analysis. 

In view of the many changes apported to the dataset during this cleaning process, it was considered 
judicious to move away from a purely quantitative analysis, as the results could be biased. Instead, 
the decision was taken to employ a qualitative approach for the analysis, with a focus on the 
examination of daily activity patterns through visualisation.  
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The resulting dataset contains 16 weeks of data, with a total of 166 weeks and 688 days across 
all 19 vehicles. Due to data availability and quality, for each vehicle a different quantity of days 
are analysed, with an average of 34 days per vehicle. 

Table 2-2: Characteristics of available data. 

 Energy consumption data Activity pattern data 

Number of vehicles 19 19 

Total number of weeks 16 16 

Number of vehicle weeks / days 37 / 119 166 / 688 

Number of trips 807 - 

Average number of trips per day 6.8 - 

Source: own illustration 

3 Method 

The analysis focuses on two aspects: the vehicle energy consumption and vehicle activity pattern.  

3.1 Energy consumption 

For the energy consumption analysis, a multi-parameter linear regression has been conducted for 
the selected parameters. To this end, the ordinary least squares (OLS) regression method of the 
“statsmodels” python module was used. 

Firsts observation suggests a notable correlation between the vehicle total energy consumption and 
the distance travelled, as shown in Figure 3-1. Indeed, the vehicle energy consumption (in kWh/km) 
are remarkably high for mileage that remain below 5 km.  
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Figure 3-1:  Average total energy consumption (kWh/km) vs. distance covered (km) 

 
Source: own illustration 

Discussions with the manufacturer and case study partners revealed that this is mainly because the 
vehicle start-up process is highly energy intensive. When the vehicle starts, the system records a 
peak of energy consumption in kWh. As the average consumption is calculated in kWh/km, this peak 
is balanced out over longer distances. The manifestation of this effects can be further observed 
through the graphical representation of average consumption against average speed (see Figure 
3-2). Consistently, high energy consumption values are associated with low average speed values: 
In the case of a vehicle trip that is subject to frequent stops, the average speed observed is likely to 
be low, whilst the multiple start-ups contribute to higher energy consumption. On top of this, the 
effect of recuperation is greater when the vehicle has a high nominal speed, resulting in lower 
consumption values for high average speeds.  
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Figure 3-2:  Average total consumption (kWh/km) vs. average speed (km/h) for 
distances below 20 km (left). Point distribution (lighter point colour 
indicates a high density of points) and fitted curve f in yellow for a dataset 
without vehicles operating with a TCU (right). 

  
Source: own illustration 

Considering these observations, the average speed 𝑠𝑠 must be included as a variable in the 
regression alongside the other selected parameters. Additionally, a minority of vehicles operate with 
temperature control units (TCU). The impact of TCU on consumption remains uncertain, particularly 
with regard to the potential dependence of this effect on the other parameters listed below. A 
temperature-dependent effect, for example, cannot be ruled out, as it could be expected that a high 
outside temperature would lead to an increase in energy consumption to cool the unit. Since the 
regression should not include any unaccounted dependencies, vehicles with cooling units were first 
excluded from the data set for the regression analysis.  

To develop a robust yet parsimonious regression model with a clear focus on the most relevant 
explanatory variables, the analysis includes only independent effects. Consequently, data points 
involving a cooling unit are excluded to reduce complexity and potential confounding. 

The reduced dataset contains 5.431 rows. The effects of the TCU are examined in more detail in 
section 4.1.5. Therefore, the parameters studied are as follows:  

Table 3-1: Statistics of input variables. 

Variable name Unit Range Mean Standard deviation 

     

Average speed 𝑠𝑠 km/h 0.02 to 90 44 17.6 

Exterior temperature 𝑡𝑡 °C -7 to 36 11.8 8.5 

Vehicle gross 
combination weight 𝑤𝑤 

tonnes 11 to 40 20.4 7.5 

The altitude difference 𝑎𝑎 m -785 to 786 -0.2 94.9 

Source: own illustration 
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As observed previously, the relation between consumption and average speed is not linear. By 
looking at the distribution of points, it is possible to recognise a trend line somewhat similar to 
the form of a function of the type: 

(𝟏𝟏)      𝒇𝒇(𝒔𝒔) = 𝒂𝒂′ ∙ 𝒆𝒆−𝒃𝒃′∙𝒔𝒔 + 𝒄𝒄′ 

where 𝑎𝑎′, 𝑏𝑏′ and 𝑐𝑐′ are constants, and 𝑠𝑠 the average speed in km/h. 

When fitting this function to the data, in yellow in Figure 3-2, the 𝑅𝑅2 value obtained equals 0.42 
which is relatively low. Nevertheless, given the influence of additional parameters (including 
those not examined in the scope of this study), this seems to be a satisfactory fit for an 
approximate description of the effect of the average speed on fuel consumption. Furthermore, 
Figure 3-2, which illustrates the density of points (light colour for a high density), demonstrates 
that they are predominantly concentrated at speeds between 40 and 60 km/h, indicating that 
the fit performs with optimal precision within this average speed range. However, between 0 
and 20 km/h, some points deviate significantly from the curve, hereby signifying the presence 
of a substantial number of outliers within this particular range. 

For the other parameters, observations show that, in principle, temperature 𝑡𝑡, weight 𝑤𝑤 and 
altitude difference 𝑎𝑎 seem to present a linear relationship with the average consumption, as 
illustrated in Figure 3-3 and Figure 3-4. 

Figure 3-3:  Average total consumption (kWh/km) vs. temperature (°C), for 40<s<60 
km/h, w=16 t, |a|<200 m and no TCU (left). Average total consumption 
(kWh/km) vs. weight (t), for 40<s<60 km/h, t=10 °C, |a|<200 m, and no TCU 
(right). 

  

 

Source: own illustration 
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Figure 3-4:  Plot of the average total consumption (kWh/km) vs. altitude difference (m), 
for 40<s<60 km/h, w=17 T, 0<t<20 °C, and no TCU. 

 
Source: own illustration 

Finally, we get the following expression for 𝐶𝐶 the average consumption in kWh/km: 

(𝟐𝟐)       𝑪𝑪 = 𝒎𝒎𝟏𝟏 ∙ 𝒆𝒆−𝒌𝒌𝟏𝟏∙𝒔𝒔 + 𝒎𝒎𝟐𝟐 ∙ 𝒕𝒕 + 𝒎𝒎𝟑𝟑 ∙ 𝒘𝒘 + 𝒎𝒎𝟒𝟒 ∙ 𝒂𝒂 + 𝒎𝒎𝟓𝟓 

where 𝑚𝑚1, 𝑘𝑘1,  𝑚𝑚2, 𝑚𝑚3, 𝑚𝑚4, 𝑚𝑚5 are constant coefficients. 

The regression is performed utilising 𝑘𝑘1 ≃ 0.17 found when fitting (1) to the dataset without TCU. 

3.2 Activity and charging pattern 

The activity patterns of each day and vehicle were plotted and visually analysed using start and end 
times. Following a qualitative approach, the patterns were clustered, and the discussion was 
enriched by additional information collected during visits to case study partners.  

For the statistical analysis, each day was examined, and the mean, minimum, and maximum values 
for the length and frequency of the activities driving, charging and standing were calculated. To 
analyse the duration and frequency of activities per day, each day was defined as ending at 
12:00 pm. Events that extended beyond this cutoff were split into two separate entries: one assigned 
to the day before midnight and one to the following day. For the purpose of counting the number of 
events per day, each event was attributed to the day on which it began. Only charging events lasting 
more than 5 minutes were considered for the number of charging events, the total length of all 
“standing” events (including “standing while charging”) per day was calculated by subtracting the 
total “driving” time from 24. For each vehicle, statistics were calculated based on its observed days. 
However, days with fewer than one charging event or one hour of driving or, fewer than 10 km of 
driving, or a longest charging event exceeding 10 minutes were excluded. This was done to prevent 
significant distortion due to unusual day patterns. As mentioned above (chapter limitations), only 
days with driving and charging events were included, i.e. holidays, weekends and other days without 
driving events were not examined, such as days spent by vehicles in workshops. As a result, 688 
days were analysed, yielding an average of 34 days per vehicle. It is important to note that the 
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statistical analysis should be interpreted with caution, in consideration of the numerous modifications 
made to the dataset during the cleaning process.  

4 Results 

4.1 Real world energy consumption  

4.1.1 Average energy consumption  

The objective of this section is to compare the energy consumption observed in real-world data with 
the values reported by the vehicle manufacturer. To ensure comparability, data collected under 
conditions similar to those used in the manufacturer’s testing were selected. 

According to Mercedes-Benz, the eActros 300 achieves a range of up to 300 km with a usable battery 
capacity of 291 kWh (installed capacity of 336 kWh), corresponding to an average energy 
consumption of approximately 0.97 kWh/km. This value is reported to have been measured “under 
optimal conditions, after preconditioning, […] for a partially loaded vehicle operating in regional 
delivery transport without a trailer, with a 4x2 axle configuration at an ambient temperature of 20°C” 
4. A similar specification is given for the eActros 400, which achieves a range of up to 400 km with 
a usable battery capacity of 388 kWh (installed capacity of 448 kWh). 

From the data collected, we can calculate the consumption values obtained under similar conditions. 
However, it should be noted that not all the vehicles in the studied sample are equipped with a 4x2 
configuration. In order to obtain sufficient data points for a reliable statement, the values of all 
19 vehicles were taken into account, regardless of their axle configuration. To this end, we selected 
the consumption data for events with a total vehicle weight corresponding to these of a 4x2 
configuration: The manufacturer technical information indicates these have a “maximal technically 
permissible gross combination weight of 19 t” and a “payload without body of approx. 10,6 t” 
(Mercedes Benz, 2024). As the manufacturer’s measures were obtained for “a partially loaded 
vehicle [..] at an ambient temperature of 20°C”, we selected energy consumption values obtained for 
events with a vehicle weight range of 11 to 18 tonnes. As there are not enough data points in the 
dataset to produce reliable results with 𝑡𝑡=20°C, so the temperature range is expended to 19 and 
21 °C. Given that the manufacturer did not provide indications on topography, we selected trips with 
a recorded absolute altitude difference range lower than 200 m, which minimise the effect of 
topography on final results. The mean consumption value measured under these conditions is of 
0.96 kWh/km, as shown in Figure 4-1, which is very close to the manufacturer’s stated value. The 
discrepancy between the manufacturer's figure and the observed value is -1.03 %. 

 
4  https://hub.mercedes-benz-trucks.com/de/de/trucks/eactros-300-400.html#actros300-400_technical-data, 

last accessed on 2024-10-31 

https://hub.mercedes-benz-trucks.com/de/de/trucks/eactros-300-400.html#actros300-400_technical-data
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Figure 4-1:  Box plot of the energy consumption, measured for a sample of vehicles 
with vehicle weight range of 11 to 18 t, for an exterior temperature from 19 
to 21 °C, altitude differences |a|<200 m, and vehicles without a TCU. 

 
Source: own illustration 

The mean value is signalised by a green triangle, the median value by a black central horizontal line 

 

Table 4-1: Descriptive statistics of the data sample. 

Parameter type Value 

Mean energy consumption 0,96 kWh/km 

Sample dimension 211 values 

Standard deviation 0.75 

First quartile (25 %-percentile) 0.66 

Median (50 %-percentile) 0.74 

Third quartile (75 %-percentile) 0.92 

Source: own illustration 

Results show that the median deviates considerably from the mean value, a discrepancy that is 
attributable to the observed heterogeneity in the data sample, see Figure 4-1. This can partly be 
explained by the high consumption values observed for low average speed values.  

4.1.2 Influence of parameters on the vehicle average consumption 

In consideration of the limitations outlined in section 2.2, the objective of this section is to provide an 
approximate estimation of the impact of the parameters on the vehicle's total energy consumption. 
Results of the ordinary least square (OLS) regression are shown below in Table 4-2. 
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Table 4-2: Output statistics of the performed OLS regression analysis. 

General statistics 

N 5.431 

Df residuals 5.426 

R2 0.474 

Adj. R2 0.473 

Prob (F-
statistics) 

0.00 

 

Coef. 
name 

Corresponding 
variable 

Coef. 
value 

Std 
err t P>|t| 

Confidence 
interval 

[0.025 ; 0.975] 

𝑚𝑚1 Speed 𝑒𝑒−𝑘𝑘1∙𝑠𝑠 5.1304 0.076 67.181 0.000 4.981 5.280 

𝑚𝑚2 Temperature 𝑡𝑡 -0.0132 0.001 -12.071 0.000 -0.015 -0.011 

𝑚𝑚3 Weight 𝑤𝑤 0.0183 0.001 14.752 0.000 0.016 0.021 

𝑚𝑚4 Altitude 
difference 𝑎𝑎 

0.0015 9.76e-
05 

15.150 0.000 0.001 0.002 

𝑚𝑚5 Constant 0.7091 0.029 24.453 0.000 0.652 0.766 
 

Source: own illustration 

Results show that all P-values associated with each parameter are null, which means that all 
coefficient obtained are statistically significant, that is, that the independent variables 𝑠𝑠, 𝑡𝑡, 𝑤𝑤, and 𝑎𝑎 
all have an effect on the average consumption 𝐶𝐶, as expected. The confidence interval indicates 
that the true coefficient falls within the specified range, with 95 % confidence. Intervals obtained 
are minimal, with the exception of the interval related to speed, and, to a lesser extent, to the 
constant. 

𝑅𝑅2 of this multivariable regression equals 0.463 which can be considered as low. Nevertheless, 
considering the limitations exposed in section 2.2., that is, the presence of additional factors 
that could not be taken into account in this study, the inherent uncertainty related to the 
calculated parameter used to study the effects of topography, the possible remaining incorrect 
values in the dataset, the obtained coefficients appear to provide a reasonable first estimate of 
the order of magnitude of the effect of parameters on the average consumption. Furthermore, 
given the fit of the exponential function presented in section 3.1, the coefficients can be 
expected to predict more accurately the results for a range of speeds from 20 to 90 km/h. 

In concrete terms, the results indicate that for a vehicle without a TCU, a weight increase of 
10 t, the energy consumption is expected to rise by 0.18 kWh/km (𝑚𝑚3 ∙ 10). An increase in 
temperature by 10°C is predicted to yield a decrease in energy consumption of -0.13 kWh/km, 
and a variation in altitude of 100 metres results in a difference in energy consumption of roughly 
0.15 kWh/km. For a mean energy consumption of 0.96 kWh/km (see section 4.1.1), these 
effects are not negligible and should not be overlooked by users. Whereby the determined 
additional energy consumption when the altitude difference changes must be viewed critically, 
since no statement can be made on the basis of the available data in connection with the more 
meaningful gradient. Due to its non-linear nature, the effect of speed is more complex to interpret. 
For this reason, an exemplary case is examined: when the average speed of a trip increases from 
20 km/h to 30 km/h, the average energy consumption decreases by 0.138 kWh/km. However, this 
effect should be interpreted with caution, as speed is strongly correlated with route length and trip 
type. In this dataset, low average speeds are typically associated with short-distance trips and start-
up phases, which involve frequent acceleration and are therefore linked to disproportionately high 
energy consumption. 
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These results show that a user who is on the road in a region where the average temperature is low, 
for example at high altitudes, must consider that their vehicles will be able to cover fewer kilometres 
than in a region where the average temperature is higher. For an eActros400 vehicle travelling in 
conditions as described in section 4.1.1, but with 10°C outside temperature instead of 20°C, this 
could mean that the vehicle could cover 358 km instead of 400. 

Figure 4-2 illustrates the variation in energy consumption corresponding to the minimum and 
maximum values of each parameter within the analysed dataset (see Table 3-1 for value ranges). 
This provides a realistic depiction of consumption variability and the potential impact of each 
parameter. Specifically, assuming a baseline consumption constant m5=0.70 kWh/km, the first bar 
indicates that a lorry with the minimum recorded weight (11 t) contributes an additional 0.20 kWh/km, 
while a lorry with the maximum weight (40 t) adds approximately 0.73 kWh/km to the baseline. 

Similarly, temperature shows notable effects: the highest recorded temperature (36 °C) decreases 
the baseline consumption by 0.47 kWh/km, whereas the lowest temperature (-7 °C) results in a 
modest increase of 0.09 kWh/km. The greatest observed altitude gain (786 m) increases energy 
consumption by 1.16 kWh/km, while a comparable descent (-785 m) decreases it by the same 
amount. These results should be interpreted with caution, as altitude is recorded only as net 
elevation change, which may not fully capture the actual elevation profile along a route. 

Among all parameters, average speed exhibits the most pronounced variation in energy 
consumption (5.11 kWh/km). This can be attributed to its strong correlation with route length and trip 
type. In this dataset, low average speeds are typically associated with short-distance trips and start-
up phases, which involve frequent acceleration and are therefore linked to disproportionately high 
energy consumption. 

In summary, all four parameters - vehicle weight, ambient temperature, altitude difference, and 
average speed - demonstrate significant influence on energy consumption within realistic, real-world 
parameter ranges. 

Figure 4-2:  Expected fluctuations in average total consumption (kWh/km) for the 
minimum and maximum values of the parameter set excluding vehicles 
with TCU. 

 
Source: ow illustration 
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4.1.3 Average energy consumption for different speed categories 

As the average speed has a major impact on the energy consumption, average consumption values 
can be calculated for different speed ranges. 

Determining precisely the drive cycle solely on the basis of average speed is not feasible, as 
explained in section 2.2. In addition, the software does not record the route taken between the start 
and end points, which makes it impossible to determine the exact nature of the road taken (highway, 
urban road, etc). However, it is possible to identify broad categories based on the average speed 𝑠𝑠 
and distance covered 𝑑𝑑 in km: 

• 𝑠𝑠 ≤ 5 𝑘𝑘𝑚𝑚/ℎ and 𝑑𝑑 ≤ 1 𝑘𝑘𝑚𝑚: This corresponds most probably to a situation in which the vehicle 
is in idling mode. For instance, stuck in a traffic jam in town, or moving slowly between 
different stations at the depot.  

• 𝑘𝑘𝑚𝑚/ℎ < 𝑠𝑠 ≤ 20 𝑘𝑘𝑚𝑚/ℎ and 𝑑𝑑 > 1 𝑘𝑘𝑚𝑚: It is not possible to make any reliable statements about 
the driving situation. The vehicle could be moving at low average speed in an urban or rural 
environment, or at higher speed but with a large number of stops. In an urban environment, 
when the vehicle is subject to repeated decelerations, the effects of regenerative braking 
should be significant. However, this effect is impossible to detect precisely here, since only 
the total consumption per trip is analysed. 

• 20 𝑘𝑘𝑚𝑚/ℎ < 𝑠𝑠 ≤ 60 𝑘𝑘𝑚𝑚/ℎ - The vehicle's operating condition remains uncertain. For example, 
the vehicle could be moving at a constant low speed between 20 and 60 km/h or at a high 
speed but with frequent stops. 

• 𝑠𝑠 > 60 𝑘𝑘𝑚𝑚/ℎ - Above the average speed of 60 km/h, the vehicle is very likely to be moving 
on a motorway or at high speed on a road in a rural area, with few stops.  

Figure 4-3:  Average consumption in kWh/km vs. average speed in km/h, split into 
broad average speed categories. 

 
Source: own illustration 
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Thereafter, it is possible to recalculate the mean consumptions obtained for these four categories, 
for similar conditions to those described in section 4.1.1. However, there are not enough values in 
these reduced datasets to produce reliable results, so the temperature range is expanded to 19 and 
21 °C (instead of solely 20°C). The results shown in Table 4-3 are obtained. 

Table 4-3: Descriptive statistics of samples for vehicles with weight range of 11 to 
18 t, at outside temperatures between 19 and 21 °C, altitude differences 
|a|<200 m , excluding vehicles with TCU. 

Categories 𝒔𝒔 ≤ 𝟓𝟓 𝒌𝒌𝒎𝒎/𝒉𝒉   and 
𝒅𝒅 ≤ 𝟏𝟏 𝒌𝒌𝒎𝒎 

𝟓𝟓 < 𝒔𝒔 ≤ 𝟐𝟐𝟐𝟐 𝒌𝒌𝒎𝒎/
𝒉𝒉   and 𝒅𝒅 >

𝟏𝟏 𝒌𝒌𝒎𝒎 
𝟐𝟐𝟐𝟐 < 𝒔𝒔 ≤ 𝟔𝟔𝟐𝟐 𝒌𝒌𝒎𝒎/𝒉𝒉 𝒔𝒔 > 𝟔𝟔𝟐𝟐 𝒌𝒌𝒎𝒎/𝒉𝒉 

Mean energy 
consumption 2.9 1.18 0.80 0.67 

Sample dimension 10 22 131 33 
Standard deviation 1.75 0.85 0.37 0.14 
First quartile (25 %-

percentile) 
1.13 0.80 0.66 0.60 

Median (50 %-
percentile) 

3.34 0.97 0.72 0.67 

Third quartile (75 %-
percentile) 

4.53 1.11 0.83 0.74 

Source: own illustration 
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Figure 4-4:  Box plots of the four defined categories, mean values are marked by a 
green triangle, median values by a black central horizontal line. 

 
Source: own illustration 

The elevated standard deviation obtained for the categories  𝑠𝑠 ≤ 5 𝑘𝑘𝑚𝑚/ℎ   and 𝑑𝑑 ≤ 1 𝑘𝑘𝑚𝑚 and  
 5 < 𝑠𝑠 ≤ 20 𝑘𝑘𝑚𝑚/ℎ   and 𝑑𝑑 > 1 𝑘𝑘𝑚𝑚 indicate a high degree of variance in the observed data, as already 
noted previously. The average consumption value obtained for 𝑠𝑠 > 60 𝑘𝑘𝑚𝑚/ℎ is the lowest. In this 
category, it can be assumed that the vehicles are travelling long distances with a limited number of 
stops. As the vehicle's speed increases, the recuperation effect becomes more pronounced, which 
contributes to a reduction of energy consumption. 

The theoretical expected value can also be calculated using the function previously defined in  
(𝟐𝟐). Given the fit’s limitations, a speed of 40 km/h is chosen, since it is known that the model performs 
best in this speed range. 

𝑪𝑪 = 𝒎𝒎𝟏𝟏 ∙ 𝒆𝒆−𝒌𝒌𝟏𝟏∙𝒔𝒔 + 𝒎𝒎𝟐𝟐 ∙ 𝒕𝒕 + 𝒎𝒎𝟑𝟑 ∙ 𝒘𝒘 + 𝒎𝒎𝟒𝟒 ∙ 𝒂𝒂 + 𝒎𝒎𝟓𝟓 

𝑪𝑪 = 𝟓𝟓,𝟏𝟏𝟑𝟑 ∙ 𝒆𝒆−𝟐𝟐,𝟏𝟏𝟏𝟏𝟒𝟒∙𝟒𝟒𝟐𝟐 − 𝟐𝟐.𝟐𝟐𝟏𝟏𝟑𝟑𝟏𝟏 ∙ 𝟐𝟐𝟐𝟐 + 𝟐𝟐.𝟐𝟐𝟏𝟏𝟎𝟎𝟑𝟑 ∙ 𝟏𝟏𝟒𝟒,𝟓𝟓 + 𝟐𝟐,𝟐𝟐𝟐𝟐𝟏𝟏 ∙ 𝟐𝟐 + 𝟐𝟐 + 𝟐𝟐.𝟏𝟏𝟏𝟏𝟐𝟐 

𝑪𝑪 ≃ 𝟐𝟐.𝟏𝟏𝟐𝟐 

The comparison of the results of the function previously calculated based on the whole dataset with 
the data sample between 40 and 60 kWh/km above confirms the relatively good model fit in this 
speed range, as the median value of 0.72 kWh/km is met and the deviation from the mean value is 
relatively low at 10 %. 
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4.1.4 Average energy consumption for different weight categories 

The case study partners have vehicles with different combinations: 4x2, 6x2 axle combination, 
lorries with a trailer. 

Table 4-4: Axle/vehicle configuration and vehicle weight 
Axles / configuration 2 Axles 3 Axles Lorry carrying a trailer 

Maximum permissible weight 19 t 27 t 40 t 

Quelle: own illustration 

According to these specifications, the following four weight categories are established: 

• 𝑤𝑤 ≤ 19 𝑡𝑡 

• 20 ≤ 𝑤𝑤 ≤ 27 𝑡𝑡   

• 28 ≤ 𝑤𝑤 ≤ 34 𝑡𝑡 

• 34 ≤ 𝑤𝑤 ≤ 40 𝑡𝑡 

Subsequently, recalculation of the mean consumptions obtained for these four categories is possible. 
For similar conditions to those described in section 4.1.1, with a temperature range that is expanded 
to 19 and 21 °C and an average speed between 20 and 60 km/h, the following results shown in Table 
4-5 are obtained. 

Table 4-5: Descriptive statistics of samples for vehicles with 20 km/h<s≤60 km/h, at 
outside temperatures between 19 and 21 °C, altitude differences |a|<200 
m, excluding vehicles with TCU. 

Categories    𝒘𝒘 ≤ 𝟏𝟏𝟏𝟏 𝒕𝒕 𝟐𝟐𝟐𝟐 ≤ 𝒘𝒘 ≤ 𝟐𝟐𝟏𝟏 𝒕𝒕    𝟐𝟐𝟎𝟎 ≤ 𝒘𝒘 ≤ 𝟑𝟑𝟒𝟒 𝒕𝒕 𝟑𝟑𝟓𝟓 ≤ 𝒘𝒘 ≤ 𝟒𝟒𝟐𝟐 𝒕𝒕 

Mean energy 
consumption 

0.80 0.90 1.03 1.14 

Sample dimension 137 72 77 32 

Standard deviation 0.36 0.15 0.17 0.14 

First quartile 
(25 %-percentile) 

0.67 0.80 0.95 1.06 

Median (50 %-
percentile) 

0.72 0.91 1.04 1.12 

Third quartile 
(75 %-percentile) 

0.83 0.99 1.12 1.67 

Source: own illustration 
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Figure 4-5:  Box plots of the four defined categories, mean values are marked by a 
green triangle, median values by a black central horizontal line. 

 
Source: own illustration 

The theoretical expected value can also be calculated using the function previously defined in  
(𝟐𝟐). In this way, for a speed of 40 km/h, and a temperature of 20 °C. 

Table 4-6: Calculated average energy consumption depending on vehicle weight and 
deviation from measured values 

Weight (t) 14,5 23,5 31 37 

Calculated theoritical average consumption value (kWh/km) 0.72 0.88 1.02 1.13 

Deviation from measured mean values of Table 4-4 -10 % -2 % -1 % -1 % 

Quelle: own illustration 

In these cases, the regression also performs relatively well. The result of the regression formula only 
deviates from the mean of the data sample being more than 2 % in the lowest weight category 
(14.5 t), which is also characterised by the greatest variance of the individual values. 
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4.1.5 Effect of temperature control unit on vehicle energy consumption 

Vehicles with a temperature control unit (TCU) were not included in the previous analyses due to 
concerns about potential dependence on temperature, as described above (see Section 3.1). 

Thus, in order to study the effect of the cooling unit, the energy consumption of vehicles with 
a cooling unit was analysed separately. The presence of the cooling unit can be represented by 
a dummy variable, as follows: 

�
𝑢𝑢 = 1  if there is a cooling unit installed
𝑢𝑢 = 0                 if there is no cooling unit 

Despite not performing a regression analysis including 𝑢𝑢 as a variable, it is still possible to compare 
the energy consumption obtained with and without a TCU for parameters set to specific values. This 
could provide preliminary information regarding the effect of TCU on energy consumption and, if any, 
allow for the estimation of the order of magnitude of the change. 

Figure 4-6 shows the average total consumption of all vehicles weighing between 11 to 19 tonnes, 
with an average speed range of 40 to 60 km/h and an altitude difference of less than 100 meters.  

Figure 4-6:  Plot of average energy consumption vs. temperature for vehicles with 
weight range of 11 to 19 T, altitude differences |a|<100 m, 40 <s≤60 km/h 
(left). Fitted regression line for the same plot (right). 

  
Source: own illustration 

These results show that the presence of a temperature control unit increases the average energy 
consumption of the vehicle. Indeed, the linear regression performed on this sub-dataset suggests 
that vehicles with a TCU have an average increase in energy consumption of 0,092 kWh/km 
compared to vehicles without TCU. The magnitude of the additional consumption is confirmed by 
the manufacturer's own unpublished measurement series. Compared to the range of variations 
caused by the other parameters discussed above, this appears to be a relatively small effect. 
Surprisingly, at first it seems that temperature has no visible effect on the energy consumption of 
vehicles with TCU (where we might have expected a vehicle to consume more energy in summer, 
for example, to cool the unit down more). However, the effect of the presence of a cooling unit on 
energy consumption remains constant across varying temperatures, as both regression lines show 
similar slopes. One potential explanation for this phenomenon is that the temperature control units 
are preconditioned in the depot. Indeed, the case study partners have indicated that the units are 
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already cooled down when the vehicle starts the tour. Since the units are insulated, the vehicle would 
not require a significant amount of energy to maintain the desired temperature throughout the 
journey. Further analysis would be required to better understand the relationship between cooling 
unit, outside temperature and vehicle energy consumption. 

4.1.5.1 Comparison with other energy consumption data of electric trucks 

A comparison with other published consumption figures for trucks can be useful to facilitate a more 
profound comprehension of the specific energy consumption figures presented in section 4.1. 
Consumption figures can be found, for example, in tests in the specialised press, in automotive 
magazines or on internet portals focusing on electromobility. When interpreting the results, however, 
it should be noted that the other available data on energy consumption was obtained under 
conditions that differed significantly in some cases and therefore cannot be compared directly with 
the results from the 19 vehicles analysed in the ELV-LIVE project. Nevertheless, preliminary trends 
can be identified. 

Figure 4-7: Average consumption (kWh/km) of the 19 vehicles in real operation  
(ELV-LIVE) compared to measured values from comparable current 
applications* 

 
*Data from other sources with significantly deviating conditions and therefore only comparable to a limited extent (see text). 
Quelle: own illustration  

For instance, the eActros 300, the vehicle examined by the ELV-LIVE project, was tested by the 
German magazine “Verkehrsrundschau” (Faehrmann 2023) in year 2023. In this test, the 4x2 
vehicle, with a total weight of 18.6 tonnes, was driven over a distance of 171 km on Italian roads. 
The specific consumption of the vehicle was determined via the on-board computer, and was found 
to be 0.87 kWh/km. The majority of this test was conducted on the motorway, characterised by 
relatively flat terrain and a speed of 85 km/h. The test consumption is marginally higher than the 
median consumption of 0.8 kWh/km determined in section 4.1.4 for the weight class ≤19t and 
significantly higher than the median consumption of 0.67 kWh/km determined in section 4.1.3 for 
journeys over 60 km/h.  
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The magazine Logistra (Reichel 2024) also reports on a test of the eActros300 with a total payload 
of 6.9 tonnes by the company Cargo-Partner in regional distribution transport. It is reported that the 
vehicle, operating regional distribution transport operations in the vicinity of Vienna Airport, 
consumed 1 kWh/km. The slightly smaller Fuso eCanter, with a payload of 3.1 tonnes, has also been 
cited as consuming 1 kWh/km, but for a driving profile that includes both inner-city journeys in 
Bratislava and long-distance journeys. It is noteworthy that the testing phase started in March/April, 
so there were probably no challenging winter weather conditions. 

The eActros 300 has also been tested by Transport magazine (Transport - Die Zeitung für den 
Güterverkehr 2023), with a test consumption of 0.70 kWh/km. In this case, however, the test is only 
carried out with half the maximum payload, i.e. 7.5 tonnes.  

The effect of speed and vehicle mass has been demonstrated by the evaluation of the journeys of 
20 DAF Electric LFs in the UK over a total of 287,000 km. The average consumption for motorway 
journeys was between 0.8 and 0.9 kWh/km, depending on the payload, and between 0.7 and 
0.8 kWh/km for rural traffic. The highest energy consumption was observed in urban traffic, ranging 
from 0.9 to 1.3 kWh/km (Cenex 2024). The mean consumption across the three weight classes is 
0.9 kWh/km, which is significantly higher than the mean consumption of the weight class <19 tonnes 
determined in this study of 0.8 kWh/km and the median consumption of 0.72 kWh/km. It is noteworthy 
that the discrepancy in consumption varies considerably between drive cycles, urban, rural and 
motorway. It is important to note that this analysis based on the drive cycle could not be conducted 
using the data collected in ELV-LIVE, as the nominal speed was not available in the dataset (see 
section 2.2).  

As discussed in section 4.1.2, the topography exerts a significant influence on energy consumption. 
This assertion is in line with the observations made during a test drive of a fully electric DAF CF with 
trailer and 8-tonne payload (total weight around 26 tonnes). The test route ran from Salzburg via the 
motorway, country roads and the Grossglockner High Alpine Road and back, covering a total of 
302 km. The total altitude covered was approximately 3,400 metres. The consumption was 
measured at 1.77 kWh/km on the 117 km long route with a slight incline (730 metres in altitude), and 
2.7 kWh/km on a second, significantly steeper section (69 km, 2,664 metres in altitude) (Vogt-Möbs 
und Schuhmacher 2022).  

A test drive with the eActros 600 tractor in Norway at 20°C showed a similar result. When travelling 
uphill, the vehicle consumed 1.24 kWh/km, compared to an average of 1.06 kWh/km. In contrast, 
during downhill driving, the consumption was observed to be as low as 0.84 kWh/km, which is 
approximately one-third of the consumption levels recorded during uphill driving (Schaal 2024).  

The German automobile club ADAC also conducted a test of the eActros 600, reporting 
a consumption of 0.88 kWh/km for a 350-kilometre test drive from Munich to Wörth (ADAC 2024). 

In 2024, an electric tractor unit from Scania, with a trailer (total weight 38 tonnes), was driven from 
Södertälje in Sweden to Istanbul in Turkey as part of a marketing campaign. Scania has stated that 
the average fuel consumption for this 4,439-kilometre journey was 1.15 kWh/km. The stated 
108 hours of driving time results in an average speed of 41 km/h (Scania 2024). 

In summary, it can be concluded that the consumption values determined in this section from real-
world operation of 19 vehicles are within the range of the published test consumption values. 
Furthermore, trends such as increased consumption due to demanding topography are also 
confirmed. Additionally, the consumption figures derived from the driving tests confirm that 
consumption is subject to large variations and that factors such as usage patterns (regional 
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distribution/motorway), topography and payload have a significant influence on the electricity 
consumption of electric trucks.  

4.2 Real world activity patterns 

4.2.1 Operating conditions and available charging infrastructure 

The battery electric vehicles considered are used by the five case study partners exclusively in 
regional transport. In most cases, the vehicles are used only on weekdays. In particular, in the use 
cases for transporting one's own goods, they are also used on Saturdays (e.g. to supply retailers 
with fresh produce). In these cases, Saturdays were also included in the analyses. The specified 
requirements for state funding associated with vehicle procurement incentivise the highest possible 
degree of utilization of the vehicle, that is a high mileage. The intensity of vehicle use is 
correspondingly high, taking into account the range imposed by the battery capacity. On average, 
the vehicles cover 220 km per day on days when they are used (one shift operation: 160 km; two 
shift operation: 280 km). The range of an average trip varies – depending on the vehicle – from 115 
to 350 km. 

Visits to the case study partners have revealed that current vehicle use mainly follows 
a predetermined plan and is in principle inflexible, which explains the similar patterns over time. This 
can be explained by the constraint of the range, meaning that the partners have at least checked the 
feasibility of their trips and, if necessary, selected in advance the trips that can be made. 
Furthermore, the partners of the case study who have only a few charging stations have indicated 
that they currently have a ‘charging plan’ that determines which vehicle is charged when and where. 
All vehicles return to the depot at the end of a trip or day. All vehicles have access to depot charging 
infrastructure and are usually charged via this. Charging at public charging stations only takes place 
for some vehicles and then only in a few exceptional cases.  

The charging infrastructure is positioned differently depending on the conditions in the depots and 
the operational requirements and has different capacities depending on the location. For example, 
the charging infrastructure is sometimes positioned so that the battery can be charged while the 
vehicle is being loaded and unloaded in the depot. In other cases, the charging infrastructure is 
located centrally in the depot and the vehicles have to be moved to it for battery charging, meaning 
that they cannot be loaded or unloaded during this time. The available charging capacity at the 
respective charging stations varies considerably among the project partners. 

4.2.2 Activity patterns and charging profiles 

The analysis of the activity patterns shows that the vehicles under consideration typically operate in 
regional transport. All deployment patterns are characterised by a high number of short trips and 
frequent stops for loading and unloading goods. A comprehensive overview of the activity patterns 
of all vehicles at the five case study partners is provided in the annex. The vehicles are used 
exclusively during the day and start at around 5 a.m.  
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Figure 4-8:  Exemplary charging pattern for different use cases (one- and two-shift-
operation) and different charging strategies  

Source: own illustration 

However, a clear difference can be seen between vehicles in one-shift and two-shift operation (see 
Figure 4-8). For example, the battery of vehicles in one-shift operation is usually only recharged at 
the end of the tour. Often, the charging process begins immediately after the last trip and the battery 
is charged in the early afternoon (from around 1 p.m.). In some cases, the battery is already fully 
charged by the afternoon, while others take significantly longer to charge, mostly due to the different 
charging capacities. In other cases of single-shift operation, the charging process does not start until 
a few hours after arriving at the depot and ends during the night or just before the start of the next 
morning. This could indicate a limited number of charging points or the strategic use of electricity at 
night. However, it is also partly due to operational reasons. For example, in some cases, the trucks 
are loaded with goods in the evening for the first trip the next morning and then driven to the charging 
station on the company premises at the end of the working day for overnight battery charging. Finally, 
in single-shift operation, there are an average of 1.4 charging events and an average charging time 
of 9 hours. However, there is a high variance, which is illustrated by a standard deviation of more 
than two hours. The long charging times could be due to the different charging capacities in the 
respective depots, but also to measurement errors and incorrectly measured charging activities. 

In the case of two-shift operation, the operating time of the vehicle is significantly longer and extends 
until after 8 p.m. To ensure the higher daytime driving distances, in some cases the battery is 
recharged after the vehicle returns to the depot in the middle of the day during the next loading and 
unloading process, so that it can cope with the second shift. This is particularly the case where a 
charging point has been set up in the immediate vicinity of the goods handling point in the depot. 
The feasibility of this option depends on the specific circumstances of the company and the 
infrastructure available at the customers’ depots. While some case study partners reported the ability 
to charge at every customer location, others indicated that this option is not available to them. In 
some cases, the entire charging activity of a vehicle is limited to the intermediate charges; in others, 
the longer nightly charge of the battery begins after 8 p.m. Depending on the available charging 
power, the charging process is often completed well before midnight. Compared to single-shift 
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operation, there are an average of 4.1 charging events per day and a significantly shorter total 
charging time of 4 hours with a standard deviation of almost 2 hours. The shorter charging times 
may be due to higher available charging power but may also be partly due to higher measurement 
errors, as mentioned above. 

There were no fundamental changes in the activity patterns over the observation period. The basic 
deployment patterns at the case study partner sites were determined when the vehicles were put 
into operation and optimised for the vehicles’ characteristics, so that they could be maintained 
unchanged over the observation period. The available charging infrastructure also remained 
unchanged during the observation period. In individual cases, however, adjustments were made to 
the battery charging strategy. For example, one case study partner reduced the night charging to 
90 % of the battery capacity because the trips in the relevant depot start with a longer descent due 
to the high altitude and this seems a good way to use the recuperation of the vehicle. 

Multi-day idle times on weekdays could be traced in the data but were excluded from the analysis. 
During the observation period, these were mainly associated with workshop stays. These occurred 
rarely overall. Particularly in the early test period, these were associated with longer downtimes due 
to processes in the repair shops that had not yet been established or long delivery times for spare 
parts. However, these were significantly reduced during the course of the trials, which was also 
confirmed by the case study partners. Overall, the case study partners reported only a few technical 
failures, which were also no more frequent than for diesel trucks. 

4.2.3 Flexibilities and approaches for optimization 

The application profiles considered are generally adapted to the properties – in particular the range 
– of the currently available battery-electric trucks. Furthermore, it can be seen, that the requirements 
for the charging infrastructure in two-shift operation are significantly higher. However, particularly 
with regard to charging periods, flexibilities and optimisation potentials can be identified. 

In the current implementation, different charging strategies are used. Some start – presumably 
mainly for practical reasons – with the battery charging process after the last daytime trip, although 
the battery charging time is usually significantly shorter than the vehicle's overnight standing time, 
even at low charging power. As a result, vehicles in single-shift operation stand in the depot overnight 
for 14 to 18 hours and charge for an average of half to one-third of that time. Even in two-shift 
operation, an average downtime of 7 to 8 hours is still achieved. 

With a view to avoiding peak loads in the afternoon and early evening, which are also unfavourable 
from a cost perspective, a modified charging strategy could be implemented, as has already been 
done by some, which, for example, includes a later or more evenly distributed battery charge for the 
electric vehicles. If it is possible to move the vehicles at night, the number of charging points required 
per vehicle could also be reduced. 

On the other hand, the more demanding two-shift operations show that the requirements for battery 
charging during the day can be reduced less easily, since the available time window for the loading 
and unloading process often requires parallel battery charging at the loading bay with the usual 
charging capacities. If such a technical solution is not feasible (e.g. lack of space for installing a 
charging station at the loading bay), vehicles with larger battery capacities or central charging 
stations with very high charging capacity and thus shorter battery charging times are possible 
alternatives, but these tend to be associated with higher costs. In such cases, charging may take 
place at public charging stations or at semi-private infrastructure provided by the customer. Some 
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use cases already show the successful full utilization of opportunity charging, in which no charging 
units are necessary at night. 

In view of the mostly low levels of electrification in the fleets of the case study partners under 
consideration, the optimisation solutions outlined have so far only been partially implemented. 
However, with a view to the further electrification of the fleets, it is already foreseeable that technical 
bottlenecks and considerable costs will increasingly be associated with the provision of further depot 
charging infrastructure and the increased power demand, and that the outlined optimisation 
approaches will therefore probably gain in relevance in the future. At the same time, several case 
study partners plan to reduce flexibility in vehicle deployment and battery charging in the depot by 
procuring battery-electric trucks from the next generation of vehicles with higher battery capacity. 

For the operation of long-distance vehicles, several case study partners see a strong need for public 
high-power charging infrastructure, since, in their estimation, these additional charging requirements 
can only be met to a very limited extent in the depot. 

5 Conclusion 

As part of the evaluation of energy consumption and activity data from current e-truck series vehicles 
in regional transport, important insights into energy consumption and usage patterns were obtained 
from 19 vehicles. 

The calculated average energy consumption per driving event of 0.96 kWh/km for this particular 
dataset shows a very small deviation of -1.03 % from the manufacturer's specification and also fits 
in well with other published data on e-truck energy consumption. The calculated regression provides 
only a satisfactory fit over the entire data set. However, a good fit is achieved in the medium speed 
range. The analyses of the influencing variables show a strong correlation between average speed 
and energy consumption. Particularly high energy consumption is obtained for very low speeds. 
These are probably mainly associated with starting processes and are usually connected with short 
driving distances. From an average driving speed of about 20 km/h, a relatively stable level of energy 
consumption is achieved. 

A strong influence on energy consumption can also be demonstrated for the other influencing 
variables outside temperature and vehicle weight. For example, consumption decreases by 
0.132 kWh/km in average when the outside temperature increases by 10°C. If the vehicle weight is 
increased by 10 tonnes, consumption increases by an average of 0.183 kWh/km. 

The influence of topography and the use of a cooling unit on vehicle energy consumption also 
provides plausible correlations. However, a more detailed analysis would be necessary for robust 
results. 

The analysis of the activity patterns illustrates the typical current use of BET in regional transport. 
The different types of use are striking, differing between one-shift and two-shift operation as well as 
intermediate charging during the day and long night-time charging processes. The operating and 
charging strategies are already being adapted to the given operational framework conditions. With 
a view to further optimization options for battery charging, it can be seen on the one hand that 
intermediate charging during the day can greatly reduce the need for night charging. Additionally, 
the analyses show significantly longer standing times than charging times, which allows charging to 
be shifted to more favourable periods.  

At the same time, however, it should also be noted that in the majority of the vehicles considered, 
the current e-trucks only make up a very small proportion of the total fleet. For further analyses, it is 
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therefore important to examine the effects of a larger proportion of electrified vehicles in the fleet and 
the increasing use of vehicles in long-distance transport. For in-depth analyses of energy 
consumption and the influencing variables, larger samples with longer data series, which are 
characterised by fewer data gaps and include more vehicle models could represent a significant 
improvement. 



Real-world data analysis of battery electric trucks operating in Germany  
 

37 

List of References 

ADAC (Hg.) (2024): Mercedes eActros 600: Mit 40 Tonnen elektrisch unterwegs. Online verfügbar 
unter https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/mercedes-
benz/mercedes-benz-eactros-600/#verbrauch-rund-88-kwh-auf-100-kilometer, zuletzt geprüft am 
10.04.2025. 

Cenex (Hg.) (2024): BETT – Battery Electric Truck Trial Final Report. Online verfügbar unter 
https://bett.cenex.co.uk/assets/reports/BETT---End-of-trial-report.pdf, zuletzt geprüft am 
10.04.2025. 

Faehrmann, Fabian (2023): Elektro Lkw: So viel Strom verbraucht der eActros 300. Hg. v. 
Verkehrsrundschau Plus. VerkehrsRundschau. Online verfügbar unter 
https://www.verkehrsrundschau.de/e-lkw/elektro-lkw-so-viel-strom-verbraucht-der-eactros-300-
3381338, zuletzt aktualisiert am 30.05.2023, zuletzt geprüft am 10.04.2025. 

IEA - International Energy Agency (Hg.) (2024): Trends in heavy electric vehicles. Electric truck 
and bus sales. Global EV Outlook 2024. Online verfügbar unter https://www.iea.org/reports/global-
ev-outlook-2024/trends-in-heavy-electric-vehicles, zuletzt geprüft am 11.04.2025. 

Li, Wen; Stanula, Patrick; Egede, Patricia; Kara, Sami; Herrmann, Christoph (2016): Determining 
the Main Factors Influencing the Energy Consumption of Electric Vehicles in the Usage Phase. In: 
Procedia CIRP 48, S. 352–357. DOI: 10.1016/j.procir.2016.03.014. 

Mao, Shiyue; Zhang, Yichen; Rodriguez, Felipe; Wang, Shuo; Hao, Chunxiao (2023): Real-world 
performance of battery electric heavy-duty vehicles in China. Energy consumption, range, and 
charging patterns. Hg. v. ICCT - The International Council on Clean Transportation. Online 
verfügbar unter https://theicct.org/wp-content/uploads/2023/04/HDV-BEVs-real-world_final2.pdf, 
zuletzt geprüft am 10.04.2025. 

Reichel, Johannes (2024): Cargo-Partner testet Elektro-Lkw europaweit. In: logistra. Das 
Praxismagazin für Nfz-Fuhrpark und Lagerlogistik (online). Online verfügbar unter 
https://logistra.de/news/nfz-fuhrpark-lagerlogistik-intralogistik-cargo-partner-testet-elektro-lkw-
europaweit-323268.html, zuletzt geprüft am 10.04.2025. 

Scania (Hg.) (2024): Sweden to Turkey: top insights from a 4,500 km BEV road trip. Online 
verfügbar unter https://www.scania.com/group/en/home/electrification/e-mobility-hub/sweden-to-
turkey-top-insights-from-a-4500-km-bev-road-trip.html, zuletzt geprüft am 10.04.2025. 

Schaal, Sebastian (2024): Letzte Testfahrten: Mit dem Mercedes eActros 600 quer durch 
Norwegen. Hg. v. electrive.net. Online verfügbar unter https://www.electrive.net/2024/06/20/letzte-
testfahrten-mit-dem-mercedes-eactros-600-quer-durch-norwegen/, zuletzt geprüft am 10.04.2025. 

Transport - Die Zeitung für den Güterverkehr (Hg.) (2023): Gut geworden. Online verfügbar unter 
https://transport-online.de/fachzeitung/fachartikel/fahrzeug-und-technik-lkw-test-gut-geworden-
111838.html. 



 Real-world data analysis of battery electric trucks operating in Germany 
 

38 

Vogt-Möbs, Gerfried; Schuhmacher, Stefanie (2022): DAF Elektro-Lkw im Leistungstest. Hg. v. 
VerkehrsRundschau. Online verfügbar unter https://www.verkehrsrundschau.de/e-lkw/daf-elektro-
lkw-im-leistungstest-3197343, zuletzt geprüft am 10.04.2025. 

Xu, Hang; Liu, Yu; Li, Jingyuan; Yu, Hanzhengnan; An, Xiaopan; Ma, Kunqi et al. (2023a): Study 
on the influence of high and low temperature environment on the energy consumption of battery 
electric vehicles. In: Energy Reports 9, S. 835–842. DOI: 10.1016/j.egyr.2023.05.120. 

Xu, Zhicheng; Wang, Jun; Lund, Peter D.; Zhang, Yaoming (2023b): Analysis of energy 
consumption for electric buses based on low-frequency real-world data. In: Transportation 
Research Part D: Transport and Environment 122, S. 103857. DOI: 10.1016/j.trd.2023.103857. 

 

  



Real-world data analysis of battery electric trucks operating in Germany  
 

39 

Annex 

Annex I. Analysed activity patterns for the vehicles of the respective case study  
partners A-E 

Figure 6-1:  Case study partner A – Vehicle 1 (04.10.2023 to 04.01.2025) 

 
Source: own illustration 

 

Figure 6-2:  Case study partner A – Vehicle 1 (04.10.2023 to 04.01.2025) 

 
Source: own illustration 
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Figure 6-3:  Case study partner A – Vehicle 1 (02.10.2023 to 04.01.2025) 

 
Source: own illustration 

 

Figure 6-4:  Case study partner B – Vehicle 1 (04.10.2023 to 02.01.2025) 

 
Source: own illustration 
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Figure 6-5:  Case study partner B – Vehicle 1 (16.09.2024 to 03.01.2025) 

 
Source: own illustration 

 

Figure 6-6:  Case study partner B – Vehicle 1 (18.11.2024 to 04.01.2025) 

 
Source: own illustration 
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Figure 6-7:  Case study partner C – Vehicle 1 (18.11.2024 to 04.01.2025) 

 
Source: own illustration 

 

Figure 6-8:  Case study partner C – Vehicle 1 (27.11.2024 to 03.01.2025) 

 
Source: own illustration 
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Figure 6-9:  Case study partner D – Vehicle 1 (26.02.2024 to 13.12.2024) 

 
Source: own illustration 

 

Figure 6-10:  Case study partner D – Vehicle 1 (26.02.2024 to 22.11.2024) 

 
Source own illustration 
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Figure 6-11:  Case study partner D – Vehicle 1 (11.12.2023 to 12.12.2024) 

 
Source: own illustration 

 

Figure 6-12:  Case study partner D – Vehicle 1 (04.06.2024 to 13.12.2024) 

 
Source: own illustration 
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Figure 6-13:  Case study partner D – Vehicle 1 (18.08.2024 to 13.12.2024) 

 
Source: own illustration 

 

Figure 6-14:  Case study partner D – Vehicle 1 (04.06.2024 to 13.12.2024) 

 
Source own illustration 

 



 Real-world data analysis of battery electric trucks operating in Germany 
 

46 

Figure 6-15:  Case study partner E – Vehicle 1 (14.08.2024 to 03.01.2025) 

 
Source: own illustration 

 

Figure 6-16:  Case study partner E – Vehicle 1 (12.08.2024 to 02.01.2025) 

 
Source: own illustration 
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Figure 6-17:  Case study partner E – Vehicle 1 (15.08.2024 to 12.12.2024) 

 
Source own illustration 

 

Figure 6-18:  Case study partner E – Vehicle 1 (16.07.2024 to 02.01.2025) 

 
Source: own illustration 
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Figure 6-19:  Case study partner E – Vehicle 1 (15.08.2024 to 03.01.2025) 

 
Source own illustration 
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